;;;------------------------------------------------------------------------- ;;; Search and splaying. ;; Initial state tree dump #0x00000000 (n = 1) (*) 2 #0x00000001 (n = 3) (*) 4 #0x00000002 (n = 1) (*) 6 #0x00000003 (n = 7) (*) 8 #0x00000004 (n = 1) (*) 10 #0x00000005 (n = 3) (*) 12 #0x00000006 (n = 1) (*) 14 #0x00000007 (n = 12) (*) 16 #0x00000008 (n = 1) (*) 18 #0x00000009 (n = 3) (*) 20 #0x0000000a (n = 1) (*) 22 #0x0000000b (n = 4) (*) 24 ;; Root. 16 tree dump #0x0000000c (n = 1) (*) 2 #0x0000000e (n = 3) (*) 4 #0x0000000d (n = 1) (*) 6 #0x00000012 (n = 7) (*) 8 #0x0000000f (n = 1) (*) 10 #0x00000011 (n = 3) (*) 12 #0x00000010 (n = 1) (*) 14 #0x00000017 (n = 12) (*) 16 #0x00000013 (n = 1) (*) 18 #0x00000015 (n = 3) (*) 20 #0x00000014 (n = 1) (*) 22 #0x00000016 (n = 4) (*) 24 # ;; Zig. 8 XYLA-SPLAY SPLAY zig left child tree dump #0x00000018 (n = 1) (*) 2 #0x0000001a (n = 3) (*) 4 #0x00000019 (n = 1) (*) 6 #0x0000001e (n = 12) (*) 8 #0x0000001b (n = 1) (*) 10 #0x0000001d (n = 3) (*) 12 #0x0000001c (n = 1) (*) 14 #0x00000023 (n = 8) (*) 16 #0x0000001f (n = 1) (*) 18 #0x00000021 (n = 3) (*) 20 #0x00000020 (n = 1) (*) 22 #0x00000022 (n = 4) (*) 24 # 24 XYLA-SPLAY SPLAY zig right child tree dump #0x00000024 (n = 1) (*) 2 #0x00000026 (n = 3) (*) 4 #0x00000025 (n = 1) (*) 6 #0x0000002a (n = 7) (*) 8 #0x00000027 (n = 1) (*) 10 #0x00000029 (n = 3) (*) 12 #0x00000028 (n = 1) (*) 14 #0x0000002f (n = 11) (*) 16 #0x0000002b (n = 1) (*) 18 #0x0000002d (n = 3) (*) 20 #0x0000002c (n = 1) (*) 22 #0x0000002e (n = 12) (*) 24 # ;; Zig-zig. 4 XYLA-SPLAY SPLAY zig-zig left/left child tree dump #0x00000030 (n = 1) (*) 2 #0x00000032 (n = 12) (*) 4 #0x00000031 (n = 1) (*) 6 #0x00000036 (n = 10) (*) 8 #0x00000033 (n = 1) (*) 10 #0x00000035 (n = 3) (*) 12 #0x00000034 (n = 1) (*) 14 #0x0000003b (n = 8) (*) 16 #0x00000037 (n = 1) (*) 18 #0x00000039 (n = 3) (*) 20 #0x00000038 (n = 1) (*) 22 #0x0000003a (n = 4) (*) 24 # 2 XYLA-SPLAY SPLAY zig-zig left/left child XYLA-SPLAY SPLAY zig left child tree dump #0x0000003c (n = 12) (*) 2 #0x0000003e (n = 6) (*) 4 #0x0000003d (n = 1) (*) 6 #0x00000042 (n = 5) (*) 8 #0x0000003f (n = 1) (*) 10 #0x00000041 (n = 3) (*) 12 #0x00000040 (n = 1) (*) 14 #0x00000047 (n = 11) (*) 16 #0x00000043 (n = 1) (*) 18 #0x00000045 (n = 3) (*) 20 #0x00000044 (n = 1) (*) 22 #0x00000046 (n = 4) (*) 24 # 14 XYLA-SPLAY SPLAY zig-zig right/right child XYLA-SPLAY SPLAY zig left child tree dump #0x00000048 (n = 1) (*) 2 #0x0000004a (n = 3) (*) 4 #0x00000049 (n = 1) (*) 6 #0x0000004e (n = 5) (*) 8 #0x0000004b (n = 1) (*) 10 #0x0000004d (n = 6) (*) 12 #0x0000004c (n = 12) (*) 14 #0x00000053 (n = 5) (*) 16 #0x0000004f (n = 1) (*) 18 #0x00000051 (n = 3) (*) 20 #0x00000050 (n = 1) (*) 22 #0x00000052 (n = 4) (*) 24 # ;; Zig-zag. 12 XYLA-SPLAY SPLAY zig-zag left/right child tree dump #0x00000054 (n = 1) (*) 2 #0x00000056 (n = 3) (*) 4 #0x00000055 (n = 1) (*) 6 #0x0000005a (n = 5) (*) 8 #0x00000057 (n = 1) (*) 10 #0x00000059 (n = 12) (*) 12 #0x00000058 (n = 1) (*) 14 #0x0000005f (n = 6) (*) 16 #0x0000005b (n = 1) (*) 18 #0x0000005d (n = 3) (*) 20 #0x0000005c (n = 1) (*) 22 #0x0000005e (n = 4) (*) 24 # 20 XYLA-SPLAY SPLAY zig-zag right/left child tree dump #0x00000060 (n = 1) (*) 2 #0x00000062 (n = 3) (*) 4 #0x00000061 (n = 1) (*) 6 #0x00000066 (n = 7) (*) 8 #0x00000063 (n = 1) (*) 10 #0x00000065 (n = 3) (*) 12 #0x00000064 (n = 1) (*) 14 #0x0000006b (n = 9) (*) 16 #0x00000067 (n = 1) (*) 18 #0x00000069 (n = 12) (*) 20 #0x00000068 (n = 1) (*) 22 #0x0000006a (n = 2) (*) 24 # ;; Misses. 1 XYLA-SPLAY SPLAY zig-zig left/left child XYLA-SPLAY SPLAY zig left child tree dump #0x0000006c (n = 12) (*) 2 #0x0000006e (n = 6) (*) 4 #0x0000006d (n = 1) (*) 6 #0x00000072 (n = 5) (*) 8 #0x0000006f (n = 1) (*) 10 #0x00000071 (n = 3) (*) 12 #0x00000070 (n = 1) (*) 14 #0x00000077 (n = 11) (*) 16 #0x00000073 (n = 1) (*) 18 #0x00000075 (n = 3) (*) 20 #0x00000074 (n = 1) (*) 22 #0x00000076 (n = 4) (*) 24 (nil) 11 XYLA-SPLAY SPLAY zig-zag right/left child XYLA-SPLAY SPLAY zig left child tree dump #0x00000078 (n = 1) (*) 2 #0x0000007a (n = 3) (*) 4 #0x00000079 (n = 1) (*) 6 #0x0000007e (n = 4) (*) 8 #0x0000007b (n = 12) (*) 10 #0x0000007d (n = 2) (*) 12 #0x0000007c (n = 1) (*) 14 #0x00000083 (n = 7) (*) 16 #0x0000007f (n = 1) (*) 18 #0x00000081 (n = 3) (*) 20 #0x00000080 (n = 1) (*) 22 #0x00000082 (n = 4) (*) 24 (nil) 15 XYLA-SPLAY SPLAY zig-zig right/right child XYLA-SPLAY SPLAY zig left child tree dump #0x00000084 (n = 1) (*) 2 #0x00000086 (n = 3) (*) 4 #0x00000085 (n = 1) (*) 6 #0x0000008a (n = 5) (*) 8 #0x00000087 (n = 1) (*) 10 #0x00000089 (n = 6) (*) 12 #0x00000088 (n = 12) (*) 14 #0x0000008f (n = 5) (*) 16 #0x0000008b (n = 1) (*) 18 #0x0000008d (n = 3) (*) 20 #0x0000008c (n = 1) (*) 22 #0x0000008e (n = 4) (*) 24 (nil) 17 XYLA-SPLAY SPLAY zig-zig left/left child XYLA-SPLAY SPLAY zig right child tree dump #0x00000090 (n = 1) (*) 2 #0x00000092 (n = 3) (*) 4 #0x00000091 (n = 1) (*) 6 #0x00000096 (n = 7) (*) 8 #0x00000093 (n = 1) (*) 10 #0x00000095 (n = 3) (*) 12 #0x00000094 (n = 1) (*) 14 #0x0000009b (n = 8) (*) 16 #0x00000097 (n = 12) (*) 18 #0x00000099 (n = 3) (*) 20 #0x00000098 (n = 1) (*) 22 #0x0000009a (n = 2) (*) 24 (nil) 23 XYLA-SPLAY SPLAY zig-zag left/right child XYLA-SPLAY SPLAY zig right child tree dump #0x0000009c (n = 1) (*) 2 #0x0000009e (n = 3) (*) 4 #0x0000009d (n = 1) (*) 6 #0x000000a2 (n = 7) (*) 8 #0x0000009f (n = 1) (*) 10 #0x000000a1 (n = 3) (*) 12 #0x000000a0 (n = 1) (*) 14 #0x000000a7 (n = 10) (*) 16 #0x000000a3 (n = 1) (*) 18 #0x000000a5 (n = 2) (*) 20 #0x000000a4 (n = 12) (*) 22 #0x000000a6 (n = 1) (*) 24 (nil) ;; Splaying example from the paper. tree dump #0x000000a8 (n = 1) (*) 5 #0x000000b4 (n = 13) (*) 10 #0x000000a9 (n = 1) (*) 15 #0x000000b1 (n = 9) (*) 20 #0x000000aa (n = 1) (*) 25 #0x000000b0 (n = 7) (*) 30 #0x000000ab (n = 1) (*) 35 #0x000000af (n = 5) (*) 40 #0x000000ac (n = 1) (*) 45 #0x000000ae (n = 3) (*) 50 #0x000000ad (n = 1) (*) 55 #0x000000b3 (n = 11) (*) 60 #0x000000b2 (n = 1) (*) 65 #0x000000b6 (n = 15) (*) 70 #0x000000b5 (n = 1) (*) 75 #0x000000b8 (n = 17) (*) 80 #0x000000b7 (n = 1) (*) 85 #0x000000ba (n = 19) (*) 90 #0x000000b9 (n = 1) (*) 95 50 tree dump #0x000000a8 (n = 1) (*) 5 #0x000000b4 (n = 9) (*) 10 #0x000000a9 (n = 1) (*) 15 #0x000000b1 (n = 7) (*) 20 #0x000000aa (n = 1) (*) 25 #0x000000b0 (n = 3) (*) 30 #0x000000ab (n = 1) (*) 35 #0x000000af (n = 5) (*) 40 #0x000000ac (n = 1) (*) 45 #0x000000ae (n = 19) (*) 50 #0x000000ad (n = 1) (*) 55 #0x000000b3 (n = 3) (*) 60 #0x000000b2 (n = 1) (*) 65 #0x000000b6 (n = 5) (*) 70 #0x000000b5 (n = 1) (*) 75 #0x000000b8 (n = 9) (*) 80 #0x000000b7 (n = 1) (*) 85 #0x000000ba (n = 3) (*) 90 #0x000000b9 (n = 1) (*) 95 # ;; All zig-zig example from the paper. tree dump #0x000000bb (n = 1) (*) 5 #0x000000bd (n = 3) (*) 10 #0x000000bc (n = 1) (*) 15 #0x000000bf (n = 5) (*) 20 #0x000000be (n = 1) (*) 25 #0x000000c1 (n = 7) (*) 30 #0x000000c0 (n = 1) (*) 35 #0x000000c3 (n = 9) (*) 40 #0x000000c2 (n = 1) (*) 45 #0x000000c5 (n = 11) (*) 50 #0x000000c4 (n = 1) (*) 55 #0x000000c7 (n = 13) (*) 60 #0x000000c6 (n = 1) (*) 65 #0x000000c9 (n = 15) (*) 70 #0x000000c8 (n = 1) (*) 75 10 tree dump #0x000000bb (n = 1) (*) 5 #0x000000bd (n = 15) (*) 10 #0x000000bc (n = 1) (*) 15 #0x000000bf (n = 5) (*) 20 #0x000000be (n = 1) (*) 25 #0x000000c1 (n = 3) (*) 30 #0x000000c0 (n = 1) (*) 35 #0x000000c3 (n = 9) (*) 40 #0x000000c2 (n = 1) (*) 45 #0x000000c5 (n = 3) (*) 50 #0x000000c4 (n = 1) (*) 55 #0x000000c7 (n = 13) (*) 60 #0x000000c6 (n = 1) (*) 65 #0x000000c9 (n = 3) (*) 70 #0x000000c8 (n = 1) (*) 75 # ;; All zig-zag example from the paper. tree dump #0x000000ca (n = 1) (*) 5 #0x000000d6 (n = 13) (*) 10 #0x000000cb (n = 1) (*) 15 #0x000000d3 (n = 9) (*) 20 #0x000000cc (n = 1) (*) 25 #0x000000d0 (n = 5) (*) 30 #0x000000cd (n = 1) (*) 35 #0x000000cf (n = 3) (*) 40 #0x000000ce (n = 1) (*) 45 #0x000000d2 (n = 7) (*) 50 #0x000000d1 (n = 1) (*) 55 #0x000000d5 (n = 11) (*) 60 #0x000000d4 (n = 1) (*) 65 #0x000000d8 (n = 15) (*) 70 #0x000000d7 (n = 1) (*) 75 40 tree dump #0x000000ca (n = 1) (*) 5 #0x000000d6 (n = 7) (*) 10 #0x000000cb (n = 1) (*) 15 #0x000000d3 (n = 5) (*) 20 #0x000000cc (n = 1) (*) 25 #0x000000d0 (n = 3) (*) 30 #0x000000cd (n = 1) (*) 35 #0x000000cf (n = 15) (*) 40 #0x000000ce (n = 1) (*) 45 #0x000000d2 (n = 3) (*) 50 #0x000000d1 (n = 1) (*) 55 #0x000000d5 (n = 5) (*) 60 #0x000000d4 (n = 1) (*) 65 #0x000000d8 (n = 7) (*) 70 #0x000000d7 (n = 1) (*) 75 # ;; Unsuccessful search example from the paper. The same setup is used for ;; some later examples, and I've modified it because I consistently use the ;; leftmost node of the right tree as the joining node, rather than the ;; rightmost node of the left tree. tree dump #0x000000e3 (n = 1) (*) 10 #0x000000e7 (n = 5) (*) 20 #0x000000e6 (n = 3) (*) 30 #0x000000e4 (n = 1) (*) 35 #0x000000e5 (n = 2) (*) 40 #0x000000ec (n = 10) (*) 50 #0x000000eb (n = 4) (*) 60 #0x000000e8 (n = 1) (*) 70 #0x000000ea (n = 3) (*) 90 #0x000000e9 (n = 1) (*) 100 80 tree dump #0x000000e3 (n = 1) (*) 10 #0x000000e7 (n = 5) (*) 20 #0x000000e6 (n = 3) (*) 30 #0x000000e4 (n = 1) (*) 35 #0x000000e5 (n = 2) (*) 40 #0x000000ec (n = 7) (*) 50 #0x000000eb (n = 1) (*) 60 #0x000000e8 (n = 10) (*) 70 #0x000000ea (n = 2) (*) 90 #0x000000e9 (n = 1) (*) 100 (nil) ;;;------------------------------------------------------------------------- ;;; Insertion. ;; Initial state. tree dump #0x000000ed (n = 1) (*) 2 #0x000000ee (n = 3) (*) 4 #0x000000ef (n = 1) (*) 6 #0x000000f0 (n = 7) (*) 8 #0x000000f1 (n = 1) (*) 10 #0x000000f2 (n = 3) (*) 12 #0x000000f3 (n = 1) (*) 14 #0x000000f4 (n = 12) (*) 16 #0x000000f5 (n = 1) (*) 18 #0x000000f6 (n = 3) (*) 20 #0x000000f7 (n = 1) (*) 22 #0x000000f8 (n = 4) (*) 24 ;; Zig-zig. 25 XYLA-SPLAY SPLAY zig-zig right/right child tree dump #0x000000f9 (n = 1) (*) 2 #0x000000fb (n = 3) (*) 4 #0x000000fa (n = 1) (*) 6 #0x000000ff (n = 7) (*) 8 #0x000000fc (n = 1) (*) 10 #0x000000fe (n = 3) (*) 12 #0x000000fd (n = 1) (*) 14 #0x00000104 (n = 11) (*) 16 #0x00000100 (n = 1) (*) 18 #0x00000102 (n = 3) (*) 20 #0x00000101 (n = 1) (*) 22 #0x00000103 (n = 12) (*) 24 #0x00000105 (n = 13) (*) 25 ;; Zig-zag. 23 XYLA-SPLAY SPLAY zig-zig right/right child XYLA-SPLAY SPLAY zig-zag right/left child tree dump #0x00000106 (n = 1) (*) 2 #0x00000108 (n = 3) (*) 4 #0x00000107 (n = 1) (*) 6 #0x0000010c (n = 7) (*) 8 #0x00000109 (n = 1) (*) 10 #0x0000010b (n = 3) (*) 12 #0x0000010a (n = 1) (*) 14 #0x00000111 (n = 11) (*) 16 #0x0000010d (n = 1) (*) 18 #0x0000010f (n = 2) (*) 20 #0x0000010e (n = 3) (*) 22 #0x00000112 (n = 13) (*) 23 #0x00000110 (n = 1) (*) 24 ;; Insertion example from the paper. tree dump #0x000000d9 (n = 1) (*) 10 #0x000000dd (n = 5) (*) 20 #0x000000dc (n = 3) (*) 30 #0x000000da (n = 1) (*) 35 #0x000000db (n = 2) (*) 40 #0x000000e2 (n = 10) (*) 50 #0x000000e1 (n = 4) (*) 60 #0x000000de (n = 1) (*) 70 #0x000000e0 (n = 3) (*) 90 #0x000000df (n = 1) (*) 100 80 tree dump #0x000000d9 (n = 1) (*) 10 #0x000000dd (n = 5) (*) 20 #0x000000dc (n = 3) (*) 30 #0x000000da (n = 1) (*) 35 #0x000000db (n = 2) (*) 40 #0x000000e2 (n = 6) (*) 50 #0x000000e1 (n = 8) (*) 60 #0x000000de (n = 1) (*) 70 #0x00000113 (n = 11) (*) 80 #0x000000e0 (n = 2) (*) 90 #0x000000df (n = 1) (*) 100 ;;;------------------------------------------------------------------------- ;;; Removal. ;; Initial state. tree dump #0x00000114 (n = 1) (*) 2 #0x00000115 (n = 3) (*) 4 #0x00000116 (n = 1) (*) 6 #0x00000117 (n = 7) (*) 8 #0x00000118 (n = 1) (*) 10 #0x00000119 (n = 3) (*) 12 #0x0000011a (n = 1) (*) 14 #0x0000011b (n = 12) (*) 16 #0x0000011c (n = 1) (*) 18 #0x0000011d (n = 3) (*) 20 #0x0000011e (n = 1) (*) 22 #0x0000011f (n = 4) (*) 24 ;; Root. 16 XYLA-SPLAY SPLAY zig-zig left/left child tree dump #0x00000120 (n = 1) (*) 2 #0x00000122 (n = 3) (*) 4 #0x00000121 (n = 1) (*) 6 #0x00000126 (n = 7) (*) 8 #0x00000123 (n = 1) (*) 10 #0x00000125 (n = 3) (*) 12 #0x00000124 (n = 1) (*) 14 #0x00000127 (n = 11) (*) 18 #0x00000129 (n = 3) (*) 20 #0x00000128 (n = 1) (*) 22 #0x0000012a (n = 2) (*) 24 ;; Internal node. 8 XYLA-SPLAY SPLAY zig left child tree dump #0x0000012c (n = 1) (*) 2 #0x0000012e (n = 3) (*) 4 #0x0000012d (n = 1) (*) 6 #0x0000012f (n = 6) (*) 10 #0x00000131 (n = 2) (*) 12 #0x00000130 (n = 1) (*) 14 #0x00000137 (n = 11) (*) 16 #0x00000133 (n = 1) (*) 18 #0x00000135 (n = 3) (*) 20 #0x00000134 (n = 1) (*) 22 #0x00000136 (n = 4) (*) 24 ;; Leaf node. 14 XYLA-SPLAY SPLAY zig-zag left/right child tree dump #0x00000138 (n = 1) (*) 2 #0x0000013a (n = 3) (*) 4 #0x00000139 (n = 1) (*) 6 #0x0000013e (n = 5) (*) 8 #0x0000013b (n = 1) (*) 10 #0x0000013d (n = 11) (*) 12 #0x00000143 (n = 5) (*) 16 #0x0000013f (n = 1) (*) 18 #0x00000141 (n = 3) (*) 20 #0x00000140 (n = 1) (*) 22 #0x00000142 (n = 4) (*) 24 18 XYLA-SPLAY SPLAY zig-zag right/left child tree dump #0x00000144 (n = 1) (*) 2 #0x00000146 (n = 3) (*) 4 #0x00000145 (n = 1) (*) 6 #0x0000014a (n = 7) (*) 8 #0x00000147 (n = 1) (*) 10 #0x00000149 (n = 3) (*) 12 #0x00000148 (n = 1) (*) 14 #0x0000014f (n = 8) (*) 16 #0x0000014d (n = 11) (*) 20 #0x0000014c (n = 1) (*) 22 #0x0000014e (n = 2) (*) 24 ;; Removal example from the paper, modified for difference in join policy. tree dump #0x000000d9 (n = 1) (*) 10 #0x000000dd (n = 5) (*) 20 #0x000000dc (n = 3) (*) 30 #0x000000da (n = 1) (*) 35 #0x000000db (n = 2) (*) 40 #0x000000e2 (n = 6) (*) 50 #0x000000e1 (n = 8) (*) 60 #0x000000de (n = 1) (*) 70 #0x00000113 (n = 11) (*) 80 #0x000000e0 (n = 2) (*) 90 #0x000000df (n = 1) (*) 100 20 tree dump #0x000000d9 (n = 1) (*) 10 #0x000000dc (n = 4) (*) 30 #0x000000da (n = 1) (*) 35 #0x000000db (n = 2) (*) 40 #0x000000e2 (n = 10) (*) 50 #0x000000e1 (n = 5) (*) 60 #0x000000de (n = 1) (*) 70 #0x00000113 (n = 4) (*) 80 #0x000000e0 (n = 2) (*) 90 #0x000000df (n = 1) (*) 100 ;;;------------------------------------------------------------------------- ;;; Joining. ;; With joining node. (Trivial!) tree dump #0x00000150 (n = 1) (*) 1 #0x00000151 (n = 3) (*) 2 #0x00000152 (n = 1) (*) 3 #0x00000153 (n = 7) (*) 4 #0x00000154 (n = 1) (*) 5 #0x00000155 (n = 3) (*) 6 #0x00000156 (n = 1) (*) 7 #0x00000157 (n = 12) (*) 8 #0x00000158 (n = 1) (*) 9 #0x00000159 (n = 3) (*) 10 #0x0000015a (n = 1) (*) 11 #0x0000015b (n = 4) (*) 12 tree dump #0x0000015c (n = 1) (*) 14 #0x0000015d (n = 3) (*) 15 #0x0000015e (n = 1) (*) 16 #0x0000015f (n = 7) (*) 17 #0x00000160 (n = 1) (*) 18 #0x00000161 (n = 3) (*) 19 #0x00000162 (n = 1) (*) 20 #0x00000163 (n = 12) (*) 21 #0x00000164 (n = 1) (*) 22 #0x00000165 (n = 3) (*) 23 #0x00000166 (n = 1) (*) 24 #0x00000167 (n = 4) (*) 25 13 tree dump #0x00000150 (n = 1) (*) 1 #0x00000151 (n = 3) (*) 2 #0x00000152 (n = 1) (*) 3 #0x00000153 (n = 7) (*) 4 #0x00000154 (n = 1) (*) 5 #0x00000155 (n = 3) (*) 6 #0x00000156 (n = 1) (*) 7 #0x00000157 (n = 12) (*) 8 #0x00000158 (n = 1) (*) 9 #0x00000159 (n = 3) (*) 10 #0x0000015a (n = 1) (*) 11 #0x0000015b (n = 4) (*) 12 #0x00000168 (n = 25) (*) 13 #0x0000015c (n = 1) (*) 14 #0x0000015d (n = 3) (*) 15 #0x0000015e (n = 1) (*) 16 #0x0000015f (n = 7) (*) 17 #0x00000160 (n = 1) (*) 18 #0x00000161 (n = 3) (*) 19 #0x00000162 (n = 1) (*) 20 #0x00000163 (n = 12) (*) 21 #0x00000164 (n = 1) (*) 22 #0x00000165 (n = 3) (*) 23 #0x00000166 (n = 1) (*) 24 #0x00000167 (n = 4) (*) 25 ;; Without joining node. tree dump #0x00000169 (n = 1) (*) 1 #0x0000016a (n = 3) (*) 2 #0x0000016b (n = 1) (*) 3 #0x0000016c (n = 7) (*) 4 #0x0000016d (n = 1) (*) 5 #0x0000016e (n = 3) (*) 6 #0x0000016f (n = 1) (*) 7 #0x00000170 (n = 12) (*) 8 #0x00000171 (n = 1) (*) 9 #0x00000172 (n = 3) (*) 10 #0x00000173 (n = 1) (*) 11 #0x00000174 (n = 4) (*) 12 tree dump #0x00000175 (n = 1) (*) 14 #0x00000176 (n = 3) (*) 15 #0x00000177 (n = 1) (*) 16 #0x00000178 (n = 7) (*) 17 #0x00000179 (n = 1) (*) 18 #0x0000017a (n = 3) (*) 19 #0x0000017b (n = 1) (*) 20 #0x0000017c (n = 12) (*) 21 #0x0000017d (n = 1) (*) 22 #0x0000017e (n = 3) (*) 23 #0x0000017f (n = 1) (*) 24 #0x00000180 (n = 4) (*) 25 (no key) tree dump #0x00000169 (n = 1) (*) 1 #0x0000016a (n = 3) (*) 2 #0x0000016b (n = 1) (*) 3 #0x0000016c (n = 7) (*) 4 #0x0000016d (n = 1) (*) 5 #0x0000016e (n = 3) (*) 6 #0x0000016f (n = 1) (*) 7 #0x00000170 (n = 12) (*) 8 #0x00000171 (n = 1) (*) 9 #0x00000172 (n = 3) (*) 10 #0x00000173 (n = 1) (*) 11 #0x00000174 (n = 4) (*) 12 #0x00000175 (n = 24) (*) 14 #0x00000176 (n = 6) (*) 15 #0x00000177 (n = 1) (*) 16 #0x00000178 (n = 5) (*) 17 #0x00000179 (n = 1) (*) 18 #0x0000017a (n = 3) (*) 19 #0x0000017b (n = 1) (*) 20 #0x0000017c (n = 11) (*) 21 #0x0000017d (n = 1) (*) 22 #0x0000017e (n = 3) (*) 23 #0x0000017f (n = 1) (*) 24 #0x00000180 (n = 4) (*) 25 ;;;------------------------------------------------------------------------- ;;; Rebalancing. ;; Initial state: right-trailing vine. tree dump #0x0000018f (n = 15) (*) 1 #0x0000018e (n = 14) (*) 2 #0x0000018d (n = 13) (*) 3 #0x0000018c (n = 12) (*) 4 #0x0000018b (n = 11) (*) 5 #0x0000018a (n = 10) (*) 6 #0x00000189 (n = 9) (*) 7 #0x00000188 (n = 8) (*) 8 #0x00000187 (n = 7) (*) 9 #0x00000186 (n = 6) (*) 10 #0x00000185 (n = 5) (*) 11 #0x00000184 (n = 4) (*) 12 #0x00000183 (n = 3) (*) 13 #0x00000182 (n = 2) (*) 14 #0x00000181 (n = 1) (*) 15 ;; No path. (nil) tree dump #0x0000019e (n = 1) (*) 1 #0x0000019d (n = 3) (*) 2 #0x0000019c (n = 1) (*) 3 #0x0000019b (n = 7) (*) 4 #0x0000019a (n = 1) (*) 5 #0x00000199 (n = 3) (*) 6 #0x00000198 (n = 1) (*) 7 #0x00000197 (n = 15) (*) 8 #0x00000196 (n = 1) (*) 9 #0x00000195 (n = 3) (*) 10 #0x00000194 (n = 1) (*) 11 #0x00000193 (n = 7) (*) 12 #0x00000192 (n = 1) (*) 13 #0x00000191 (n = 3) (*) 14 #0x00000190 (n = 1) (*) 15 (nil) ;; Full path tracking. (# node #0x000001a2 12>) tree dump #0x000001ad (n = 1) (*) 1 #0x000001ac (n = 3) (*) 2 #0x000001ab (n = 1) (*) 3 #0x000001aa (n = 7) (*) 4 #0x000001a9 (n = 1) (*) 5 #0x000001a8 (n = 3) (*) 6 #0x000001a7 (n = 1) (*) 7 #0x000001a6 (n = 15) (*) 8 #0x000001a5 (n = 1) (*) 9 #0x000001a4 (n = 3) (*) 10 #0x000001a3 (n = 1) (*) 11 #0x000001a2 (n = 7) (*) 12 #0x000001a1 (n = 1) (*) 13 #0x000001a0 (n = 3) (*) 14 #0x0000019f (n = 1) (*) 15 (# node #0x000001a2 12>) ;; Empty path tracking. (# node #0x000001b1 12>) tree dump #0x000001bc (n = 1) (*) 1 #0x000001bb (n = 3) (*) 2 #0x000001ba (n = 1) (*) 3 #0x000001b9 (n = 7) (*) 4 #0x000001b8 (n = 1) (*) 5 #0x000001b7 (n = 3) (*) 6 #0x000001b6 (n = 1) (*) 7 #0x000001b5 (n = 15) (*) 8 #0x000001b4 (n = 1) (*) 9 #0x000001b3 (n = 3) (*) 10 #0x000001b2 (n = 1) (*) 11 #0x000001b1 (n = 7) (*) 12 #0x000001b0 (n = 1) (*) 13 #0x000001af (n = 3) (*) 14 #0x000001ae (n = 1) (*) 15 (# node #0x000001b1 12> # -> (nil)) (# node #0x000001c0 12>) tree dump #0x000001cb (n = 1) (*) 1 #0x000001ca (n = 3) (*) 2 #0x000001c9 (n = 1) (*) 3 #0x000001c8 (n = 7) (*) 4 #0x000001c7 (n = 1) (*) 5 #0x000001c6 (n = 3) (*) 6 #0x000001c5 (n = 1) (*) 7 #0x000001c4 (n = 15) (*) 8 #0x000001c3 (n = 1) (*) 9 #0x000001c2 (n = 3) (*) 10 #0x000001c1 (n = 1) (*) 11 #0x000001c0 (n = 7) (*) 12 #0x000001bf (n = 1) (*) 13 #0x000001be (n = 3) (*) 14 #0x000001bd (n = 1) (*) 15 (# node #0x000001c0 12> # -> (nil)) ;; A tree with a very long left-leaning tentril in the middle. tree dump #0x000001cc (n = 1) (*) 101 #0x000001cd (n = 3) (*) 102 #0x000001ce (n = 1) (*) 103 #0x000001cf (n = 7) (*) 104 #0x000001d0 (n = 1) (*) 105 #0x000001d1 (n = 3) (*) 106 #0x000001d2 (n = 1) (*) 107 #0x000001d3 (n = 15) (*) 108 #0x000001d4 (n = 1) (*) 109 #0x000001d5 (n = 3) (*) 110 #0x000001d6 (n = 1) (*) 111 #0x000001d7 (n = 7) (*) 112 #0x000001d8 (n = 1) (*) 113 #0x000001d9 (n = 3) (*) 114 #0x000001da (n = 1) (*) 115 #0x00000270 (n = 165) (*) 116 #0x000001db (n = 1) (*) 117 #0x00000263 (n = 137) (*) 118 #0x000001dc (n = 1) (*) 490 #0x000001dd (n = 2) (*) 491 #0x000001de (n = 3) (*) 492 #0x000001df (n = 4) (*) 493 #0x000001e0 (n = 5) (*) 494 #0x000001e1 (n = 6) (*) 495 #0x000001e2 (n = 7) (*) 496 #0x000001e3 (n = 8) (*) 497 #0x000001e4 (n = 9) (*) 498 #0x000001e5 (n = 10) (*) 499 #0x000001e6 (n = 11) (*) 500 #0x000001e7 (n = 12) (*) 501 #0x000001e8 (n = 13) (*) 502 #0x000001e9 (n = 14) (*) 503 #0x000001ea (n = 15) (*) 504 #0x000001eb (n = 16) (*) 505 #0x000001ec (n = 17) (*) 506 #0x000001ed (n = 18) (*) 507 #0x000001ee (n = 19) (*) 508 #0x000001ef (n = 20) (*) 509 #0x000001f0 (n = 21) (*) 510 #0x000001f1 (n = 22) (*) 511 #0x000001f2 (n = 23) (*) 512 #0x000001f3 (n = 24) (*) 513 #0x000001f4 (n = 25) (*) 514 #0x000001f5 (n = 26) (*) 515 #0x000001f6 (n = 27) (*) 516 #0x000001f7 (n = 28) (*) 517 #0x000001f8 (n = 29) (*) 518 #0x000001f9 (n = 30) (*) 519 #0x000001fa (n = 31) (*) 520 #0x000001fb (n = 32) (*) 521 #0x000001fc (n = 33) (*) 522 #0x000001fd (n = 34) (*) 523 #0x000001fe (n = 35) (*) 524 #0x000001ff (n = 36) (*) 525 #0x00000200 (n = 37) (*) 526 #0x00000201 (n = 38) (*) 527 #0x00000202 (n = 39) (*) 528 #0x00000203 (n = 40) (*) 529 #0x00000204 (n = 41) (*) 530 #0x00000205 (n = 42) (*) 531 #0x00000206 (n = 43) (*) 532 #0x00000207 (n = 44) (*) 533 #0x00000208 (n = 45) (*) 534 #0x00000209 (n = 46) (*) 535 #0x0000020a (n = 47) (*) 536 #0x0000020b (n = 48) (*) 537 #0x0000020c (n = 49) (*) 538 #0x0000020d (n = 50) (*) 539 #0x0000020e (n = 51) (*) 540 #0x0000020f (n = 52) (*) 541 #0x00000210 (n = 53) (*) 542 #0x00000211 (n = 54) (*) 543 #0x00000212 (n = 55) (*) 544 #0x00000213 (n = 56) (*) 545 #0x00000214 (n = 57) (*) 546 #0x00000215 (n = 58) (*) 547 #0x00000216 (n = 59) (*) 548 #0x00000217 (n = 60) (*) 549 #0x00000218 (n = 61) (*) 550 #0x00000219 (n = 62) (*) 551 #0x0000021a (n = 63) (*) 552 #0x0000021b (n = 64) (*) 553 #0x0000021c (n = 65) (*) 554 #0x0000021d (n = 66) (*) 555 #0x0000021e (n = 67) (*) 556 #0x0000021f (n = 68) (*) 557 #0x00000220 (n = 69) (*) 558 #0x00000221 (n = 70) (*) 559 #0x00000222 (n = 71) (*) 560 #0x00000223 (n = 72) (*) 561 #0x00000224 (n = 73) (*) 562 #0x00000225 (n = 74) (*) 563 #0x00000226 (n = 75) (*) 564 #0x00000227 (n = 76) (*) 565 #0x00000228 (n = 77) (*) 566 #0x00000229 (n = 78) (*) 567 #0x0000022a (n = 79) (*) 568 #0x0000022b (n = 80) (*) 569 #0x0000022c (n = 81) (*) 570 #0x0000022d (n = 82) (*) 571 #0x0000022e (n = 83) (*) 572 #0x0000022f (n = 84) (*) 573 #0x00000230 (n = 85) (*) 574 #0x00000231 (n = 86) (*) 575 #0x00000232 (n = 87) (*) 576 #0x00000233 (n = 88) (*) 577 #0x00000234 (n = 89) (*) 578 #0x00000235 (n = 90) (*) 579 #0x00000236 (n = 91) (*) 580 #0x00000237 (n = 92) (*) 581 #0x00000238 (n = 93) (*) 582 #0x00000239 (n = 94) (*) 583 #0x0000023a (n = 95) (*) 584 #0x0000023b (n = 96) (*) 585 #0x0000023c (n = 97) (*) 586 #0x0000023d (n = 98) (*) 587 #0x0000023e (n = 99) (*) 588 #0x0000023f (n = 100) (*) 589 #0x00000240 (n = 101) (*) 590 #0x00000241 (n = 102) (*) 591 #0x00000242 (n = 103) (*) 592 #0x00000243 (n = 104) (*) 593 #0x00000244 (n = 105) (*) 594 #0x00000245 (n = 106) (*) 595 #0x00000246 (n = 107) (*) 596 #0x00000247 (n = 108) (*) 597 #0x00000248 (n = 109) (*) 598 #0x00000249 (n = 110) (*) 599 #0x0000024a (n = 111) (*) 600 #0x0000024b (n = 112) (*) 601 #0x0000024c (n = 113) (*) 602 #0x0000024d (n = 114) (*) 603 #0x0000024e (n = 115) (*) 604 #0x0000024f (n = 116) (*) 605 #0x00000250 (n = 117) (*) 606 #0x00000251 (n = 118) (*) 607 #0x00000252 (n = 119) (*) 608 #0x00000253 (n = 120) (*) 609 #0x00000254 (n = 121) (*) 610 #0x00000255 (n = 122) (*) 611 #0x00000256 (n = 123) (*) 612 #0x00000257 (n = 124) (*) 613 #0x00000258 (n = 125) (*) 614 #0x00000259 (n = 126) (*) 615 #0x0000025a (n = 127) (*) 616 #0x0000025b (n = 128) (*) 617 #0x0000025c (n = 129) (*) 618 #0x0000025d (n = 130) (*) 619 #0x0000025e (n = 131) (*) 620 #0x0000025f (n = 132) (*) 621 #0x00000260 (n = 133) (*) 622 #0x00000261 (n = 134) (*) 623 #0x00000262 (n = 135) (*) 624 #0x00000267 (n = 141) (*) 920 #0x00000264 (n = 1) (*) 921 #0x00000265 (n = 3) (*) 922 #0x00000266 (n = 1) (*) 923 #0x0000026f (n = 149) (*) 924 #0x00000268 (n = 1) (*) 925 #0x00000269 (n = 3) (*) 926 #0x0000026a (n = 1) (*) 927 #0x0000026b (n = 7) (*) 928 #0x0000026c (n = 1) (*) 929 #0x0000026d (n = 3) (*) 930 #0x0000026e (n = 1) (*) 931 ;; Iteration rebalance. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 (# node #0x000002d5 101>) 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 920 921 922 923 924 925 926 927 928 929 930 931 (# node #0x000003b5 598>) ;; Path manoeuvre rebalance. (# node #0x000003de 1>) (# node #0x000004a6 200>) (# node #0x00000587 499>) (# node #0x0000062d 500> # -> (nil)) (# node #0x0000073c 129>) (# node #0x000007c0 128> # -> (nil)) ;; Lookup rebalance. # (# node #0x0000096b 99>) (# node #0x000009d1 1>) ;; Removal rebalance. (# node #0x00000aa8 117> # -> (nil)) ;; Join rebalance. 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 (no key) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 ;; Set op rebalance. XYLA-SPLAY UNISECT rebalance 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 920 XYLA-SPLAY DIFFSECT rebalance 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 119 120 480 481 482 483 484 485 486 487 488 489 910 911 912 913 914 915 916 917 918 919 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 920 ;;;----- That's all, folks -------------------------------------------------