;;;------------------------------------------------------------------------- ;;; Insertion. ;; Starting point for the following tests. tree dump, ht = 2 #0x00000000 (n = 1) ( ) 10 #0x00000002 (n = 3) (*) 20 #0x00000001 (n = 1) ( ) 30 #0x00000005 (n = 6) ( ) 40 #0x00000003 (n = 1) ( ) 50 #0x00000004 (n = 2) (*) 60 #0x00000008 (n = 9) (*) 70 #0x00000007 (n = 2) (*) 80 #0x00000006 (n = 1) ( ) 90 ;; Children of a black node. 65 tree dump, ht = 2 #0x0000000c (n = 1) ( ) 10 #0x0000000b (n = 3) (*) 20 #0x0000000d (n = 1) ( ) 30 #0x0000000a (n = 7) ( ) 40 #0x0000000f (n = 1) ( ) 50 #0x0000000e (n = 3) (*) 60 #0x00000012 (n = 1) ( ) 65 #0x00000009 (n = 10) (*) 70 #0x00000010 (n = 2) (*) 80 #0x00000011 (n = 1) ( ) 90 75 tree dump, ht = 2 #0x00000016 (n = 1) ( ) 10 #0x00000015 (n = 3) (*) 20 #0x00000017 (n = 1) ( ) 30 #0x00000014 (n = 6) ( ) 40 #0x00000019 (n = 1) ( ) 50 #0x00000018 (n = 2) (*) 60 #0x00000013 (n = 10) (*) 70 #0x0000001c (n = 1) ( ) 75 #0x0000001a (n = 3) (*) 80 #0x0000001b (n = 1) ( ) 90 ;; Ascend tree. 5 15 0 tree dump, ht = 3 #0x00000028 (n = 1) ( ) 0 #0x00000026 (n = 2) (*) 5 #0x00000020 (n = 4) ( ) 10 #0x00000027 (n = 1) (*) 15 #0x0000001f (n = 6) (*) 20 #0x00000021 (n = 1) (*) 30 #0x0000001e (n = 12) (*) 40 #0x00000023 (n = 1) ( ) 50 #0x00000022 (n = 2) (*) 60 #0x0000001d (n = 5) (*) 70 #0x00000024 (n = 2) (*) 80 #0x00000025 (n = 1) ( ) 90 ;; Zig-zig. 45 tree dump, ht = 2 #0x0000002c (n = 1) ( ) 10 #0x0000002b (n = 3) (*) 20 #0x0000002d (n = 1) ( ) 30 #0x0000002a (n = 7) ( ) 40 #0x00000032 (n = 1) ( ) 45 #0x0000002f (n = 3) (*) 50 #0x0000002e (n = 1) ( ) 60 #0x00000029 (n = 10) (*) 70 #0x00000030 (n = 2) (*) 80 #0x00000031 (n = 1) ( ) 90 95 tree dump, ht = 2 #0x00000036 (n = 1) ( ) 10 #0x00000035 (n = 3) (*) 20 #0x00000037 (n = 1) ( ) 30 #0x00000034 (n = 6) ( ) 40 #0x00000039 (n = 1) ( ) 50 #0x00000038 (n = 2) (*) 60 #0x00000033 (n = 10) (*) 70 #0x0000003a (n = 1) ( ) 80 #0x0000003b (n = 3) (*) 90 #0x0000003c (n = 1) ( ) 95 ;; Zig-zag. 55 tree dump, ht = 2 #0x00000040 (n = 1) ( ) 10 #0x0000003f (n = 3) (*) 20 #0x00000041 (n = 1) ( ) 30 #0x0000003e (n = 7) ( ) 40 #0x00000043 (n = 1) ( ) 50 #0x00000046 (n = 3) (*) 55 #0x00000042 (n = 1) ( ) 60 #0x0000003d (n = 10) (*) 70 #0x00000044 (n = 2) (*) 80 #0x00000045 (n = 1) ( ) 90 85 tree dump, ht = 2 #0x0000004a (n = 1) ( ) 10 #0x00000049 (n = 3) (*) 20 #0x0000004b (n = 1) ( ) 30 #0x00000048 (n = 6) ( ) 40 #0x0000004d (n = 1) ( ) 50 #0x0000004c (n = 2) (*) 60 #0x00000047 (n = 10) (*) 70 #0x0000004e (n = 1) ( ) 80 #0x00000050 (n = 3) (*) 85 #0x0000004f (n = 1) ( ) 90 ;;;------------------------------------------------------------------------- ;;; Removal. ;; Initial state. tree dump, ht = 3 #0x00000051 (n = 1) (*) 0 #0x00000055 (n = 5) ( ) 2 #0x00000052 (n = 1) ( ) 4 #0x00000054 (n = 3) (*) 6 #0x00000053 (n = 1) ( ) 8 #0x00000057 (n = 7) (*) 10 #0x00000056 (n = 1) (*) 12 #0x0000005f (n = 15) (*) 14 #0x00000058 (n = 1) (*) 16 #0x0000005e (n = 7) (*) 18 #0x00000059 (n = 1) ( ) 20 #0x0000005b (n = 3) (*) 22 #0x0000005a (n = 1) ( ) 24 #0x0000005d (n = 5) ( ) 26 #0x0000005c (n = 1) (*) 28 ;; Red node. 2 tree dump, ht = 3 #0x00000063 (n = 1) (*) 0 #0x00000065 (n = 4) ( ) 4 #0x00000064 (n = 2) (*) 6 #0x00000066 (n = 1) ( ) 8 #0x00000061 (n = 6) (*) 10 #0x00000067 (n = 1) (*) 12 #0x00000060 (n = 14) (*) 14 #0x00000069 (n = 1) (*) 16 #0x00000068 (n = 7) (*) 18 #0x0000006c (n = 1) ( ) 20 #0x0000006b (n = 3) (*) 22 #0x0000006d (n = 1) ( ) 24 #0x0000006a (n = 5) ( ) 26 #0x0000006e (n = 1) (*) 28 4 tree dump, ht = 3 #0x00000072 (n = 1) (*) 0 #0x00000071 (n = 4) ( ) 2 #0x00000073 (n = 2) (*) 6 #0x00000075 (n = 1) ( ) 8 #0x00000070 (n = 6) (*) 10 #0x00000076 (n = 1) (*) 12 #0x0000006f (n = 14) (*) 14 #0x00000078 (n = 1) (*) 16 #0x00000077 (n = 7) (*) 18 #0x0000007b (n = 1) ( ) 20 #0x0000007a (n = 3) (*) 22 #0x0000007c (n = 1) ( ) 24 #0x00000079 (n = 5) ( ) 26 #0x0000007d (n = 1) (*) 28 8 tree dump, ht = 3 #0x00000081 (n = 1) (*) 0 #0x00000080 (n = 4) ( ) 2 #0x00000083 (n = 1) ( ) 4 #0x00000082 (n = 2) (*) 6 #0x0000007f (n = 6) (*) 10 #0x00000085 (n = 1) (*) 12 #0x0000007e (n = 14) (*) 14 #0x00000087 (n = 1) (*) 16 #0x00000086 (n = 7) (*) 18 #0x0000008a (n = 1) ( ) 20 #0x00000089 (n = 3) (*) 22 #0x0000008b (n = 1) ( ) 24 #0x00000088 (n = 5) ( ) 26 #0x0000008c (n = 1) (*) 28 18 tree dump, ht = 3 #0x00000090 (n = 1) (*) 0 #0x0000008f (n = 5) ( ) 2 #0x00000092 (n = 1) ( ) 4 #0x00000091 (n = 3) (*) 6 #0x00000093 (n = 1) ( ) 8 #0x0000008e (n = 7) (*) 10 #0x00000094 (n = 1) (*) 12 #0x0000008d (n = 14) (*) 14 #0x00000096 (n = 1) (*) 16 #0x00000099 (n = 6) (*) 20 #0x00000098 (n = 2) (*) 22 #0x0000009a (n = 1) ( ) 24 #0x00000097 (n = 4) ( ) 26 #0x0000009b (n = 1) (*) 28 ;; Red sibling, outer red great-nibling. 8 tree dump, ht = 3 #0x0000009f (n = 1) (*) 0 #0x0000009e (n = 4) ( ) 2 #0x000000a1 (n = 1) ( ) 4 #0x000000a0 (n = 2) (*) 6 #0x0000009d (n = 6) (*) 10 #0x000000a3 (n = 1) (*) 12 #0x0000009c (n = 14) (*) 14 #0x000000a5 (n = 1) (*) 16 #0x000000a4 (n = 7) (*) 18 #0x000000a8 (n = 1) ( ) 20 #0x000000a7 (n = 3) (*) 22 #0x000000a9 (n = 1) ( ) 24 #0x000000a6 (n = 5) ( ) 26 #0x000000aa (n = 1) (*) 28 12 tree dump, ht = 3 #0x0000009f (n = 1) (*) 0 #0x0000009e (n = 5) (*) 2 #0x000000a1 (n = 1) (*) 4 #0x000000a0 (n = 3) ( ) 6 #0x0000009d (n = 1) (*) 10 #0x0000009c (n = 13) (*) 14 #0x000000a5 (n = 1) (*) 16 #0x000000a4 (n = 7) (*) 18 #0x000000a8 (n = 1) ( ) 20 #0x000000a7 (n = 3) (*) 22 #0x000000a9 (n = 1) ( ) 24 #0x000000a6 (n = 5) ( ) 26 #0x000000aa (n = 1) (*) 28 20 tree dump, ht = 3 #0x000000ae (n = 1) (*) 0 #0x000000ad (n = 5) ( ) 2 #0x000000b0 (n = 1) ( ) 4 #0x000000af (n = 3) (*) 6 #0x000000b1 (n = 1) ( ) 8 #0x000000ac (n = 7) (*) 10 #0x000000b2 (n = 1) (*) 12 #0x000000ab (n = 14) (*) 14 #0x000000b4 (n = 1) (*) 16 #0x000000b3 (n = 6) (*) 18 #0x000000b6 (n = 2) (*) 22 #0x000000b8 (n = 1) ( ) 24 #0x000000b5 (n = 4) ( ) 26 #0x000000b9 (n = 1) (*) 28 16 tree dump, ht = 3 #0x000000ae (n = 1) (*) 0 #0x000000ad (n = 5) ( ) 2 #0x000000b0 (n = 1) ( ) 4 #0x000000af (n = 3) (*) 6 #0x000000b1 (n = 1) ( ) 8 #0x000000ac (n = 7) (*) 10 #0x000000b2 (n = 1) (*) 12 #0x000000ab (n = 13) (*) 14 #0x000000b3 (n = 1) (*) 18 #0x000000b6 (n = 3) ( ) 22 #0x000000b8 (n = 1) (*) 24 #0x000000b5 (n = 5) (*) 26 #0x000000b9 (n = 1) (*) 28 ;; Red sibling, inner red great-nibling. 4 tree dump, ht = 3 #0x000000bd (n = 1) (*) 0 #0x000000bc (n = 4) ( ) 2 #0x000000be (n = 2) (*) 6 #0x000000c0 (n = 1) ( ) 8 #0x000000bb (n = 6) (*) 10 #0x000000c1 (n = 1) (*) 12 #0x000000ba (n = 14) (*) 14 #0x000000c3 (n = 1) (*) 16 #0x000000c2 (n = 7) (*) 18 #0x000000c6 (n = 1) ( ) 20 #0x000000c5 (n = 3) (*) 22 #0x000000c7 (n = 1) ( ) 24 #0x000000c4 (n = 5) ( ) 26 #0x000000c8 (n = 1) (*) 28 12 tree dump, ht = 3 #0x000000bd (n = 1) (*) 0 #0x000000bc (n = 5) (*) 2 #0x000000be (n = 1) (*) 6 #0x000000c0 (n = 3) ( ) 8 #0x000000bb (n = 1) (*) 10 #0x000000ba (n = 13) (*) 14 #0x000000c3 (n = 1) (*) 16 #0x000000c2 (n = 7) (*) 18 #0x000000c6 (n = 1) ( ) 20 #0x000000c5 (n = 3) (*) 22 #0x000000c7 (n = 1) ( ) 24 #0x000000c4 (n = 5) ( ) 26 #0x000000c8 (n = 1) (*) 28 24 tree dump, ht = 3 #0x000000cc (n = 1) (*) 0 #0x000000cb (n = 5) ( ) 2 #0x000000ce (n = 1) ( ) 4 #0x000000cd (n = 3) (*) 6 #0x000000cf (n = 1) ( ) 8 #0x000000ca (n = 7) (*) 10 #0x000000d0 (n = 1) (*) 12 #0x000000c9 (n = 14) (*) 14 #0x000000d2 (n = 1) (*) 16 #0x000000d1 (n = 6) (*) 18 #0x000000d5 (n = 1) ( ) 20 #0x000000d4 (n = 2) (*) 22 #0x000000d3 (n = 4) ( ) 26 #0x000000d7 (n = 1) (*) 28 16 tree dump, ht = 3 #0x000000cc (n = 1) (*) 0 #0x000000cb (n = 5) ( ) 2 #0x000000ce (n = 1) ( ) 4 #0x000000cd (n = 3) (*) 6 #0x000000cf (n = 1) ( ) 8 #0x000000ca (n = 7) (*) 10 #0x000000d0 (n = 1) (*) 12 #0x000000c9 (n = 13) (*) 14 #0x000000d1 (n = 1) (*) 18 #0x000000d5 (n = 3) ( ) 20 #0x000000d4 (n = 1) (*) 22 #0x000000d3 (n = 5) (*) 26 #0x000000d7 (n = 1) (*) 28 ;; Red sibling, no red great-nibling. 4 8 tree dump, ht = 3 #0x000000db (n = 1) (*) 0 #0x000000da (n = 3) ( ) 2 #0x000000dc (n = 1) (*) 6 #0x000000d9 (n = 5) (*) 10 #0x000000df (n = 1) (*) 12 #0x000000d8 (n = 13) (*) 14 #0x000000e1 (n = 1) (*) 16 #0x000000e0 (n = 7) (*) 18 #0x000000e4 (n = 1) ( ) 20 #0x000000e3 (n = 3) (*) 22 #0x000000e5 (n = 1) ( ) 24 #0x000000e2 (n = 5) ( ) 26 #0x000000e6 (n = 1) (*) 28 12 tree dump, ht = 3 #0x000000db (n = 1) (*) 0 #0x000000da (n = 4) (*) 2 #0x000000dc (n = 1) ( ) 6 #0x000000d9 (n = 2) (*) 10 #0x000000d8 (n = 12) (*) 14 #0x000000e1 (n = 1) (*) 16 #0x000000e0 (n = 7) (*) 18 #0x000000e4 (n = 1) ( ) 20 #0x000000e3 (n = 3) (*) 22 #0x000000e5 (n = 1) ( ) 24 #0x000000e2 (n = 5) ( ) 26 #0x000000e6 (n = 1) (*) 28 20 24 tree dump, ht = 3 #0x000000ea (n = 1) (*) 0 #0x000000e9 (n = 5) ( ) 2 #0x000000ec (n = 1) ( ) 4 #0x000000eb (n = 3) (*) 6 #0x000000ed (n = 1) ( ) 8 #0x000000e8 (n = 7) (*) 10 #0x000000ee (n = 1) (*) 12 #0x000000e7 (n = 13) (*) 14 #0x000000f0 (n = 1) (*) 16 #0x000000ef (n = 5) (*) 18 #0x000000f2 (n = 1) (*) 22 #0x000000f1 (n = 3) ( ) 26 #0x000000f5 (n = 1) (*) 28 16 tree dump, ht = 3 #0x000000ea (n = 1) (*) 0 #0x000000e9 (n = 5) ( ) 2 #0x000000ec (n = 1) ( ) 4 #0x000000eb (n = 3) (*) 6 #0x000000ed (n = 1) ( ) 8 #0x000000e8 (n = 7) (*) 10 #0x000000ee (n = 1) (*) 12 #0x000000e7 (n = 12) (*) 14 #0x000000ef (n = 2) (*) 18 #0x000000f2 (n = 1) ( ) 22 #0x000000f1 (n = 4) (*) 26 #0x000000f5 (n = 1) (*) 28 ;; Black sibling, outer red nibling. 4 tree dump, ht = 3 #0x000000f9 (n = 1) (*) 0 #0x000000f8 (n = 4) ( ) 2 #0x000000fa (n = 2) (*) 6 #0x000000fc (n = 1) ( ) 8 #0x000000f7 (n = 6) (*) 10 #0x000000fd (n = 1) (*) 12 #0x000000f6 (n = 14) (*) 14 #0x000000ff (n = 1) (*) 16 #0x000000fe (n = 7) (*) 18 #0x00000102 (n = 1) ( ) 20 #0x00000101 (n = 3) (*) 22 #0x00000103 (n = 1) ( ) 24 #0x00000100 (n = 5) ( ) 26 #0x00000104 (n = 1) (*) 28 0 tree dump, ht = 3 #0x000000f8 (n = 1) (*) 2 #0x000000fa (n = 3) ( ) 6 #0x000000fc (n = 1) (*) 8 #0x000000f7 (n = 5) (*) 10 #0x000000fd (n = 1) (*) 12 #0x000000f6 (n = 13) (*) 14 #0x000000ff (n = 1) (*) 16 #0x000000fe (n = 7) (*) 18 #0x00000102 (n = 1) ( ) 20 #0x00000101 (n = 3) (*) 22 #0x00000103 (n = 1) ( ) 24 #0x00000100 (n = 5) ( ) 26 #0x00000104 (n = 1) (*) 28 24 tree dump, ht = 3 #0x00000108 (n = 1) (*) 0 #0x00000107 (n = 5) ( ) 2 #0x0000010a (n = 1) ( ) 4 #0x00000109 (n = 3) (*) 6 #0x0000010b (n = 1) ( ) 8 #0x00000106 (n = 7) (*) 10 #0x0000010c (n = 1) (*) 12 #0x00000105 (n = 14) (*) 14 #0x0000010e (n = 1) (*) 16 #0x0000010d (n = 6) (*) 18 #0x00000111 (n = 1) ( ) 20 #0x00000110 (n = 2) (*) 22 #0x0000010f (n = 4) ( ) 26 #0x00000113 (n = 1) (*) 28 28 tree dump, ht = 3 #0x00000108 (n = 1) (*) 0 #0x00000107 (n = 5) ( ) 2 #0x0000010a (n = 1) ( ) 4 #0x00000109 (n = 3) (*) 6 #0x0000010b (n = 1) ( ) 8 #0x00000106 (n = 7) (*) 10 #0x0000010c (n = 1) (*) 12 #0x00000105 (n = 13) (*) 14 #0x0000010e (n = 1) (*) 16 #0x0000010d (n = 5) (*) 18 #0x00000111 (n = 1) (*) 20 #0x00000110 (n = 3) ( ) 22 #0x0000010f (n = 1) (*) 26 ;; Black sibling, inner red nibling. 8 tree dump, ht = 3 #0x00000117 (n = 1) (*) 0 #0x00000116 (n = 4) ( ) 2 #0x00000119 (n = 1) ( ) 4 #0x00000118 (n = 2) (*) 6 #0x00000115 (n = 6) (*) 10 #0x0000011b (n = 1) (*) 12 #0x00000114 (n = 14) (*) 14 #0x0000011d (n = 1) (*) 16 #0x0000011c (n = 7) (*) 18 #0x00000120 (n = 1) ( ) 20 #0x0000011f (n = 3) (*) 22 #0x00000121 (n = 1) ( ) 24 #0x0000011e (n = 5) ( ) 26 #0x00000122 (n = 1) (*) 28 0 tree dump, ht = 3 #0x00000116 (n = 1) (*) 2 #0x00000119 (n = 3) ( ) 4 #0x00000118 (n = 1) (*) 6 #0x00000115 (n = 5) (*) 10 #0x0000011b (n = 1) (*) 12 #0x00000114 (n = 13) (*) 14 #0x0000011d (n = 1) (*) 16 #0x0000011c (n = 7) (*) 18 #0x00000120 (n = 1) ( ) 20 #0x0000011f (n = 3) (*) 22 #0x00000121 (n = 1) ( ) 24 #0x0000011e (n = 5) ( ) 26 #0x00000122 (n = 1) (*) 28 20 tree dump, ht = 3 #0x00000126 (n = 1) (*) 0 #0x00000125 (n = 5) ( ) 2 #0x00000128 (n = 1) ( ) 4 #0x00000127 (n = 3) (*) 6 #0x00000129 (n = 1) ( ) 8 #0x00000124 (n = 7) (*) 10 #0x0000012a (n = 1) (*) 12 #0x00000123 (n = 14) (*) 14 #0x0000012c (n = 1) (*) 16 #0x0000012b (n = 6) (*) 18 #0x0000012e (n = 2) (*) 22 #0x00000130 (n = 1) ( ) 24 #0x0000012d (n = 4) ( ) 26 #0x00000131 (n = 1) (*) 28 28 tree dump, ht = 3 #0x00000126 (n = 1) (*) 0 #0x00000125 (n = 5) ( ) 2 #0x00000128 (n = 1) ( ) 4 #0x00000127 (n = 3) (*) 6 #0x00000129 (n = 1) ( ) 8 #0x00000124 (n = 7) (*) 10 #0x0000012a (n = 1) (*) 12 #0x00000123 (n = 13) (*) 14 #0x0000012c (n = 1) (*) 16 #0x0000012b (n = 5) (*) 18 #0x0000012e (n = 1) (*) 22 #0x00000130 (n = 3) ( ) 24 #0x0000012d (n = 1) (*) 26 ;; Black sibling, red parent, no red nibling. 4 8 tree dump, ht = 3 #0x00000135 (n = 1) (*) 0 #0x00000134 (n = 3) ( ) 2 #0x00000136 (n = 1) (*) 6 #0x00000133 (n = 5) (*) 10 #0x00000139 (n = 1) (*) 12 #0x00000132 (n = 13) (*) 14 #0x0000013b (n = 1) (*) 16 #0x0000013a (n = 7) (*) 18 #0x0000013e (n = 1) ( ) 20 #0x0000013d (n = 3) (*) 22 #0x0000013f (n = 1) ( ) 24 #0x0000013c (n = 5) ( ) 26 #0x00000140 (n = 1) (*) 28 0 tree dump, ht = 3 #0x00000134 (n = 2) (*) 2 #0x00000136 (n = 1) ( ) 6 #0x00000133 (n = 4) (*) 10 #0x00000139 (n = 1) (*) 12 #0x00000132 (n = 12) (*) 14 #0x0000013b (n = 1) (*) 16 #0x0000013a (n = 7) (*) 18 #0x0000013e (n = 1) ( ) 20 #0x0000013d (n = 3) (*) 22 #0x0000013f (n = 1) ( ) 24 #0x0000013c (n = 5) ( ) 26 #0x00000140 (n = 1) (*) 28 20 24 tree dump, ht = 3 #0x00000144 (n = 1) (*) 0 #0x00000143 (n = 5) ( ) 2 #0x00000146 (n = 1) ( ) 4 #0x00000145 (n = 3) (*) 6 #0x00000147 (n = 1) ( ) 8 #0x00000142 (n = 7) (*) 10 #0x00000148 (n = 1) (*) 12 #0x00000141 (n = 13) (*) 14 #0x0000014a (n = 1) (*) 16 #0x00000149 (n = 5) (*) 18 #0x0000014c (n = 1) (*) 22 #0x0000014b (n = 3) ( ) 26 #0x0000014f (n = 1) (*) 28 28 tree dump, ht = 3 #0x00000144 (n = 1) (*) 0 #0x00000143 (n = 5) ( ) 2 #0x00000146 (n = 1) ( ) 4 #0x00000145 (n = 3) (*) 6 #0x00000147 (n = 1) ( ) 8 #0x00000142 (n = 7) (*) 10 #0x00000148 (n = 1) (*) 12 #0x00000141 (n = 12) (*) 14 #0x0000014a (n = 1) (*) 16 #0x00000149 (n = 4) (*) 18 #0x0000014c (n = 1) ( ) 22 #0x0000014b (n = 2) (*) 26 ;; Black sibling, black parent, no red nibling. 4 8 0 6 20 24 16 28 tree dump, ht = 3 #0x00000152 (n = 1) (*) 2 #0x00000151 (n = 3) (*) 10 #0x00000157 (n = 1) (*) 12 #0x00000150 (n = 7) (*) 14 #0x00000158 (n = 1) (*) 18 #0x0000015b (n = 3) (*) 22 #0x0000015a (n = 1) (*) 26 12 tree dump, ht = 2 #0x00000161 (n = 1) ( ) 2 #0x00000160 (n = 2) (*) 10 #0x0000015f (n = 6) (*) 14 #0x00000164 (n = 1) (*) 18 #0x00000163 (n = 3) ( ) 22 #0x00000165 (n = 1) (*) 26 18 tree dump, ht = 2 #0x00000168 (n = 1) (*) 2 #0x00000167 (n = 3) ( ) 10 #0x00000169 (n = 1) (*) 12 #0x00000166 (n = 6) (*) 14 #0x0000016a (n = 2) (*) 22 #0x0000016c (n = 1) ( ) 26 ;;;------------------------------------------------------------------------- ;;; Joining. ;; Equal heights. tree dump, ht = 2 #0x0000016d (n = 1) (*) 1 #0x0000016e (n = 6) (*) 2 #0x0000016f (n = 1) (*) 3 #0x00000170 (n = 4) ( ) 4 #0x00000171 (n = 2) (*) 5 #0x00000172 (n = 1) ( ) 6 tree dump, ht = 2 #0x00000178 (n = 1) ( ) 8 #0x00000177 (n = 2) (*) 9 #0x00000176 (n = 4) ( ) 10 #0x00000175 (n = 1) (*) 11 #0x00000174 (n = 6) (*) 12 #0x00000173 (n = 1) (*) 13 7 tree dump, ht = 3 #0x0000016d (n = 1) (*) 1 #0x0000016e (n = 6) (*) 2 #0x0000016f (n = 1) (*) 3 #0x00000170 (n = 4) ( ) 4 #0x00000171 (n = 2) (*) 5 #0x00000172 (n = 1) ( ) 6 #0x00000179 (n = 13) (*) 7 #0x00000178 (n = 1) ( ) 8 #0x00000177 (n = 2) (*) 9 #0x00000176 (n = 4) ( ) 10 #0x00000175 (n = 1) (*) 11 #0x00000174 (n = 6) (*) 12 #0x00000173 (n = 1) (*) 13 ;; Red sibling. tree dump, ht = 2 #0x0000017a (n = 1) (*) 1 #0x0000017b (n = 3) ( ) 2 #0x0000017c (n = 1) (*) 3 #0x0000017d (n = 8) (*) 4 #0x0000017e (n = 1) (*) 5 #0x0000017f (n = 4) ( ) 6 #0x00000180 (n = 2) (*) 7 #0x00000181 (n = 1) ( ) 8 tree dump, ht = 1 #0x00000182 (n = 1) (*) 10 9 tree dump, ht = 3 #0x0000017a (n = 1) (*) 1 #0x0000017b (n = 3) (*) 2 #0x0000017c (n = 1) (*) 3 #0x0000017d (n = 10) (*) 4 #0x0000017e (n = 1) (*) 5 #0x0000017f (n = 6) (*) 6 #0x00000180 (n = 2) (*) 7 #0x00000181 (n = 1) ( ) 8 #0x00000183 (n = 4) ( ) 9 #0x00000182 (n = 1) (*) 10 tree dump, ht = 1 #0x00000184 (n = 1) (*) 1 tree dump, ht = 2 #0x0000018c (n = 1) ( ) 3 #0x0000018b (n = 2) (*) 4 #0x0000018a (n = 4) ( ) 5 #0x00000189 (n = 1) (*) 6 #0x00000188 (n = 8) (*) 7 #0x00000187 (n = 1) (*) 8 #0x00000186 (n = 3) ( ) 9 #0x00000185 (n = 1) (*) 10 2 tree dump, ht = 3 #0x00000184 (n = 1) (*) 1 #0x0000018d (n = 4) ( ) 2 #0x0000018c (n = 1) ( ) 3 #0x0000018b (n = 2) (*) 4 #0x0000018a (n = 6) (*) 5 #0x00000189 (n = 1) (*) 6 #0x00000188 (n = 10) (*) 7 #0x00000187 (n = 1) (*) 8 #0x00000186 (n = 3) (*) 9 #0x00000185 (n = 1) (*) 10 tree dump, ht = 3 #0x0000018e (n = 1) (*) 1 #0x0000018f (n = 3) (*) 2 #0x00000190 (n = 1) (*) 3 #0x00000191 (n = 12) (*) 4 #0x00000192 (n = 1) (*) 5 #0x00000193 (n = 3) ( ) 6 #0x00000194 (n = 1) (*) 7 #0x00000195 (n = 8) (*) 8 #0x00000196 (n = 1) (*) 9 #0x00000197 (n = 4) ( ) 10 #0x00000198 (n = 2) (*) 11 #0x00000199 (n = 1) ( ) 12 tree dump, ht = 1 #0x0000019a (n = 1) (*) 14 13 tree dump, ht = 3 #0x0000018e (n = 1) (*) 1 #0x0000018f (n = 3) (*) 2 #0x00000190 (n = 1) (*) 3 #0x00000191 (n = 14) (*) 4 #0x00000192 (n = 1) (*) 5 #0x00000193 (n = 3) (*) 6 #0x00000194 (n = 1) (*) 7 #0x00000195 (n = 10) ( ) 8 #0x00000196 (n = 1) (*) 9 #0x00000197 (n = 6) (*) 10 #0x00000198 (n = 2) (*) 11 #0x00000199 (n = 1) ( ) 12 #0x0000019b (n = 4) ( ) 13 #0x0000019a (n = 1) (*) 14 tree dump, ht = 1 #0x0000019c (n = 1) (*) 1 tree dump, ht = 3 #0x000001a6 (n = 1) ( ) 3 #0x000001a5 (n = 2) (*) 4 #0x000001a4 (n = 4) ( ) 5 #0x000001a3 (n = 1) (*) 6 #0x000001a2 (n = 6) (*) 7 #0x000001a1 (n = 1) (*) 8 #0x000001a0 (n = 10) (*) 9 #0x0000019f (n = 1) (*) 10 #0x0000019e (n = 3) (*) 11 #0x0000019d (n = 1) (*) 12 2 tree dump, ht = 3 #0x0000019c (n = 1) (*) 1 #0x000001a7 (n = 4) ( ) 2 #0x000001a6 (n = 1) ( ) 3 #0x000001a5 (n = 2) (*) 4 #0x000001a4 (n = 8) (*) 5 #0x000001a3 (n = 1) (*) 6 #0x000001a2 (n = 3) ( ) 7 #0x000001a1 (n = 1) (*) 8 #0x000001a0 (n = 12) (*) 9 #0x0000019f (n = 1) (*) 10 #0x0000019e (n = 3) (*) 11 #0x0000019d (n = 1) (*) 12 ;; No red sibling. tree dump, ht = 2 #0x000001a8 (n = 1) (*) 1 #0x000001a9 (n = 7) (*) 2 #0x000001aa (n = 1) (*) 3 #0x000001ab (n = 5) ( ) 4 #0x000001ac (n = 1) ( ) 5 #0x000001ad (n = 3) (*) 6 #0x000001ae (n = 1) ( ) 7 tree dump, ht = 1 #0x000001af (n = 1) (*) 9 8 tree dump, ht = 2 #0x000001a8 (n = 1) (*) 1 #0x000001a9 (n = 3) ( ) 2 #0x000001aa (n = 1) (*) 3 #0x000001ab (n = 9) (*) 4 #0x000001ac (n = 1) ( ) 5 #0x000001ad (n = 3) (*) 6 #0x000001ae (n = 1) ( ) 7 #0x000001b0 (n = 5) ( ) 8 #0x000001af (n = 1) (*) 9 tree dump, ht = 1 #0x000001b1 (n = 1) (*) 1 tree dump, ht = 2 #0x000001b8 (n = 1) ( ) 3 #0x000001b7 (n = 3) (*) 4 #0x000001b6 (n = 1) ( ) 5 #0x000001b5 (n = 5) ( ) 6 #0x000001b4 (n = 1) (*) 7 #0x000001b3 (n = 7) (*) 8 #0x000001b2 (n = 1) (*) 9 2 tree dump, ht = 2 #0x000001b1 (n = 1) (*) 1 #0x000001b9 (n = 5) ( ) 2 #0x000001b8 (n = 1) ( ) 3 #0x000001b7 (n = 3) (*) 4 #0x000001b6 (n = 1) ( ) 5 #0x000001b5 (n = 9) (*) 6 #0x000001b4 (n = 1) (*) 7 #0x000001b3 (n = 3) ( ) 8 #0x000001b2 (n = 1) (*) 9 ;;;----- That's all, folks -------------------------------------------------