#include "lib.h"
-/*----- Miscellany --------------------------------------------------------*/
-
-int str_lt(const char *a, size_t an, const char *b, size_t bn)
-{
- if (an < bn) return (MEMCMP(a, <=, b, an));
- else return (MEMCMP(a, <, b, bn));
-}
-
/*----- Diagnostic utilities ----------------------------------------------*/
const char *progname = "???";
+ /* Our program name, for use in error messages. */
+/* Set `progname' from the pathname in PROG (typically from `argv[0]'). */
void set_progname(const char *prog)
{
const char *p;
p = strrchr(prog, '/');
- progname = p ? p + 1 : progname;
+ progname = p ? p + 1 : prog;
}
+/* Report an error or warning in Unix style, given a captured argument
+ * cursor.
+ */
void vmoan(const char *msg, va_list ap)
{
fprintf(stderr, "%s: ", progname);
fputc('\n', stderr);
}
+/* Issue a warning message. */
void moan(const char *msg, ...)
{ va_list ap; va_start(ap, msg); vmoan(msg, ap); va_end(ap); }
+/* Issue a fatal error message and exit unsuccessfully. */
void lose(const char *msg, ...)
{ va_list ap; va_start(ap, msg); vmoan(msg, ap); va_end(ap); exit(127); }
/*----- Memory allocation -------------------------------------------------*/
+/* Allocate and return a pointer to N bytes, or report a fatal error.
+ *
+ * Release the pointer using `free' as usual. If N is zero, returns null
+ * (but you are not expected to check for this).
+ */
void *xmalloc(size_t n)
{
void *p;
return (p);
}
+/* Resize the block at P (from `malloc' or `xmalloc') to be N bytes long.
+ *
+ * The block might (and probably will) move, so it returns the new address.
+ * If N is zero, then the block is freed (if necessary) and a null pointer
+ * returned; otherwise, if P is null then a fresh block is allocated. If
+ * allocation fails, then a fatal error is reported.
+ */
void *xrealloc(void *p, size_t n)
{
if (!n) { free(p); return (0); }
return (p);
}
+/* Allocate and return a copy of the N-byte string starting at P.
+ *
+ * The new string is null-terminated, though P need not be. If allocation
+ * fails, then a fatal error is reported.
+ */
char *xstrndup(const char *p, size_t n)
{
char *q = xmalloc(n + 1);
return (q);
}
+/* Allocate and return a copy of the null-terminated string starting at P.
+ *
+ * If allocation fails, then a fatal error is reported.
+ */
char *xstrdup(const char *p) { return (xstrndup(p, strlen(p))); }
/*----- Dynamic strings ---------------------------------------------------*/
+/* Initialize the string D.
+ *
+ * Usually you'd use the static initializer `DSTR_INIT'.
+ */
void dstr_init(struct dstr *d) { d->p = 0; d->len = d->sz = 0; }
+/* Reset string D so it's empty again. */
void dstr_reset(struct dstr *d) { d->len = 0; }
+/* Ensure that D has at least N unused bytes available. */
void dstr_ensure(struct dstr *d, size_t n)
{
size_t need = d->len + n, newsz;
d->p = xrealloc(d->p, newsz); d->sz = newsz;
}
+/* Release the memory held by D.
+ *
+ * It must be reinitialized (e.g., by `dstr_init') before it can be used
+ * again.
+ */
void dstr_release(struct dstr *d) { free(d->p); }
+/* Append the N-byte string at P to D.
+ *
+ * P need not be null-terminated. D will not be null-terminated
+ * afterwards.
+ */
void dstr_putm(struct dstr *d, const void *p, size_t n)
{ dstr_ensure(d, n); memcpy(d->p + d->len, p, n); d->len += n; }
+/* Append the null-terminated string P to D.
+ *
+ * D /is/ guaranteed to be null-terminated after this.
+ */
void dstr_puts(struct dstr *d, const char *p)
{
size_t n = strlen(p);
d->len += n;
}
+/* Append the single character CH to D.
+ *
+ * D will not be null-terminated afterwards.
+ */
void dstr_putc(struct dstr *d, int ch)
{ dstr_ensure(d, 1); d->p[d->len++] = ch; }
+/* Append N copies of the character CH to D.
+ *
+ * D will not be null-terminated afterwards.
+ */
void dstr_putcn(struct dstr *d, int ch, size_t n)
{ dstr_ensure(d, n); memset(d->p + d->len, ch, n); d->len += n; }
+/* Null-terminate the string D.
+ *
+ * This doesn't change the length of D. If further stuff is appended then
+ * the null terminator will be overwritten.
+ */
void dstr_putz(struct dstr *d)
{ dstr_ensure(d, 1); d->p[d->len] = 0; }
+/* Append stuff to D, determined by printf(3) format string P and argument
+ * tail AP.
+ *
+ * D will not be null-terminated afterwards.
+ */
void dstr_vputf(struct dstr *d, const char *p, va_list ap)
{
va_list ap2;
d->len += n;
}
+/* Append stuff to D, determined by printf(3) format string P and arguments.
+ *
+ * D will not be null-terminated afterwards.
+ */
PRINTF_LIKE(2, 3) void dstr_putf(struct dstr *d, const char *p, ...)
{ va_list ap; va_start(ap, p); dstr_vputf(d, p, ap); va_end(ap); }
+/* Append the next input line from FP to D.
+ *
+ * Return 0 on success, or -1 if reading immediately fails or encounters
+ * end-of-file (call ferror(3) to distinguish). Any trailing newline is
+ * discarded: it is not possible to determine whether the last line was ended
+ * with a newline. D is guaranteed to be null-terminated afterwards.
+ */
int dstr_readline(struct dstr *d, FILE *fp)
{
size_t n;
/*----- Dynamic vectors of strings ----------------------------------------*/
+/* Initialize the vector AV.
+ *
+ * Usually you'd use the static initializer `ARGV_INIT'.
+ */
void argv_init(struct argv *av)
{ av->v = 0; av->o = av->n = av->sz = 0; }
+/* Reset the vector AV so that it's empty again. */
void argv_reset(struct argv *av) { av->n = 0; }
+/* Ensure that AV has at least N unused slots at the end. */
void argv_ensure(struct argv *av, size_t n)
{
size_t need = av->n + av->o + n, newsz;
if (need <= av->sz) return;
newsz = av->sz ? 2*av->sz : 8;
while (newsz < need) newsz *= 2;
- av->v =
- (const char **)xrealloc(av->v - av->o, newsz*sizeof(const char *)) +
- av->o;
+ av->v = xrealloc(av->v - av->o, newsz*sizeof(char *)); av->v += av->o;
av->sz = newsz;
}
+/* Ensure that AV has at least N unused slots at the /start/. */
void argv_ensure_offset(struct argv *av, size_t n)
{
size_t newoff;
newoff = 16;
while (newoff < n) newoff *= 2;
argv_ensure(av, newoff - av->o);
- memmove(av->v + newoff - av->o, av->v, av->n*sizeof(const char *));
+ memmove(av->v + newoff - av->o, av->v, av->n*sizeof(char *));
av->v += newoff - av->o; av->o = newoff;
}
+/* Release the memory held by AV.
+ *
+ * It must be reinitialized (e.g., by `argv_init') before it can be used
+ * again.
+ */
void argv_release(struct argv *av) { free(av->v - av->o); }
-void argv_append(struct argv *av, const char *p)
+/* Append the pointer P to AV. */
+void argv_append(struct argv *av, char *p)
{ argv_ensure(av, 1); av->v[av->n++] = p; }
+/* Append a null pointer to AV, without extending the vactor length.
+ *
+ * The null pointer will be overwritten when the next string is appended.
+ */
void argv_appendz(struct argv *av)
{ argv_ensure(av, 1); av->v[av->n] = 0; }
-void argv_appendn(struct argv *av, const char *const *v, size_t n)
+/* Append a N-element vector V of pointers to AV. */
+void argv_appendn(struct argv *av, char *const *v, size_t n)
{
argv_ensure(av, n);
memcpy(av->v + av->n, v, n*sizeof(const char *));
av->n += n;
}
+/* Append the variable-length vector BV to AV. */
void argv_appendav(struct argv *av, const struct argv *bv)
{ argv_appendn(av, bv->v, bv->n); }
+/* Append the pointers from a variable-length argument list AP to AV.
+ *
+ * The list is terminated by a null pointer.
+ */
void argv_appendv(struct argv *av, va_list ap)
{
- const char *p;
-
- for (;;)
- { p = va_arg(ap, const char *); if (!p) break; argv_append(av, p); }
+ char *p;
+ for (;;) { p = va_arg(ap, char *); if (!p) break; argv_append(av, p); }
}
+/* Append the argument pointers, terminated by a null pointer, to AV. */
void argv_appendl(struct argv *av, ...)
{ va_list ap; va_start(ap, av); argv_appendv(av, ap); va_end(ap); }
-void argv_prepend(struct argv *av, const char *p)
+/* Prepend the pointer P to AV. */
+void argv_prepend(struct argv *av, char *p)
{ argv_ensure_offset(av, 1); *--av->v = p; av->o--; av->n++; }
-void argv_prependn(struct argv *av, const char *const *v, size_t n)
+/* Prepend a N-element vector V of pointers to AV. */
+void argv_prependn(struct argv *av, char *const *v, size_t n)
{
argv_ensure_offset(av, n);
av->o -= n; av->v -= n; av->n += n;
memcpy(av->v, v, n*sizeof(const char *));
}
+/* Prepend the variable-length vector BV to AV. */
void argv_prependav(struct argv *av, const struct argv *bv)
{ argv_prependn(av, bv->v, bv->n); }
+/* Prepend the pointers from a variable-length argument list AP to AV.
+ *
+ * The list is terminated by a null pointer.
+ */
void argv_prependv(struct argv *av, va_list ap)
{
- const char *p, **v;
+ char *p, **v;
size_t n = 0;
for (;;) {
- p = va_arg(ap, const char *); if (!p) break;
+ p = va_arg(ap, char *); if (!p) break;
argv_prepend(av, p); n++;
}
v = av->v;
}
}
+/* Prepend the argument pointers, terminated by a null pointer, to AV. */
void argv_prependl(struct argv *av, ...)
{ va_list ap; va_start(ap, av); argv_prependv(av, ap); va_end(ap); }
/*----- Treaps ------------------------------------------------------------*/
+/* Return nonzero if the AN-byte string A is strictly precedes the BN-byte
+ * string B in a lexicographic ordering.
+ *
+ * All comparison of keys is handled by this function.
+ */
+static int str_lt(const char *a, size_t an, const char *b, size_t bn)
+{
+ /* This is a little subtle. We need only compare the first N bytes of the
+ * strings, where N is the length of the shorter string. If this
+ * distinguishes the two strings, then we're clearly done. Otherwise, if
+ * the prefixes are equal then the shorter string is the smaller one. If
+ * the two strings are the same length, then they're equal.
+ *
+ * Hence, if A is the strictly shorter string, then A precedes B if A
+ * precedes or matches the prefix of B; otherwise A only precedes B if A
+ * strictly precedes the prefix of B.
+ */
+ if (an < bn) return (MEMCMP(a, <=, b, an));
+ else return (MEMCMP(a, <, b, bn));
+}
+
+/* Initialize the treap T.
+ *
+ * Usually you'd use the static initializer `TREAP_INIT'.
+ */
void treap_init(struct treap *t) { t->root = 0; }
+/* Look up the KN-byte key K in the treap T.
+ *
+ * Return a pointer to the matching node if one was found, or null otherwise.
+ */
void *treap_lookup(const struct treap *t, const char *k, size_t kn)
{
struct treap_node *n = t->root, *candidate = 0;
- while (n) {
+ /* This is a simple prototype for some of the search loops we'll encounter
+ * later. Notice that we use a strict one-sided comparison, rather than
+ * the more conventional two-sided comparison.
+ *
+ * The main loop will find the largest key not greater than K.
+ */
+ while (n)
+ /* Compare the node's key against our key. If the node is too large,
+ * then we ignore it and move left. Otherwise remember this node for
+ * later, and move right to see if we can find a better, larger node.
+ */
+
if (str_lt(k, kn, n->k, n->kn)) n = n->left;
else { candidate = n; n = n->right; }
- }
+
+ /* If the candidate node is less than our key then we failed. Otherwise,
+ * by trichotomy, we have found the correct node.
+ */
if (!candidate || str_lt(candidate->k, candidate->kn, k, kn)) return (0);
return (candidate);
}
+/* Look up the KN-byte K in the treap T, recording a path in P.
+ *
+ * This is similar to `treap_lookup', in that it returns the requested node
+ * if it already exists, or null otherwise, but it also records in P
+ * information to be used by `treap_insert' to insert a new node with the
+ * given key if it's not there already.
+ */
void *treap_probe(struct treap *t, const char *k, size_t kn,
struct treap_path *p)
{
struct treap_node **nn = &t->root, *candidate = 0;
unsigned i = 0;
+ /* This walk is similar to `treap_lookup' above, except that we also record
+ * the address of each node pointer we visit along the way.
+ */
for (;;) {
assert(i < TREAP_PATHMAX); p->path[i++] = nn;
if (!*nn) break;
else { candidate = *nn; nn = &(*nn)->right; }
}
p->nsteps = i;
+
+ /* Check to see whether we found the right node. */
if (!candidate || str_lt(candidate->k, candidate->kn, k, kn)) return (0);
return (candidate);
}
+/* Insert a new node N into T, associating it with the KN-byte key K.
+ *
+ * Use the path data P, from `treap_probe', to help with insertion.
+ */
void treap_insert(struct treap *t, const struct treap_path *p,
struct treap_node *n, const char *k, size_t kn)
{
struct treap_node **nn, **uu, *u;
unsigned wt;
+ /* Fill in the node structure. */
n->k = xstrndup(k, kn); n->kn = kn;
n->wt = wt = rand(); n->left = n->right = 0;
+
+ /* Prepare for the insertion.
+ *
+ * The path actually points to each of the links traversed when searching
+ * for the node, starting with the `root' pointer, then the `left' or
+ * `right' pointer of the root node, and so on; `nsteps' will always be
+ * nonzero, since the path will always pass through the root, and the final
+ * step, `path->path[path->nsteps - 1]' will always be the address of a
+ * null pointer onto which the freshly inserted node could be hooked in
+ * order to satisfy the binary-search-tree ordering. (Of course, this will
+ * likely /not/ satisfy the heap condition, so more work needs to be done.)
+ *
+ * Throughout, NN is our current candidate for where to attach the node N.
+ * As the loop progresses, NN will ascend to links further up the tree, and
+ * N will be adjusted to accumulate pieces of the existing tree structure.
+ * We'll stop when we find that the parent node's weight is larger than our
+ * new node's weight, at which point we can just set *NN = N; or if we run
+ * out of steps in the path, in which case *NN is the root pointer.
+ */
assert(i); nn = p->path[--i];
while (i--) {
+
+ /* Collect the next step in the path, and get the pointer to the node. */
uu = p->path[i]; u = *uu;
+
+ /* If this node's weight is higher, then we've found the right level and
+ * we can stop.
+ */
if (wt <= u->wt) break;
+
+ /* The node U is lighter than our new node N, so we must rotate in order
+ * to fix things. If we were currently planning to hook N as the left
+ * subtree of U, then we rotate like this:
+ *
+ * | |
+ * U (N)
+ * / \ / \
+ * (N) Z ---> X U
+ * / \ / \
+ * X Y Y Z
+ *
+ * On the other hand, if we were planning to hook N as the right subtree
+ * of U, then we do the opposite rotation:
+ *
+ * | |
+ * U (N)
+ * / \ / \
+ * X (N) ---> U Z
+ * / \ / \
+ * Y Z X Y
+ *
+ * These transformations clearly preserve the ordering of nodes in the
+ * binary search tree, and satisfy the heap condition in the subtree
+ * headed by N.
+ */
if (nn == &u->left) { u->left = n->right; n->right = u; }
else { u->right = n->left; n->left = u; }
+
+ /* And this arrangement must be attached to UU, or some higher attachment
+ * point. The subtree satisfies the heap condition, and can be attached
+ * safely at the selected place.
+ */
nn = uu;
}
+
+ /* We've found the right spot. Hook the accumulated subtree into place. */
*nn = n;
}
+/* Remove the node with the KN-byte K from T.
+ *
+ * Return the address of the node we removed, or null if it couldn't be
+ * found.
+ */
void *treap_remove(struct treap *t, const char *k, size_t kn)
{
struct treap_node **nn = &t->root, **candidate = 0, *n, *l, *r;
- while (*nn) {
+ /* Search for the matching node, but keep track of the address of the link
+ * which points to our target node.
+ */
+ while (*nn)
if (str_lt(k, kn, (*nn)->k, (*nn)->kn)) nn = &(*nn)->left;
else { candidate = nn; nn = &(*nn)->right; }
- }
+
+ /* If this isn't the right node then give up. */
if (!candidate || str_lt((*candidate)->k, (*candidate)->kn, k, kn))
return (0);
- n = *candidate; l = n->left; r = n->right;
- for (;;) {
- if (l && (!r || l->wt > r->wt)) { nn = &l->right; l = l->right; }
- else if (r) { nn = &r->left; r = r->left; }
- else break;
- }
- *nn = 0;
- free(n->k);
- return (n);
+ /* Now we need to disentangle the node from the tree. This is essentially
+ * the reverse of insertion: we pretend that this node is suddenly very
+ * light, and mutate the tree so as to restore the heap condition until
+ * eventually our node is a leaf and can be cut off without trouble.
+ *
+ * Throughout, the link *NN notionally points to N, but we don't actually
+ * update it until we're certain what value it should finally take.
+ */
+ nn = candidate; n = *nn; l = n->left; r = n->right;
+ for (;;)
+
+ /* If its left subtree is empty then we can replace our node by its right
+ * subtree and be done. Similarly, if the right subtree is empty then we
+ * replace the node by its left subtree.
+ *
+ * | | | |
+ * (N) ---> R ; (N) ---> L
+ * / \ / \
+ * * R L *
+ */
+ if (!l) { *nn = r; break; }
+ else if (!r) { *nn = l; break; }
+
+ /* Otherwise we need to rotate the pointers so that the heavier of the
+ * two children takes the place of our node; thus we have either
+ *
+ * | |
+ * (N) L
+ * / \ / \
+ * L R ---> X (N)
+ * / \ / \
+ * X Y Y R
+ *
+ * or
+ *
+ * | |
+ * (N) R
+ * / \ / \
+ * L R ---> (N) Y
+ * / \ / \
+ * X Y L X
+ *
+ * Again, these transformations clearly preserve the ordering of nodes in
+ * the binary search tree, and the heap condition.
+ */
+ else if (l->wt > r->wt)
+ { *nn = l; nn = &l->right; l = n->left = l->right; }
+ else
+ { *nn = r; nn = &r->left; r = n->right = r->left; }
+
+ /* Release the key buffer, and return the node that we've now detached. */
+ free(n->k); return (n);
}
+/* Initialize an iterator I over T's nodes. */
void treap_start_iter(struct treap *t, struct treap_iter *i)
{
struct treap_node *n = t->root;
unsigned sp = 0;
+ /* The `stack' in the iterator structure is an empty ascending stack of
+ * nodes which have been encountered, and their left subtrees investigated,
+ * but not yet visited by the iteration.
+ *
+ * Iteration begins by stacking the root node, its left child, and so on,
+ * At the end of this, the topmost entry on the stack is the least node of
+ * the tree, followed by its parent, grandparent, and so on up to the root.
+ */
while (n) {
assert(sp < TREAP_PATHMAX);
i->stack[sp++] = n; n = n->left;
i->sp = sp;
}
+/* Return the next node from I, in ascending order by key.
+ *
+ * If there are no more nodes, then return null.
+ */
void *treap_next(struct treap_iter *i)
{
struct treap_node *n, *o;
unsigned sp = i->sp;
+ /* We say that a node is /visited/ once it's been returned by this
+ * iterator. To traverse a tree in order, then, we traverse its left
+ * subtree, visit the tree root, and traverse its right subtree -- which is
+ * a fine recursive definition, but we need a nonrecursive implementation.
+ *
+ * As is usual in this kind of essential structural recursion, we maintain
+ * a stack. The invariant that we'll maintain is as follows.
+ *
+ * 1. If the stack is empty, then all nodes have been visited.
+ *
+ * 2, If the stack is nonempty then the topmost entry on the stack is the
+ * least node which has not yet been visited -- and therefore is the
+ * next node to visit.
+ *
+ * 3. The earlier entries in the stack are, in (top to bottom) order,
+ * those of the topmost node's parent, grandparent, etc., up to the
+ * root, which have not yet been visited. More specifically, a node
+ * appears in the stack if and only if some node in its left subtree
+ * is nearer the top of the stack.
+ *
+ * When we initialized the iterator state (in `treap_start_iter' above), we
+ * traced a path to the leftmost leaf, stacking the root, its left-hand
+ * child, and so on. The leftmost leaf is clearly the first node to be
+ * visited, and its entire ancestry is on the stack since none of these
+ * nodes has yet been visited. (If the tree is empty, then we have done
+ * nothing, the stack is empty, and there are no nodes to visit.) This
+ * establishes the base case for the induction.
+ */
+
+ /* So, if the stack is empty now, then (1) all of the nodes have been
+ * visited and there's nothing left to do. Return null.
+ */
if (!sp) return (0);
+
+ /* It's clear that, if we pop the topmost element of the stack, visit it,
+ * and arrange to reestablish the invariant, then we'll visit the nodes in
+ * the correct order, pretty much by definition.
+ *
+ * So, pop a node off the stack. This is the node we shall return. But
+ * before we can do that, we must reestablish the above invariant.
+ * Firstly, the current node is removed from the stack, because we're about
+ * to visit it, and visited nodes don't belong on the stack. Then there
+ * are two cases to consider.
+ *
+ * * If the current node's right subtree is not empty, then the next node
+ * to be visited is the leftmost node in that subtree. All of the
+ * nodes on the stack are ancestors of the current node, and the right
+ * subtree consists of its descendants, so none of them are already on
+ * the stack; and they're all greater than the current node, and
+ * therefore haven't been visited. Therefore, we must push the current
+ * node's right child, its /left/ child, and so on, proceeding
+ * leftwards until we fall off the bottom of the tree.
+ *
+ * * Otherwise, we've finished traversing some subtree. Either we are
+ * now done, or (3) we have just finished traversing the left subtree
+ * of the next topmost item on the stack. This must therefore be the
+ * next node to visit. The rest of the stack is already correct.
+ */
n = i->stack[--sp];
o = n->right;
while (o) {
return (n);
}
-static void check_node(struct treap_node *n, unsigned maxwt,
- const char *klo, const char *khi)
+/* Recursively check the subtree headed by N.
+ *
+ * No node should have weight greater than MAXWT, to satisfy the heap
+ * condition; if LO is not null, then all node keys should be strictly
+ * greater than LO, and, similarly, if HI is not null, then all keys should
+ * be strictly smaller than HI.
+ */
+static void check_subtree(struct treap_node *n, unsigned maxwt,
+ const char *klo, const char *khi)
{
+ /* Check the heap condition. */
assert(n->wt <= maxwt);
+
+ /* Check that the key is in bounds. (Use `strcmp' here to ensure that our
+ * own `str_lt' is working correctly.)
+ */
if (klo) assert(STRCMP(n->k, >, klo));
if (khi) assert(STRCMP(n->k, <, khi));
- if (n->left) check_node(n->left, n->wt, klo, n->k);
- if (n->right) check_node(n->right, n->wt, n->k, khi);
+
+ /* Check the left subtree. Node weights must be bounded above by our own
+ * weight. And every key in the left subtree must be smaller than our
+ * current key. We propagate the lower bound.
+ */
+ if (n->left) check_subtree(n->left, n->wt, klo, n->k);
+
+ /* Finally, check the right subtree. This time, every key must be larger
+ * than our key, and we propagate the upper bound.
+ */
+ if (n->right) check_subtree(n->right, n->wt, n->k, khi);
}
+/* Check the treap structure rules for T. */
void treap_check(struct treap *t)
- { if (t->root) check_node(t->root, t->root->wt, 0, 0); }
+ { if (t->root) check_subtree(t->root, t->root->wt, 0, 0); }
+/* Recursively dump the subtree headed by N, indenting the output lines by
+ * IND spaces.
+ */
static void dump_node(struct treap_node *n, int ind)
{
if (n->left) dump_node(n->left, ind + 1);
if (n->right) dump_node(n->right, ind + 1);
}
+/* Dump the treap T to standard output, for debugging purposes. */
void treap_dump(struct treap *t) { if (t->root) dump_node(t->root, 0); }
/*----- Configuration file parsing ----------------------------------------*/
extern char **environ;
#endif
+/* Advance P past a syntactically valid name, but no further than L.
+ *
+ * Return the new pointer. If no name is found, report an error, blaming
+ * FILE and LINE; WHAT is an adjective for the kind of name that was
+ * expected.
+ */
+static const char *scan_name(const char *what,
+ const char *p, const char *l,
+ const char *file, unsigned line)
+{
+ const char *q = p;
+
+ while (q < l &&
+ (ISALNUM(*q) || *q == '-' || *q == '_' || *q == '.' || *q == '/' ||
+ *q == '*' || *q == '+' || *q == '%' || *q == '@'))
+ q++;
+ if (q == p) lose("%s:%u: expected %s name", file, line, what);
+ return (q);
+}
+
+/* Initialize the configuration state CONF.
+ *
+ * Usually you'd use the static initializer `CONFIG_INIT'.
+ */
void config_init(struct config *conf)
{ treap_init(&conf->sections); }
+/* Find and return the section with null-terminated NAME in CONF.
+ *
+ * If no section is found, the behaviour depends on whether `CF_CREAT' is set
+ * in F: if so, an empty section is created and returned; otherwise, a null
+ * pointer is returned.
+ */
struct config_section *config_find_section(struct config *conf, unsigned f,
const char *name)
{ return (config_find_section_n(conf, f, name, strlen(name))); }
+/* Find and return the section with the SZ-byte NAME in CONF.
+ *
+ * This works like `config_find_section', but with an explicit length for the
+ * NAME rather than null-termination.
+ */
struct config_section *config_find_section_n(struct config *conf, unsigned f,
const char *name, size_t sz)
{
sect->parents = 0; sect->nparents = SIZE_MAX;
treap_init(§->vars); treap_init(§->cache);
treap_insert(&conf->sections, &path, §->_node, name, sz);
- config_set_var_n(conf, sect, CF_LITERAL, "@NAME", 5, name, sz);
+ config_set_var_n(conf, sect, CF_LITERAL, "@name", 5, name, sz);
}
}
return (sect);
}
+/* Set the fallback section for CONF to be SECT.
+ *
+ * That is, if a section has no explicit parents, then by default it will
+ * have a single parent which is SECT. If SECT is null then there is no
+ * fallback section, and sections which don't have explicitly specified
+ * parents have no parents at all. (This is the default situation.)
+ */
void config_set_fallback(struct config *conf, struct config_section *sect)
-{
- if (sect->nparents == SIZE_MAX) sect->nparents = 0;
- conf->fallback = sect;
-}
+ { conf->fallback = sect; }
+/* Arrange that SECT has PARENT as its single parent section.
+ *
+ * If PARENT is null, then arrange that SECT has no parents at all. In
+ * either case, any `@parents' setting will be ignored.
+ */
void config_set_parent(struct config_section *sect,
struct config_section *parent)
{
}
}
+/* Initialize I to iterate over the sections defined in CONF. */
void config_start_section_iter(struct config *conf,
struct config_section_iter *i)
{ i->sect = conf->head; }
+/* Return the next section from I, in order of creation.
+ *
+ * If there are no more sections, then return null.
+ */
struct config_section *config_next_section(struct config_section_iter *i)
{
struct config_section *sect;
return (sect);
}
+/* Initialize the `parents' links of SECT, if they aren't set up already.
+ *
+ * If SECT contains a `@parents' setting then parse it to determine the
+ * parents; otherwise use CONF's fallbeck section, as established by
+ * `config_set_fallback'.
+ */
static void set_config_section_parents(struct config *conf,
struct config_section *sect)
{
struct config_section *parent;
struct config_var *var;
- struct argv av = ARGV_INIT;
+ const char *file; unsigned line;
size_t i, n;
- char *p, *q;
+ char *p, *q, *l;
+ struct argv av = ARGV_INIT;
+ /* If the section already has parents established then there's nothing to
+ * do.
+ */
if (sect->nparents != SIZE_MAX) return;
- var = treap_lookup(§->vars, "@PARENTS", 8);
+ /* Look up `@parents', without recursion! */
+ var = treap_lookup(§->vars, "@parents", 8);
if (!var) {
- if (!conf->fallback)
+ /* No explicit setting: use the fallback setting. */
+
+ if (!conf->fallback || conf->fallback == sect)
sect->nparents = 0;
else {
- sect->parents = xmalloc(sizeof(*sect->parents));
- sect->nparents = 1;
+ sect->parents = xmalloc(sizeof(*sect->parents)); sect->nparents = 1;
sect->parents[0] = conf->fallback;
}
} else {
- p = var->val;
- for (;;) {
- while (ISSPACE(*p)) p++;
- if (!*p) break;
- q = p; while (*q && *q != ',' && !ISSPACE(*q)) q++;
- argv_append(&av, p); argv_append(&av, q);
- p = q; if (*p == ',') p++;
+ /* Found a `@parents' list: parse it and set the parents list. */
+
+ file = var->file; line = var->line; if (!file) file = "<internal>";
+
+ /* We do this in two phases. First, we parse out the section names, and
+ * record start/limit pointer pairs in `av'.
+ */
+ p = var->val; l = p + var->n; while (p < l && ISSPACE(*p)) p++;
+ while (*p) {
+ q = p;
+ p = (/*unconst*/ char *)scan_name("parent section", p, l, file, line);
+ argv_append(&av, q); argv_append(&av, p);
+ while (p < l && ISSPACE(*p)) p++;
+ if (p >= l) break;
+ if (*p == ',') do p++; while (ISSPACE(*p));
}
+
+ /* Now that we've finished parsing, we know how many parents we're going
+ * to have, so we can allocate the `parents' vector and fill it in.
+ */
sect->nparents = av.n/2;
- sect->parents = xmalloc(sect->nparents*sizeof(sect->parents));
+ sect->parents = xmalloc(sect->nparents*sizeof(*sect->parents));
for (i = 0; i < av.n; i += 2) {
n = av.v[i + 1] - av.v[i];
parent = config_find_section_n(conf, 0, av.v[i], n);
if (!parent)
lose("%s:%u: unknown parent section `%.*s'",
- var->file, var->line, (int)n, av.v[i]);
+ file, line, (int)n, av.v[i]);
sect->parents[i/2] = parent;
}
- argv_release(&av);
}
+
+ /* All done. */
+ argv_release(&av);
}
-struct config_var *search_recursive(struct config *conf,
- struct config_section *sect,
- const char *name, size_t sz)
+/* Find a setting of the SZ-byte variable NAME in CONF, starting from SECT.
+ *
+ * If successful, return a pointer to the variable; otherwise return null.
+ * Inheritance cycles and ambiguous inheritance are diagnosed as fatal
+ * errors.
+ */
+static struct config_var *search_recursive(struct config *conf,
+ struct config_section *sect,
+ const char *name, size_t sz)
{
struct config_cache_entry *cache;
struct treap_path path;
struct config_var *var, *v;
size_t i, j = j;
+ /* If the variable is defined locally then we can just return it. */
+ var = treap_lookup(§->vars, name, sz); if (var) return (var);
+
+ /* If we have no parents then there's no way we can find it. */
+ set_config_section_parents(conf, sect);
+ if (!sect->parents) return (0);
+
+ /* Otherwise we must visit the section's parents. We can avoid paying for
+ * this on every lookup by using a cache. If there's already an entry for
+ * this variable then we can return the result immediately (note that we
+ * cache both positive and negative outcomes). Otherwise we create a new
+ * cache entry, do the full recursive search, and fill in the result when
+ * we're done.
+ *
+ * The cache also helps us detect cycles: we set the `CF_OPEN' flag on a
+ * new cache entry when it's first created, and clear it when we fill in
+ * the result: if we encounter an open cache entry again, we know that
+ * we've found a cycle.
+ */
cache = treap_probe(§->cache, name, sz, &path);
if (!cache) {
cache = xmalloc(sizeof(*cache)); cache->f = CF_OPEN;
else
return (cache->var);
- set_config_section_parents(conf, sect);
-
- var = treap_lookup(§->vars, name, sz);
- if (!var) {
- for (i = 0; i < sect->nparents; i++) {
- v = search_recursive(conf, sect->parents[i], name, sz);
- if (!v);
- else if (!var) { var = v; j = i; }
- else if (var != v)
- lose("section `%s' inherits variable `%s' ambiguously "
- "via `%s' and `%s'",
- CONFIG_SECTION_NAME(sect), CONFIG_VAR_NAME(var),
- CONFIG_SECTION_NAME(sect->parents[j]),
- CONFIG_SECTION_NAME(sect->parents[i]));
- }
+ /* Recursively search in each parent. We insist that all parents that find
+ * a variable find the same binding; otherwise we declare ambiguous
+ * inheritance.
+ */
+ for (i = 0; i < sect->nparents; i++) {
+ v = search_recursive(conf, sect->parents[i], name, sz);
+ if (!v);
+ else if (!var) { var = v; j = i; }
+ else if (var != v)
+ lose("section `%s' inherits variable `%s' ambiguously "
+ "via `%s' and `%s'",
+ CONFIG_SECTION_NAME(sect), CONFIG_VAR_NAME(var),
+ CONFIG_SECTION_NAME(sect->parents[j]),
+ CONFIG_SECTION_NAME(sect->parents[i]));
}
+ /* All done: fill the cache entry in, clear the open flag, and return the
+ * result.
+ */
cache->var = var; cache->f &= ~CF_OPEN;
return (var);
}
+/* Find and return the variable with null-terminated NAME in SECT.
+ *
+ * If `CF_INHERIT' is set in F, then the function searches the section's
+ * parents recursively; otherwise, it only checks to see whether the variable
+ * is set directly in SECT.
+ *
+ * If no variable is found, the behaviour depends on whether `CF_CREAT' is
+ * set in F: if so, an empty variable is created and returned; otherwise, a
+ * null pointer is returned.
+ *
+ * Setting both `CF_INHERIT' and `CF_CREAT' is not useful.
+ */
struct config_var *config_find_var(struct config *conf,
struct config_section *sect,
unsigned f, const char *name)
{ return (config_find_var_n(conf, sect, f, name, strlen(name))); }
+/* Find and return the variable with the given SZ-byte NAME in SECT.
+ *
+ * This works like `config_find_var', but with an explicit length for the
+ * NAME rather than null-termination.
+ */
struct config_var *config_find_var_n(struct config *conf,
struct config_section *sect,
unsigned f, const char *name, size_t sz)
return (var);
}
-void config_start_var_iter(struct config_section *sect,
- struct config_var_iter *i)
- { treap_start_iter(§->vars, &i->i); }
-
-struct config_var *config_next_var(struct config_var_iter *i)
- { return (treap_next(&i->i)); }
-
-void config_set_var(struct config *conf, struct config_section *sect,
- unsigned f,
- const char *name, const char *value)
+/* Set variable NAME to VALUE in SECT, with associated flags F.
+ *
+ * The names are null-terminated. The flags are variable flags: see `struct
+ * config_var' for details. Returns the variable.
+ *
+ * If the variable is already set and has the `CF_OVERRIDE' flag, then this
+ * function does nothing unless `CF_OVERRIDE' is /also/ set in F.
+ */
+struct config_var *config_set_var(struct config *conf,
+ struct config_section *sect,
+ unsigned f,
+ const char *name, const char *value)
{
- config_set_var_n(conf, sect, f,
- name, strlen(name),
- value, strlen(value));
+ return (config_set_var_n(conf, sect, f,
+ name, strlen(name),
+ value, strlen(value)));
}
-void config_set_var_n(struct config *conf, struct config_section *sect,
- unsigned f,
- const char *name, size_t namelen,
- const char *value, size_t valuelen)
+/* As `config_set_var', except that the variable NAME and VALUE have explicit
+ * lengths (NAMELEN and VALUELEN, respectively) rather than being null-
+ * terminated.
+ */
+struct config_var *config_set_var_n(struct config *conf,
+ struct config_section *sect,
+ unsigned f,
+ const char *name, size_t namelen,
+ const char *value, size_t valuelen)
{
struct config_var *var =
config_find_var_n(conf, sect, CF_CREAT, name, namelen);
- if (var->f&~f&CF_OVERRIDE) return;
+ if (var->f&~f&CF_OVERRIDE) return (var);
free(var->val); var->val = xstrndup(value, valuelen); var->n = valuelen;
var->f = f;
+ return (var);
}
+/* Initialize I to iterate over the variables directly defined in SECT. */
+void config_start_var_iter(struct config *conf, struct config_section *sect,
+ struct config_var_iter *i)
+ { treap_start_iter(§->vars, &i->i); }
+
+/* Return next variable from I, in ascending lexicographical order.
+ *
+ * If there are no more variables, then return null.
+ */
+struct config_var *config_next_var(struct config_var_iter *i)
+ { return (treap_next(&i->i)); }
+
+/* Read and parse configuration FILE, applying its settings to CONF.
+ *
+ * If all goes well, the function returns 0. If the file is not found, then
+ * the behaviour depends on whether `CF_NOENTOK' is set in F: if so, then the
+ * function simply returns -1. Otherwise, a fatal error is reported. Note
+ * that this /only/ applies if the file does not exist (specifically, opening
+ * it fails with `ENOENT') -- any other problems are reported as fatal
+ * errors regardless of the flag setting.
+ */
int config_read_file(struct config *conf, const char *file, unsigned f)
{
struct config_section *sect;
struct config_var *var;
struct dstr d = DSTR_INIT, dd = DSTR_INIT;
unsigned line = 0;
- char *p, *q;
+ const char *p, *q, *r;
FILE *fp;
+ /* Try to open the file. */
fp = fopen(file, "r");
if (!fp) {
if ((f&CF_NOENTOK) && errno == ENOENT) return (-1);
file, strerror(errno));
}
+ /* Find the initial section. */
sect = config_find_section(conf, CF_CREAT, "@CONFIG"); var = 0;
+ /* Work through the file, line by line. */
for (;;) {
dstr_reset(&d); if (dstr_readline(&d, fp)) break;
line++;
- if (d.p[0] && !ISSPACE(d.p[0])) {
+ /* Trim trailing spaces from the line. The syntax is sensitive to
+ * leading spaces, so we can't trim those yet.
+ */
+ while (d.len && ISSPACE(d.p[d.len - 1])) d.len--;
+ d.p[d.len] = 0;
+
+ if (!*d.p || *d.p == ';')
+ /* Ignore comments entirely. (In particular, a comment doesn't
+ * interrupt a multiline variable value.)
+ */
+ ;
+
+ else if (ISSPACE(d.p[0])) {
+ /* The line starts with whitespace, so it's a continuation line. */
+
+ /* Skip the initial whitespace. */
+ p = d.p; while (ISSPACE(*p)) p++;
+
+ /* If we aren't collecting a variable value then this is an error.
+ * Otherwise, accumulate it into the current value.
+ */
+ if (!var)
+ lose("%s:%u: continuation line, but no variable", file, line);
+ if (dd.len) dstr_putc(&dd, ' ');
+ dstr_putm(&dd, p, d.len - (p - d.p));
+
+ } else {
+ /* The line starts in the first column. */
+
+ /* If there's a value value being collected then we must commit it to
+ * its variable (unless there's already a setting there that says we
+ * shouldn't).
+ */
if (var) {
if (!(var->f&CF_OVERRIDE))
{ var->val = xstrndup(dd.p, dd.len); var->n = dd.len; }
var = 0;
}
- if (d.p[0] == ';')
- ;
- else if (d.p[0] == '[') {
- p = d.p + 1; q = strchr(p, ']');
- if (!q) lose("%s:%u: missing `]' in section header", file, line);
+
+ /* Now decide what kind of line this is. */
+ if (d.p[0] == '[') {
+ /* It's a section header. */
+
+ /* Parse the header. */
+ p = d.p + 1; while (ISSPACE(*p)) p++;
+ q = scan_name("section", p, d.p + d.len, file, line);
+ r = q; while (ISSPACE(*r)) r++;
+ if (*r != ']')
+ lose("%s:%u: expected `]' in section header", file, line);
+ if (r[1])
+ lose("%s:%u: trailing junk after `]' in section header",
+ file, line);
+
+ /* Create the new section. */
sect = config_find_section_n(conf, CF_CREAT, p, q - p);
- q++; while (ISSPACE(*q)) q++;
- if (*q) lose("%s:%u: trailing junk after `]' in section header",
- file, line);
+
} else {
- p = d.p;
- while (*p && !ISSPACE(*p) && *p != '{' && *p != '}' && *p != '=')
- p++;
+ /* It's a variable assignment. Parse the name out. */
+ p = scan_name("variable", d.p, d.p + d.len, file, line);
var = config_find_var_n(conf, sect, CF_CREAT, d.p, p - d.p);
while (ISSPACE(*p)) p++;
if (*p != '=') lose("%s:%u: missing `=' in assignment", file, line);
p++; while (ISSPACE(*p)) p++;
+
+ /* Clear out the variable's initial value, unless we shouldn't
+ * override it.
+ */
if (!(var->f&CF_OVERRIDE)) {
free(var->val); var->val = 0; var->f = 0;
free(var->file); var->file = xstrdup(file); var->line = line;
}
dstr_reset(&dd); dstr_puts(&dd, p);
}
- } else {
- p = d.p; while (ISSPACE(*p)) p++;
- if (*p) {
- if (!var)
- lose("%s:%u: continuation line, but no variable", file, line);
- if (dd.len) dstr_putc(&dd, ' ');
- dstr_puts(&dd, p);
- }
}
}
+ /* If there's a value under construction then commit the result. */
if (var && !(var->f&CF_OVERRIDE))
{ var->val = xstrndup(dd.p, dd.len); var->n = dd.len; }
- dstr_release(&d); dstr_release(&dd);
+ /* Close the file. */
if (fclose(fp))
lose("error reading configuration file `%s': %s", file, strerror(errno));
+
+ /* All done. */
+ dstr_release(&d); dstr_release(&dd);
return (0);
}
+/* Populate SECT with environment variables.
+ *
+ * Environment variables are always set with `CF_LITERAL'.
+ */
void config_read_env(struct config *conf, struct config_section *sect)
{
const char *p, *v;
/*----- Substitution and quoting ------------------------------------------*/
+/* The substitution and word-splitting state.
+ *
+ * This only keeps track of the immutable parameters for the substitution
+ * task: stuff which changes (flags, filtering state, cursor position) is
+ * maintained separately.
+ */
struct subst {
- struct config *config;
- struct config_section *home, *fallback;
- struct argv *av;
- struct dstr *d;
+ struct config *config; /* configuration state */
+ struct config_section *home; /* home section for lookups */
+ struct dstr *d; /* current word being constructed */
+ struct argv *av; /* output word list */
};
-static const char *scan_name(const char *p, const char *l)
-{
- while (p < l &&
- (ISALNUM(*p) || *p == '-' || *p == '_' || *p == '.' || *p == '/' ||
- *p == '*' || *p == '+' || *p == '%' || *p == '@'))
- p++;
- return (p);
-}
-
-static void filter_string(const char *p, const char *l, struct subst *sb,
- unsigned qfilt)
+/* Flags for `subst' and related functions. */
+#define SF_SPLIT 0x0001u /* split at (unquoted) whitespace */
+#define SF_QUOT 0x0002u /* currently within double quotes */
+#define SF_SUBST 0x0004u /* apply `$-substitutions */
+#define SF_SUBEXPR 0x0008u /* stop at delimiter `|' or `}' */
+#define SF_SPANMASK 0x00ffu /* mask for the above */
+
+#define SF_WORD 0x0100u /* output word under construction */
+#define SF_SKIP 0x0200u /* not producing output */
+#define SF_LITERAL 0x0400u /* do not expand or substitute */
+#define SF_UPCASE 0x0800u /* convert to uppercase */
+#define SF_DOWNCASE 0x1000u /* convert to lowercase */
+#define SF_CASEMASK 0x1800u /* mask for case conversions */
+
+/* Apply filters encoded in QFILT and F to the text from P to L, and output.
+ *
+ * SB is the substitution state which, in particular, explains where the
+ * output should go.
+ *
+ * The filters are encoded as flags `SF_UPCASE' and `SF_DOWNCASE' for case
+ * conversions, and a nesting depth QFILT for toothpick escaping. (QFILT is
+ * encoded as the number of toothpicks to print: see `subst' for how this
+ * determined.)
+ */
+static void filter_string(const char *p, const char *l,
+ const struct subst *sb, unsigned qfilt, unsigned f)
{
size_t r, n;
+ char *q; const char *pp, *ll;
- if (!qfilt)
+ if (!qfilt && !(f&SF_CASEMASK))
+ /* Fast path: there's nothing to do: just write to the output. */
dstr_putm(sb->d, p, l - p);
+
else for (;;) {
- r = l - p; n = strcspn(p, "\"\\");
+ /* We must be a bit more circumspect. */
+
+ /* Determine the length of the next span of characters which don't need
+ * escaping. (If QFILT is zero then this is everything.)
+ */
+ r = l - p; n = qfilt ? strcspn(p, "\"\\") : r;
if (n > r) n = r;
- dstr_putm(sb->d, p, n);
+
+ if (!(f&SF_CASEMASK))
+ /* No case conversion: we can just emit this chunk. */
+
+ dstr_putm(sb->d, p, n);
+
+ else {
+ /* Case conversion to do. Arrange enough space for the output, and
+ * convert it character by character.
+ */
+
+ dstr_ensure(sb->d, n); q = sb->d->p + sb->d->len; pp = p; ll = p + n;
+ if (f&SF_DOWNCASE) while (pp < ll) *q++ = TOLOWER(*pp++);
+ else if (f&SF_UPCASE) while (pp < ll) *q++ = TOUPPER(*pp++);
+ sb->d->len += n;
+ }
+
+ /* If we've reached the end then stop. */
if (n >= r) break;
- dstr_putcn(sb->d, '\\', qfilt); dstr_putc(sb->d, p[n]);
- p += n + 1;
+
+ /* Otherwise we must have found a character which requires escaping.
+ * Emit enough toothpicks.
+ */
+ dstr_putcn(sb->d, '\\', qfilt);
+
+ /* This character is now done, so we can skip over and see if there's
+ * another chunk of stuff we can do at high speed.
+ */
+ dstr_putc(sb->d, p[n]); p += n + 1;
}
}
+/* Scan and resolve a `[SECT:]VAR' specifier at P.
+ *
+ * Return the address of the next character following the specifier; and set
+ * *VAR_OUT to point to the variable we found, or null if it's not there. L
+ * is a limit on the region of the buffer that we should process; SB is the
+ * substitution state which provides the home section if none is given
+ * explicitly; FILE and LINE are the source location to blame for problems.
+ */
static const char *retrieve_varspec(const char *p, const char *l,
- struct subst *sb,
- struct config_var **var_out)
+ const struct subst *sb,
+ struct config_var **var_out,
+ const char *file, unsigned line)
{
struct config_section *sect = sb->home;
const char *t;
- t = scan_name(p, l);
+ t = scan_name("section or variable", p, l, file, line);
if (t < l && *t == ':') {
sect = config_find_section_n(sb->config, 0, p, t - p);
- p = t + 1; t = scan_name(p, l);
+ p = t + 1; t = scan_name("variable", p, l, file, line);
}
if (!sect) *var_out = 0;
return (t);
}
-#define SF_SPLIT 0x0001u
-#define SF_QUOT 0x0002u
-#define SF_SUBST 0x0004u
-#define SF_SUBEXPR 0x0008u
-#define SF_SPANMASK 0x00ffu
-#define SF_WORD 0x0100u
-#define SF_SKIP 0x0200u
-#define SF_LITERAL 0x0400u
-
-static const char *subst(const char *p, const char *l, struct subst *sb,
+/* Substitute and/or word-split text.
+ *
+ * The input text starts at P, and continues to (just before) L. Context for
+ * the task is provided by SB; the source location to blame is FILE and LINE
+ * (FILE may be null so that this can be passed directly from a `config_var'
+ * without further checking); QFILT is the nesting depth in toothpick-
+ * escaping; and F holds a mask of `SF_...' flags.
+ */
+static const char *subst(const char *p, const char *l,
+ const struct subst *sb,
const char *file, unsigned line,
unsigned qfilt, unsigned f)
{
unsigned subqfilt, ff;
size_t n;
-#define ESCAPE "\\"
-#define SUBST "$"
-#define WORDSEP " \f\r\n\t\v'\""
-#define QUOT "\""
-#define DELIM "|}"
-
- static const char *const delimtab[] =
- { ESCAPE,
- ESCAPE WORDSEP,
- 0,
- ESCAPE QUOT,
- ESCAPE SUBST,
- ESCAPE SUBST WORDSEP,
- 0,
- ESCAPE SUBST QUOT,
- ESCAPE DELIM,
- ESCAPE DELIM WORDSEP,
- 0,
- ESCAPE DELIM QUOT,
- ESCAPE DELIM SUBST,
- ESCAPE DELIM SUBST WORDSEP,
- 0,
- ESCAPE DELIM SUBST QUOT };
-
-#undef COMMON
+ /* It would be best if we could process literal text at high speed. To
+ * this end, we have a table, indexed by the low-order bits of F, to tell
+ * us which special characters we need to stop at. This way, we can use
+ * `strcspn' to skip over literal text and stop at the next character which
+ * needs special handling. Entries in this table with a null pointer
+ * correspond to impossible flag settings: notably, `SF_QUOT' can only be
+ * set when `SF_SUBST' is also set.
+ */
+ static const char *const delimtab[] = {
+
+#define ESCAPE "\\" /* always watch for `\'-escapes */
+#define SUBST "$" /* check for `$' if `SF_SUBST' set */
+#define WORDSEP " \f\r\n\t\v'\"" /* space, quotes if `SF_SPLIT' but
+ * not `SF_QUOT' */
+#define QUOT "\"" /* only quotes if `SF_SPLIT' and
+ * `SF_QUOT' */
+#define DELIM "|}" /* end delimiters of `SF_SUBEXPR' */
+
+ ESCAPE, /* --- */
+ ESCAPE WORDSEP, /* SPLIT */
+ 0, /* QUOT */
+ ESCAPE QUOT, /* SPLIT | QUOT */
+ ESCAPE SUBST, /* SUBST */
+ ESCAPE SUBST WORDSEP, /* SPLIT | SUBST */
+ 0, /* QUOT | SUBST */
+ ESCAPE SUBST QUOT, /* SPLIT | QUOT | SUBST */
+ ESCAPE DELIM, /* SUBEXPR */
+ ESCAPE DELIM WORDSEP, /* SPLIT | SUBEXPR */
+ 0, /* QUOT | SUBEXPR */
+ ESCAPE DELIM QUOT, /* SPLIT | QUOT | SUBEXPR */
+ ESCAPE DELIM SUBST, /* SUBST | SUBEXPR */
+ ESCAPE DELIM SUBST WORDSEP, /* SPLIT | SUBST | SUBEXPR */
+ 0, /* QUOT | SUBST | SUBEXPR */
+ ESCAPE DELIM SUBST QUOT /* SPLIT | QUOT | SUBST | SUBEXPR */
+
+#undef ESCAPE
+#undef SUBST
#undef WORDSEP
-#undef SQUOT
+#undef QUOT
#undef DELIM
+ };
+ /* Set FILE to be useful if it was null on entry. */
if (!file) file = "<internal>";
+ /* If the text is literal then hand off to `filter_string'. This obviously
+ * starts a word.
+ */
if (f&SF_LITERAL) {
- filter_string(p, l, sb, qfilt);
+ filter_string(p, l, sb, qfilt, f);
f |= SF_WORD;
goto done;
}
+ /* Chew through the input until it's all gone. */
while (p < l) {
if ((f&(SF_SPLIT | SF_QUOT)) == SF_SPLIT && ISSPACE(*p)) {
+ /* This is whitespace, we're supposed to split, and we're not within
+ * quotes, so we should split here.
+ */
+
+ /* If there's a word in progress then we should commit it. */
if (f&SF_WORD) {
if (!(f&SF_SKIP)) {
argv_append(sb->av, xstrndup(sb->d->p, sb->d->len));
}
f &= ~SF_WORD;
}
+
+ /* Skip over further whitespace at high speed. */
do p++; while (p < l && ISSPACE(*p));
} else if (*p == '\\') {
- p++;
- if (p >= l) lose("%s:%u: unfinished `\\' escape", file, line);
+ /* This is a toothpick, so start a new word and add the next character
+ * to it.
+ */
+
+ /* If there's no next character then we should be upset. */
+ p++; if (p >= l) lose("%s:%u: unfinished `\\' escape", file, line);
+
if (!(f&SF_SKIP)) {
+
+ /* If this is a double quote or backslash then check QFILT to see if
+ * it needs escaping.
+ */
if (qfilt && (*p == '"' || *p == '\\'))
dstr_putcn(sb->d, '\\', qfilt);
- dstr_putc(sb->d, *p);
+
+ /* Output the character. */
+ if (f&SF_DOWNCASE) dstr_putc(sb->d, TOLOWER(*p));
+ else if (f&SF_UPCASE) dstr_putc(sb->d, TOUPPER(*p));
+ else dstr_putc(sb->d, *p);
}
- p++;
+
+ /* Move past the escaped character. Remember we started a word. */
+ p++; f |= SF_WORD;
} else if ((f&SF_SPLIT) && *p == '"') {
+ /* This is a double quote, and we're word splitting. We're definitely
+ * in a word now. Toggle whether we're within quotes.
+ */
+
f ^= SF_QUOT; f |= SF_WORD; p++;
} else if ((f&(SF_SPLIT | SF_QUOT)) == SF_SPLIT && *p == '\'') {
- t = strchr(p, '\''); if (!t) lose("%s:%u: missing `''", file, line);
- if (!(f&SF_SKIP)) filter_string(p, t, sb, qfilt);
+ /* This is a single quote, and we're word splitting but not within
+ * double quotes. Find the matching end quote, and just output
+ * everything between literally.
+ */
+
+ p++; t = strchr(p, '\'');
+ if (!t || t >= l) lose("%s:%u: missing `''", file, line);
+ if (!(f&SF_SKIP)) filter_string(p, t, sb, qfilt, f);
p = t + 1; f |= SF_WORD;
} else if ((f&SF_SUBEXPR) && (*p == '|' || *p == '}')) {
+ /* This is an end delimiter, and we're supposed to stop here. */
break;
} else if ((f&SF_SUBST) && *p == '$') {
+ /* This is a `$' and we're supposed to do substitution. */
+
+ /* The kind of substitution is determined by the next character. */
p++; if (p >= l) lose("%s:%u: incomplete substitution", file, line);
+
+ /* Prepare flags for a recursive substitution.
+ *
+ * Hide our quote state from the recursive call. If we're within a
+ * word, then disable word-splitting.
+ */
ff = f&~(SF_QUOT | (f&SF_WORD ? SF_SPLIT : 0));
+
+ /* Now dispatch based on the following character. */
switch (*p) {
case '?':
- p = retrieve_varspec(p + 1, l, sb, &var);
+ /* A conditional expression: $?VAR{CONSEQ[|ALT]} */
+
+ /* Skip initial space. */
+ p++; while (p < l && ISSPACE(*p)) p++;
+
+ /* Find the variable. */
+ p = retrieve_varspec(p, l, sb, &var, file, line);
+
+ /* Skip whitespace again. */
+ while (p < l && ISSPACE(*p)) p++;
+
+ /* Expect the opening `{'. */
if (p > l || *p != '{') lose("%s:%u: expected `{'", file, line);
p++;
+
+ /* We'll process the parts recursively, but we need to come back
+ * when we hit the appropriate delimiters, so arrange for that.
+ */
ff |= SF_SUBEXPR;
+
+ /* Process the consequent (skip if the variable wasn't found). */
p = subst(p, l, sb, file, line, qfilt,
ff | (var ? 0 : SF_SKIP));
+
+ /* If there's a `|' then process the alternative too (skip if the
+ * variable /was/ found).
+ */
if (p < l && *p == '|')
p = subst(p + 1, l, sb, file, line, qfilt,
ff | (var ? SF_SKIP : 0));
+
+ /* We should now be past the closing `}'. */
if (p >= l || *p != '}') lose("%s:%u: missing `}'", file, line);
p++;
break;
case '{':
- q0 = p + 1; p = retrieve_varspec(q0, l, sb, &var); q1 = p;
+ /* A variable substitution: ${VAR[|FILT]...[?ALT]} */
+
+ /* Skip initial whitespace. */
+ p++; while (p < l && ISSPACE(*p)) p++;
+
+ /* Find the variable. */
+ q0 = p; p = retrieve_varspec(p, l, sb, &var, file, line); q1 = p;
+
+ /* Determine the filters to apply when substituting the variable
+ * value.
+ */
subqfilt = qfilt;
- while (p < l) {
- if (*p != '|') break;
- p++; t = scan_name(p, l);
- if (t - p == 1 && *p == 'q') subqfilt = 2*subqfilt + 1;
+ for (;;) {
+
+ /* Skip spaces again. */
+ while (p < l && ISSPACE(*p)) p++;
+
+ /* If there's no `|' then there are no more filters, so stop. */
+ if (p >= l || *p != '|') break;
+
+ /* Skip the `|' and more spaces. */
+ p++; while (p < l && ISSPACE(*p)) p++;
+
+ /* Collect the filter name. */
+ t = scan_name("filter", p, l, file, line);
+
+ /* Dispatch on the filter name. */
+ if (t - p == 1 && *p == 'q')
+ /* `q' -- quote for Lisp string.
+ *
+ * We're currently adding Q `\' characters before each naughty
+ * character. But a backslash itself is naughty too, so that
+ * makes Q + 1 naughty characters, each of which needs a
+ * toothpick, so now we need Q + (Q + 1) = 2 Q + 1 toothpicks.
+ *
+ * Calculate this here rather than at each point toothpicks
+ * need to be deployed.
+ */
+
+ subqfilt = 2*subqfilt + 1;
+
+ else if (t - p == 1 && *p == 'l')
+ /* `l' -- convert to lowercase.
+ *
+ * If a case conversion is already set, then that will override
+ * whatever we do here, so don't bother.
+ */
+
+ { if (!(ff&SF_CASEMASK)) ff |= SF_DOWNCASE; }
+
+ else if (t - p == 1 && *p == 'u')
+ /* `u' -- convert to uppercase.
+ *
+ * If a case conversion is already set, then that will override
+ * whatever we do here, so don't bother.
+ */
+ { if (!(ff&SF_CASEMASK)) ff |= SF_UPCASE; }
+
else
+ /* Something else we didn't understand. */
lose("%s:%u: unknown filter `%.*s'",
file, line, (int)(t - p), p);
+
+ /* Continue from after the filter name. */
p = t;
}
+
+ /* If we're not skipping, and we found a variable, then substitute
+ * its value. This is the point where we need to be careful about
+ * recursive expansion.
+ */
if (!(f&SF_SKIP) && var) {
if (var->f&CF_EXPAND)
lose("%s:%u: recursive expansion of variable `%.*s'",
ff | (var->f&CF_LITERAL ? SF_LITERAL : 0));
var->f &= ~CF_EXPAND;
}
+
+ /* If there's an alternative, then we need to process (or maybe
+ * skip) it. Otherwise, we should complain if there was no
+ * veriable, and we're not skipping.
+ */
if (p < l && *p == '?')
p = subst(p + 1, l, sb, file, line, subqfilt,
ff | SF_SUBEXPR | (var ? SF_SKIP : 0));
else if (!var && !(f&SF_SKIP))
lose("%s:%u: unknown variable `%.*s'",
file, line, (int)(q1 - q0), q0);
+
+ /* Expect a `}' here. (No need to skip spaces: we already did that
+ * after scanning for filters, and either there was no alternative,
+ * or we advanced to a delimiter character anyway.)
+ */
if (p >= l || *p != '}') lose("%s:%u: missing `}'", file, line);
p++;
break;
default:
- lose("%s:%u: unexpected substitution `%c'", file, line, *p);
+ /* Something else. That's a shame. */
+ lose("%s:%u: unexpected `$'-substitution `%c'", file, line, *p);
}
+
+ /* Complain if we started out in word-splitting state, and therefore
+ * have added a whole number of words to the output, but there's a
+ * word-fragment stuck onto the end of this substitution.
+ */
if (p < l && !(~f&~(SF_WORD | SF_SPLIT)) && !ISSPACE(*p) &&
!((f&SF_SUBEXPR) && (*p == '|' || *p == '}')))
lose("%s:%u: surprising word boundary "
}
else {
+ /* Something else. Try to skip over this at high speed.
+ *
+ * This makes use of the table we set up earlier.
+ */
+
n = strcspn(p, delimtab[f&SF_SPANMASK]);
if (n > l - p) n = l - p;
- if (!(f&SF_SKIP)) filter_string(p, p + n, sb, qfilt);
+ if (!(f&SF_SKIP)) filter_string(p, p + n, sb, qfilt, f);
p += n; f |= SF_WORD;
}
}
done:
+ /* Sort out the wreckage. */
+
+ /* If we're still within quotes then something has gone wrong. */
if (f&SF_QUOT) lose("%s:%u: missing `\"'", file, line);
+
+ /* If we're within a word, and should be splitting, then commit the word to
+ * the output list.
+ */
if ((f&(SF_WORD | SF_SPLIT | SF_SKIP)) == (SF_SPLIT | SF_WORD)) {
argv_append(sb->av, xstrndup(sb->d->p, sb->d->len));
dstr_reset(sb->d);
}
+ /* And, with that, we're done. */
return (p);
}
+/* Expand substitutions in a string.
+ *
+ * Expand the null-terminated string P relative to the HOME section, using
+ * configuration CONFIG, and appending the result to dynamic string D. Blame
+ * WHAT in any error messages.
+ */
void config_subst_string(struct config *config, struct config_section *home,
const char *what, const char *p, struct dstr *d)
{
dstr_putz(d);
}
+/* Expand substitutions in a string.
+ *
+ * Expand the null-terminated string P relative to the HOME section, using
+ * configuration CONFIG, returning the result as a freshly malloc(3)ed
+ * string. Blame WHAT in any error messages.
+ */
char *config_subst_string_alloc(struct config *config,
struct config_section *home,
const char *what, const char *p)
q = xstrndup(d.p, d.len); dstr_release(&d); return (q);
}
+/* Expand substitutions in a variable.
+ *
+ * Expand the value of the variable VAR relative to the HOME section, using
+ * configuration CONFIG, appending the result to dynamic string D.
+ */
void config_subst_var(struct config *config, struct config_section *home,
struct config_var *var, struct dstr *d)
{
dstr_putz(d);
}
+/* Expand substitutions in a variable.
+ *
+ * Expand the value of the variable VAR relative to the HOME section, using
+ * configuration CONFIG, returning the result as a freshly malloc(3)ed
+ * string.
+ */
char *config_subst_var_alloc(struct config *config,
struct config_section *home,
struct config_var *var)
q = xstrndup(d.p, d.len); dstr_release(&d); return (q);
}
+/* Expand substitutions in a variable and split into words.
+ *
+ * Expand and word-split the value of the variable VAR relative to the HOME
+ * section, using configuration CONFIG, appending the resulting words into
+ * the vector AV.
+ */
void config_subst_split_var(struct config *config,
struct config_section *home,
struct config_var *var, struct argv *av)