*/
extern void dbuf_create(dbuf */*db*/);
+#define DBCREATE(db) do { \
+ (db)->_b.base = (db)->_b.p = (db)->_b.limit = 0; \
+ (db)->_b.f = BF_ALLOC | BF_WRITE; \
+ (db)->a = &arena_stdlib; (db)->sz = 0; \
+} while (0)
/* --- @dbuf_reset@ --- *
*
*/
extern void dbuf_reset(dbuf */*db*/);
-
#define DBRESET(db) do { \
(db)->_b.p = (db)->_b.base; (db)->_b.limit = (db)->_b.base + (db)->sz; \
(db)->_b.f = ((db)->_b.f&~BF_BROKEN) | BF_WRITE; \
*/
extern void dbuf_destroy(dbuf */*db*/);
+#define DBDESTROY(db) do { \
+ if ((db)->_b.base) x_free((db)->a, (db)->_b.base); \
+ (db)->_b.base = (db)->_b.p = (db)->_b.limit = 0; \
+ (db)->_b.f = BF_ALLOC | BF_WRITE; (db)->sz = 0; \
+} while (0)
/* --- @{,d}buf_break@ --- *
*
extern int buf_break(buf */*b*/);
extern int dbuf_break(dbuf */*db*/);
#define dbuf_break(db) (buf_break(DBUF_BUF(db)))
+#define BBREAK(b) do { (b)->f |= BF_BROKEN; } while (0)
+#define DBBREAK(db) BBREAK(DBUF_BUF(db))
/* --- @{,d}buf_flip@ --- *
*
extern int dbuf_put(dbuf */*db*/, const void */*p*/, size_t /*sz*/);
#define dbuf_put(db, p, sz) (buf_put(DBUF_BUF(db), (p), (sz)))
+/* --- @{,d}buf_fill@ --- *
+ *
+ * Arguments: @buf *b@ or @dbuf *db@ = pointer to a buffer block
+ * @int ch@ = fill character
+ * @size_t sz@ = size to fill
+ *
+ * Returns: Zero if it worked, nonzero if there wasn't enough space.
+ *
+ * Use: Write @sz@ bytes with value @ch@ to the buffer, as if with
+ * @memset@.
+ */
+
+extern int buf_fill(buf */*b*/, int /*ch*/, size_t /*sz*/);
+extern int dbuf_fill(dbuf */*db*/, int /*ch*/, size_t /*sz*/);
+#define dbuf_fill(db, ch, sz) (buf_fill(DBUF_BUF(db), (ch), (sz)))
+
+/* --- @{,d}buf_alignskip@ --- *
+ *
+ * Arguments: @buf *b@ or @dbuf *db@ = pointer to a buffer block
+ * @size_t m, a@ = alignment multiple and offset
+ *
+ * Returns: Zero if it worked, nonzero if there wasn't enough space.
+ *
+ * Use: Advance the buffer position as little as possible such that
+ * it is @a@ greater than a multiple of @m@. This doesn't write
+ * anything to the buffer, so it's probably not suitable for
+ * output: use @buf_alignfill@ instead.
+ */
+
+extern int buf_alignskip(buf */*b*/, size_t /*m*/, size_t /*a*/);
+extern int dbuf_alignskip(dbuf */*db*/, size_t /*m*/, size_t /*a*/);
+#define dbuf_alignskip(db, m, a) (buf_alignskip(DBUF_BUF(db), (m), (a)))
+
+/* --- @{,d}buf_alignfill@ --- *
+ *
+ * Arguments: @buf *b@ or @dbuf *db@ = pointer to a buffer block
+ * @int ch@ = fill character
+ * @size_t m, a@ = alignment multiple and offset
+ *
+ * Returns: Zero if it worked, nonzero if there wasn't enough space.
+ *
+ * Use: Fill the buffer with as few copies of @ch@ as possible, as if
+ * by @memset@, to advance the buffer position to a value @a@
+ * greater than a multiple of @m@.
+ */
+
+extern int buf_alignfill(buf */*b*/, int /*ch*/, size_t /*m*/, size_t /*a*/);
+extern int (dbuf_alignfill)(dbuf */*db*/, int /*ch*/,
+ size_t /*m*/, size_t /*a*/);
+#define dbuf_alignfill(db, ch, m, a) \
+ (buf_alignfill(DBUF_BUF(db), (ch), (a), (m)))
+
/* --- @{,d}buf_getbyte@ --- *
*
* Arguments: @buf *b@ or @dbuf *db@ = pointer to a buffer block
#define dbuf_putk64l(db, w) (buf_putk64l(DBUF_BUF(db), (w)))
#define dbuf_putk64b(db, w) (buf_putk64b(DBUF_BUF(db), (w)))
+/* --- @buf_getf{32,64}{,l,b} --- *
+ *
+ * Arguments: @buf *b@ = a buffer to read from
+ * @float *x_out@, @double *x_out@ = where to put the result
+ *
+ * Returns: Zero on success, %$-1$% on failure (and the buffer is
+ * broken).
+ *
+ * Use: Get an IEEE Binary32 or Binary64 value from the buffer.
+ * Conversion is performed using the `fltfmt' machinery, with
+ * the usual round-to-nearest/ties-to-even rounding mode.
+ */
+
+extern int buf_getf32(buf */*b*/, float */*x_out*/);
+extern int buf_getf32l(buf */*b*/, float */*x_out*/);
+extern int buf_getf32b(buf */*b*/, float */*x_out*/);
+#define dbuf_getf32(db, x_out) (buf_getf32(DBUF_BUF(db), (x_out)))
+#define dbuf_getf32l(db, x_out) (buf_getf32l(DBUF_BUF(db), (x_out)))
+#define dbuf_getf32b(db, x_out) (buf_getf32b(DBUF_BUF(db), (x_out)))
+
+extern int buf_getf64(buf */*b*/, double */*x_out*/);
+extern int buf_getf64l(buf */*b*/, double */*x_out*/);
+extern int buf_getf64b(buf */*b*/, double */*x_out*/);
+#define dbuf_getf64(db, x_out) (buf_getf64(DBUF_BUF(db), (x_out)))
+#define dbuf_getf64l(db, x_out) (buf_getf64l(DBUF_BUF(db), (x_out)))
+#define dbuf_getf64b(db, x_out) (buf_getf64b(DBUF_BUF(db), (x_out)))
+
+/* --- @buf_putf{32,64}{,l,b} --- *
+ *
+ * Arguments: @buf *b@ = a buffer to write to
+ * @double x@ = a number to write
+ *
+ * Returns: Zero on success, %$-1$% on failure (and the buffer is
+ * broken).
+ *
+ * Use: Get an IEEE Binary32 or Binary64 value from the buffer.
+ * Conversion is performed using the `fltfmt' machinery, with
+ * the usual round-to-nearest/ties-to-even rounding mode.
+ */
+
+extern int buf_putf32(buf */*b*/, float /*x*/);
+extern int buf_putf32l(buf */*b*/, float /*x*/);
+extern int buf_putf32b(buf */*b*/, float /*x*/);
+#define dbuf_putf32(db, x) (buf_putf32(DBUF_BUF(db), (x)))
+#define dbuf_putf32l(db, x) (buf_putf32l(DBUF_BUF(db), (x)))
+#define dbuf_putf32b(db, x) (buf_putf32b(DBUF_BUF(db), (x)))
+
+extern int buf_putf64(buf */*b*/, double /*x*/);
+extern int buf_putf64l(buf */*b*/, double /*x*/);
+extern int buf_putf64b(buf */*b*/, double /*x*/);
+#define dbuf_putf64(db, x) (buf_putf64(DBUF_BUF(db), (x)))
+#define dbuf_putf64l(db, x) (buf_putf64l(DBUF_BUF(db), (x)))
+#define dbuf_putf64b(db, x) (buf_putf64b(DBUF_BUF(db), (x)))
+
/* --- @{,d}buf_getmem{8,{16,24,32,64}{,l,b},z} --- *
*
* Arguments: @buf *b@ or @dbuf *db@ = pointer to a buffer block
#define dbuf_putstr64b(db, p) (buf_putstr64b(DBUF_BUF(db), (p)))
#define dbuf_putstrz(db, p) (buf_putstrz(DBUF_BUF(db), (p)))
-/* --- @{,d}buf_getf64{,l,b} --- *
- *
- * Arguments: @buf *b@ = pointer to a bfufer block
- * @double *x_out@ = where to put the result
- *
- * Returns: Zero on success, @-1@ on failure (and the buffer is broken).
- *
- * If the system supports NaNs, then any encoded NaN is returned
- * as the value of @NAN@ in @<math.h>@; otherwise, this function
- * reports failure.
- *
- * In general, values are rounded to the nearest available
- * value, in the way that the system usually rounds. If the
- * system doesn't support infinities, then any encoded infinity
- * is reported as the largest-possible-magnitude finite value
- * instead.
- */
-
-extern int buf_getf64(buf */*b*/, double */*x_out*/);
-extern int buf_getf64l(buf */*b*/, double */*x_out*/);
-extern int buf_getf64b(buf */*b*/, double */*x_out*/);
-extern int dbuf_getf64(dbuf */*db*/, double */*x_out*/);
-extern int dbuf_getf64l(dbuf */*db*/, double */*x_out*/);
-extern int dbuf_getf64b(dbuf */*db*/, double */*x_out*/);
-#define dbuf_getf64(db, x_out) (buf_getf64(DBUF_BUF(db), (x_out)))
-#define dbuf_getf64l(db, x_out) (buf_getf64l(DBUF_BUF(db), (x_out)))
-#define dbuf_getf64b(db, x_out) (buf_getf64b(DBUF_BUF(db), (x_out)))
-
-/* --- @{,d}buf_putf64{,l,b} --- *
- *
- * Arguments: @buf *b@ or @dbuf *db@ = pointer to a buffer block
- * @double x@ = a number to write
- *
- * Returns: Zero on success, @-1@ on failure (and the buffer is broken).
- *
- * On C89, this function can't detect negative zero so these
- * will be silently written as positive zero.
- *
- * This function doesn't distinguish NaNs. Any NaN is written
- * as a quiet NaN with all payload bits zero.
- *
- * A finite value with too large a magnitude to be represented
- * is rounded to the appropriate infinity. Other finite values
- * are rounded as necessary, in the usual IEEE 754 round-to-
- * nearest-or-even way.
- */
-
-extern int buf_putf64(buf */*b*/, double /*x*/);
-extern int buf_putf64l(buf */*b*/, double /*x*/);
-extern int buf_putf64b(buf */*b*/, double /*x*/);
-extern int dbuf_putf64(dbuf */*db*/, double /*x*/);
-extern int dbuf_putf64l(dbuf */*db*/, double /*x*/);
-extern int dbuf_putf64b(dbuf */*db*/, double /*x*/);
-#define dbuf_putf64(db, x) (buf_putf64(DBUF_BUF(db), (x)))
-#define dbuf_putf64l(db, x) (buf_putf64l(DBUF_BUF(db), (x)))
-#define dbuf_putf64b(db, x) (buf_putf64b(DBUF_BUF(db), (x)))
-
/* --- @{,D}BUF_ENCLOSETAG@ --- *
*
* Arguments: @tag@ = a control-structure macro tag
}) \
MC_AFTER(tag##__poke, { \
size_t _delta = BLEN(b) - (mk) - (lensz); \
- assert(check); \
- if (BOK(b)) poke(BBASE(b) + (mk), _delta); \
+ if (!(check)) (b)->f |= BF_BROKEN; \
+ else if (BOK(b)) poke(BBASE(b) + (mk), _delta); \
})
#define DBUF_ENCLOSETAG(tag, b, mk, check, poke, lensz) \
* @kludge64@ machinery.
*/
-#define BUF_STORESZK64(p, sz) \
+#define MLIB__BUF_STORESZK64(p, sz) \
do { kludge64 _k; ASSIGN64(_k, (sz)); STORE64_((p), _k); } while (0)
-#define BUF_STORESZK64_B(p, sz) \
+#define MLIB__BUF_STORESZK64_B(p, sz) \
do { kludge64 _k; ASSIGN64(_k, (sz)); STORE64_B_((p), _k); } while (0)
-#define BUF_STORESZK64_L(p, sz) \
+#define MLIB__BUF_STORESZK64_L(p, sz) \
do { kludge64 _k; ASSIGN64(_k, (sz)); STORE64_L_((p), _k); } while (0)
#define BUF_ENCLOSEITAG(tag, b, mk, W) \
BUF_ENCLOSETAG(tag, (b), (mk), (_delta <= MASK##W), STORE##W, SZ_##W)
-#define BUF_ENCLOSEKTAG(tag, b, mk, W) \
- BUF_ENCLOSE(tag, (b), (mk), 1, BUF_STORESZK##W, 8)
+#define BUF_ENCLOSEKTAG(tag, b, mk, W) \
+ BUF_ENCLOSETAG(tag, (b), (mk), 1, MLIB__BUF_STORESZK##W, 8)
#define BUF_ENCLOSEZTAG(tag, b) \
MC_AFTER(tag##__zero, { buf_putbyte((b), 0); })
#define BUF_ENCLOSE8(b, mk) BUF_ENCLOSEITAG(encl, (b), (mk), 8)
#define BUF_ENCLOSE16(b, mk) BUF_ENCLOSEITAG(encl, (b), (mk), 16)
-#define BUF_ENCLOSE16_B(b, mk) BUF_ENCLOSEITAG(encl, (b), (mk), 16_B)
#define BUF_ENCLOSE16_L(b, mk) BUF_ENCLOSEITAG(encl, (b), (mk), 16_L)
+#define BUF_ENCLOSE16_B(b, mk) BUF_ENCLOSEITAG(encl, (b), (mk), 16_B)
#define BUF_ENCLOSE24(b, mk) BUF_ENCLOSEITAG(encl, (b), (mk), 24)
-#define BUF_ENCLOSE24_B(b, mk) BUF_ENCLOSEITAG(encl, (b), (mk), 24_B)
#define BUF_ENCLOSE24_L(b, mk) BUF_ENCLOSEITAG(encl, (b), (mk), 24_L)
+#define BUF_ENCLOSE24_B(b, mk) BUF_ENCLOSEITAG(encl, (b), (mk), 24_B)
#define BUF_ENCLOSE32(b, mk) BUF_ENCLOSEITAG(encl, (b), (mk), 32)
-#define BUF_ENCLOSE32_B(b, mk) BUF_ENCLOSEITAG(encl, (b), (mk), 32_B)
#define BUF_ENCLOSE32_L(b, mk) BUF_ENCLOSEITAG(encl, (b), (mk), 32_L)
+#define BUF_ENCLOSE32_B(b, mk) BUF_ENCLOSEITAG(encl, (b), (mk), 32_B)
#ifdef HAVE_UINT64
# define BUF_ENCLOSE64(b, mk) BUF_ENCLOSEITAG(encl, (b), (mk), 64)
-# define BUF_ENCLOSE64_B(b, mk) BUF_ENCLOSEITAG(encl, (b), (mk), 64_B)
# define BUF_ENCLOSE64_L(b, mk) BUF_ENCLOSEITAG(encl, (b), (mk), 64_L)
+# define BUF_ENCLOSE64_B(b, mk) BUF_ENCLOSEITAG(encl, (b), (mk), 64_B)
#else
# define BUF_ENCLOSE64(b, mk) BUF_ENCLOSEKTAG(encl, (b), (mk), 64)
-# define BUF_ENCLOSE64_B(b, mk) BUF_ENCLOSEKTAG(encl, (b), (mk), 64_B)
# define BUF_ENCLOSE64_L(b, mk) BUF_ENCLOSEKTAG(encl, (b), (mk), 64_L)
+# define BUF_ENCLOSE64_B(b, mk) BUF_ENCLOSEKTAG(encl, (b), (mk), 64_B)
#endif
#define BUF_ENCLOSEZ(b) BUF_ENCLOSEZTAG(encl, (b))
#define DBUF_ENCLOSE8(db, mk) DBUF_ENCLOSEITAG(encl, (db), (mk), 8)
#define DBUF_ENCLOSE16(db, mk) DBUF_ENCLOSEITAG(encl, (db), (mk), 16)
-#define DBUF_ENCLOSE16_B(db, mk) DBUF_ENCLOSEITAG(encl, (db), (mk), 16_B)
#define DBUF_ENCLOSE16_L(db, mk) DBUF_ENCLOSEITAG(encl, (db), (mk), 16_L)
+#define DBUF_ENCLOSE16_B(db, mk) DBUF_ENCLOSEITAG(encl, (db), (mk), 16_B)
#define DBUF_ENCLOSE24(db, mk) DBUF_ENCLOSEITAG(encl, (db), (mk), 24)
-#define DBUF_ENCLOSE24_B(db, mk) DBUF_ENCLOSEITAG(encl, (db), (mk), 24_B)
#define DBUF_ENCLOSE24_L(db, mk) DBUF_ENCLOSEITAG(encl, (db), (mk), 24_L)
+#define DBUF_ENCLOSE24_B(db, mk) DBUF_ENCLOSEITAG(encl, (db), (mk), 24_B)
#define DBUF_ENCLOSE32(db, mk) DBUF_ENCLOSEITAG(encl, (db), (mk), 32)
-#define DBUF_ENCLOSE32_B(db, mk) DBUF_ENCLOSEITAG(encl, (db), (mk), 32_B)
#define DBUF_ENCLOSE32_L(db, mk) DBUF_ENCLOSEITAG(encl, (db), (mk), 32_L)
+#define DBUF_ENCLOSE32_B(db, mk) DBUF_ENCLOSEITAG(encl, (db), (mk), 32_B)
#ifdef HAVE_UINT64
# define DBUF_ENCLOSE64(db, mk) DBUF_ENCLOSEITAG(encl, (db), (mk), 64)
-# define DBUF_ENCLOSE64_B(db, mk) DBUF_ENCLOSEITAG(encl, (db), (mk), 64_B)
# define DBUF_ENCLOSE64_L(db, mk) DBUF_ENCLOSEITAG(encl, (db), (mk), 64_L)
+# define DBUF_ENCLOSE64_B(db, mk) DBUF_ENCLOSEITAG(encl, (db), (mk), 64_B)
#else
# define DBUF_ENCLOSE64(db, mk) DBUF_ENCLOSEKTAG(encl, (db), (mk), 64)
-# define DBUF_ENCLOSE64_B(db, mk) DBUF_ENCLOSEKTAG(encl, (db), (mk), 64_B)
# define DBUF_ENCLOSE64_L(db, mk) DBUF_ENCLOSEKTAG(encl, (db), (mk), 64_L)
+# define DBUF_ENCLOSE64_B(db, mk) DBUF_ENCLOSEKTAG(encl, (db), (mk), 64_B)
#endif
#define DBUF_ENCLOSEZ(db) DBUF_ENCLOSEZTAG(encl, (db))