X-Git-Url: https://www.chiark.greenend.org.uk/ucgi/~mdw/git/disorder/blobdiff_plain/18cda350fe80c2226684f9660f2956869552b317..refs/heads/master:/lib/unicode.c
diff --git a/lib/unicode.c b/lib/unicode.c
index 8fe20a6..27f82b7 100644
--- a/lib/unicode.c
+++ b/lib/unicode.c
@@ -1,21 +1,19 @@
/*
* This file is part of DisOrder
- * Copyright (C) 2007 Richard Kettlewell
+ * Copyright (C) 2007, 2009, 2013 Richard Kettlewell
*
- * This program is free software; you can redistribute it and/or modify
+ * This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
+ * the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
* You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
- * USA
+ * along with this program. If not, see .
*/
/** @file lib/unicode.c
* @brief Unicode support functions
@@ -30,13 +28,16 @@
* database code.
*
* As the code stands this guarantee is not well met!
+ *
+ * Subpages:
+ * - @ref utf32props
+ * - @ref utftransform
+ * - @ref utf32iterator
+ * - @ref utf32
+ * - @ref utf8
*/
-#include
-#include "types.h"
-
-#include
-#include /* TODO */
+#include "common.h"
#include "mem.h"
#include "vector.h"
@@ -102,8 +103,18 @@ static inline int utf32__combining_class(uint32_t c) {
return utf32__unidata(c)->ccc;
}
+/** @brief Return the combining class of @p c
+ * @param c Code point
+ * @return Combining class of @p c
+ *
+ * @p c can be any 32-bit value, a sensible value will be returned regardless.
+ */
+int utf32_combining_class(uint32_t c) {
+ return utf32__combining_class(c);
+}
+
/** @brief Return the General_Category value for @p c
- * @param Code point
+ * @param c Code point
* @return General_Category property value
*
* @p c can be any 32-bit value, a sensible value will be returned regardless.
@@ -151,6 +162,28 @@ static inline int utf32__boundary_ignorable(enum unicode_Word_Break wb) {
|| wb == unicode_Word_Break_Format);
}
+/** @brief Return the canonical decomposition of @p c
+ * @param c Code point
+ * @return 0-terminated canonical decomposition, or 0
+ */
+static inline const uint32_t *utf32__decomposition_canon(uint32_t c) {
+ const struct unidata *const data = utf32__unidata(c);
+ const uint32_t *const decomp = data->decomp;
+
+ if(decomp && !(data->flags & unicode_compatibility_decomposition))
+ return decomp;
+ else
+ return 0;
+}
+
+/** @brief Return the compatibility decomposition of @p c
+ * @param c Code point
+ * @return 0-terminated decomposition, or 0
+ */
+static inline const uint32_t *utf32__decomposition_compat(uint32_t c) {
+ return utf32__unidata(c)->decomp;
+}
+
/*@}*/
/** @defgroup utftransform Functions that transform between different Unicode encoding forms */
/*@{*/
@@ -209,7 +242,7 @@ error:
* @param s Source string
* @param ns Length of source string in code points
* @param ndp Where to store length of destination string (or NULL)
- * @return Newly allocated destination string or NULL
+ * @return Newly allocated destination string or NULL on error
*
* The return value is always 0-terminated. The value returned via @p *ndp
* does not include the terminator.
@@ -222,69 +255,46 @@ error:
*/
uint32_t *utf8_to_utf32(const char *s, size_t ns, size_t *ndp) {
struct dynstr_ucs4 d;
- uint32_t c32, c;
+ uint32_t c32;
const uint8_t *ss = (const uint8_t *)s;
+ int n;
dynstr_ucs4_init(&d);
while(ns > 0) {
- c = *ss++;
- --ns;
- /* Acceptable UTF-8 is that which codes for Unicode Scalar Values
- * (Unicode 5.0.0 s3.9 D76)
- *
- * 0xxxxxxx
- * 7 data bits gives 0x00 - 0x7F and all are acceptable
- *
- * 110xxxxx 10xxxxxx
- * 11 data bits gives 0x0000 - 0x07FF but only 0x0080 - 0x07FF acceptable
- *
- * 1110xxxx 10xxxxxx 10xxxxxx
- * 16 data bits gives 0x0000 - 0xFFFF but only 0x0800 - 0xFFFF acceptable
- * (and UTF-16 surrogates are not acceptable)
- *
- * 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
- * 21 data bits gives 0x00000000 - 0x001FFFFF
- * but only 0x00010000 - 0x0010FFFF are acceptable
- *
- * It is NOT always the case that the data bits in the first byte are
- * always non-0 for the acceptable values, so we do a separate check after
- * decoding.
- */
- if(c < 0x80)
- c32 = c;
- else if(c <= 0xDF) {
- if(ns < 1) goto error;
- c32 = c & 0x1F;
- c = *ss++;
- if((c & 0xC0) != 0x80) goto error;
- c32 = (c32 << 6) | (c & 0x3F);
- if(c32 < 0x80) goto error;
- } else if(c <= 0xEF) {
- if(ns < 2) goto error;
- c32 = c & 0x0F;
- c = *ss++;
- if((c & 0xC0) != 0x80) goto error;
- c32 = (c32 << 6) | (c & 0x3F);
- c = *ss++;
- if((c & 0xC0) != 0x80) goto error;
- c32 = (c32 << 6) | (c & 0x3F);
- if(c32 < 0x0800 || (c32 >= 0xD800 && c32 <= 0xDFFF)) goto error;
- } else if(c <= 0xF7) {
- if(ns < 3) goto error;
- c32 = c & 0x07;
- c = *ss++;
- if((c & 0xC0) != 0x80) goto error;
- c32 = (c32 << 6) | (c & 0x3F);
- c = *ss++;
- if((c & 0xC0) != 0x80) goto error;
- c32 = (c32 << 6) | (c & 0x3F);
- c = *ss++;
- if((c & 0xC0) != 0x80) goto error;
- c32 = (c32 << 6) | (c & 0x3F);
- if(c32 < 0x00010000 || c32 > 0x0010FFFF) goto error;
+ const struct unicode_utf8_row *const r = &unicode_utf8_valid[*ss];
+ if(r->count <= ns) {
+ switch(r->count) {
+ case 1:
+ c32 = *ss;
+ break;
+ case 2:
+ if(ss[1] < r->min2 || ss[1] > r->max2)
+ goto error;
+ c32 = *ss & 0x1F;
+ break;
+ case 3:
+ if(ss[1] < r->min2 || ss[1] > r->max2)
+ goto error;
+ c32 = *ss & 0x0F;
+ break;
+ case 4:
+ if(ss[1] < r->min2 || ss[1] > r->max2)
+ goto error;
+ c32 = *ss & 0x07;
+ break;
+ default:
+ goto error;
+ }
} else
goto error;
+ for(n = 1; n < r->count; ++n) {
+ if(ss[n] < 0x80 || ss[n] > 0xBF)
+ goto error;
+ c32 = (c32 << 6) | (ss[n] & 0x3F);
+ }
dynstr_ucs4_append(&d, c32);
+ ss += r->count;
+ ns -= r->count;
}
dynstr_ucs4_terminate(&d);
if(ndp)
@@ -295,6 +305,133 @@ error:
return 0;
}
+/** @brief Convert UTF-16 to UTF-8
+ * @param s Source string
+ * @param ns Length of source string in code points
+ * @param ndp Where to store length of destination string (or NULL)
+ * @return Newly allocated destination string or NULL on error
+ *
+ * If the UTF-16 is not valid then NULL is returned. A UTF-16 sequence t is
+ * invalid if it contains an incomplete surrogate.
+ *
+ * The return value is always 0-terminated. The value returned via @p *ndp
+ * does not include the terminator.
+ */
+char *utf16_to_utf8(const uint16_t *s, size_t ns, size_t *ndp) {
+ struct dynstr d;
+ uint32_t c;
+
+ dynstr_init(&d);
+ while(ns > 0) {
+ c = *s++;
+ --ns;
+ if(c >= 0xD800 && c <= 0xDBFF) {
+ if(ns && *s >= 0xDC00 && c <= 0xDFFF)
+ c = ((c - 0xD800) << 10) + (*s++ - 0xDC00) + 0x10000;
+ else
+ goto error;
+ } else if(c >= 0xDC00 && c <= 0xDFFF)
+ goto error;
+ if(c < 0x80)
+ dynstr_append(&d, c);
+ else if(c < 0x0800) {
+ dynstr_append(&d, 0xC0 | (c >> 6));
+ dynstr_append(&d, 0x80 | (c & 0x3F));
+ } else if(c < 0x10000) {
+ if(c >= 0xD800 && c <= 0xDFFF)
+ goto error;
+ dynstr_append(&d, 0xE0 | (c >> 12));
+ dynstr_append(&d, 0x80 | ((c >> 6) & 0x3F));
+ dynstr_append(&d, 0x80 | (c & 0x3F));
+ } else if(c < 0x110000) {
+ dynstr_append(&d, 0xF0 | (c >> 18));
+ dynstr_append(&d, 0x80 | ((c >> 12) & 0x3F));
+ dynstr_append(&d, 0x80 | ((c >> 6) & 0x3F));
+ dynstr_append(&d, 0x80 | (c & 0x3F));
+ } else
+ goto error;
+ }
+ dynstr_terminate(&d);
+ if(ndp)
+ *ndp = d.nvec;
+ return d.vec;
+error:
+ xfree(d.vec);
+ return 0;
+}
+
+/** @brief Convert UTF-8 to UTF-16
+ * @param s Source string
+ * @param ns Length of source string in code points
+ * @param ndp Where to store length of destination string (or NULL)
+ * @return Newly allocated destination string or NULL on error
+ *
+ * The return value is always 0-terminated. The value returned via @p *ndp
+ * does not include the terminator.
+ *
+ * If the UTF-8 is not valid then NULL is returned. A UTF-8 sequence
+ * for a code point is invalid if:
+ * - it is not the shortest possible sequence for the code point
+ * - it codes for a UTF-16 surrogate
+ * - it codes for a value outside the unicode code space
+ */
+uint16_t *utf8_to_utf16(const char *s, size_t ns, size_t *ndp) {
+ struct dynstr_utf16 d;
+ uint32_t c32;
+ const uint8_t *ss = (const uint8_t *)s;
+ int n;
+
+ dynstr_utf16_init(&d);
+ while(ns > 0) {
+ const struct unicode_utf8_row *const r = &unicode_utf8_valid[*ss];
+ if(r->count <= ns) {
+ switch(r->count) {
+ case 1:
+ c32 = *ss;
+ break;
+ case 2:
+ if(ss[1] < r->min2 || ss[1] > r->max2)
+ goto error;
+ c32 = *ss & 0x1F;
+ break;
+ case 3:
+ if(ss[1] < r->min2 || ss[1] > r->max2)
+ goto error;
+ c32 = *ss & 0x0F;
+ break;
+ case 4:
+ if(ss[1] < r->min2 || ss[1] > r->max2)
+ goto error;
+ c32 = *ss & 0x07;
+ break;
+ default:
+ goto error;
+ }
+ } else
+ goto error;
+ for(n = 1; n < r->count; ++n) {
+ if(ss[n] < 0x80 || ss[n] > 0xBF)
+ goto error;
+ c32 = (c32 << 6) | (ss[n] & 0x3F);
+ }
+ if(c32 >= 0x10000) {
+ c32 -= 0x10000;
+ dynstr_utf16_append(&d, 0xD800 + (c32 >> 10));
+ dynstr_utf16_append(&d, 0xDC00 + (c32 & 0x03FF));
+ } else
+ dynstr_utf16_append(&d, c32);
+ ss += r->count;
+ ns -= r->count;
+ }
+ dynstr_utf16_terminate(&d);
+ if(ndp)
+ *ndp = d.nvec;
+ return d.vec;
+error:
+ xfree(d.vec);
+ return 0;
+}
+
/** @brief Test whether [s,s+ns) is valid UTF-8
* @param s Start of string
* @param ns Length of string
@@ -366,21 +503,10 @@ struct utf32_iterator_data {
* the value is (uint32_t)-1.
*/
uint32_t last[2];
-};
-/** @brief Create a new iterator pointing at the start of a string
- * @param s Start of string
- * @param ns Length of string
- * @return New iterator
- */
-utf32_iterator utf32_iterator_new(const uint32_t *s, size_t ns) {
- utf32_iterator it = xmalloc(sizeof *it);
- it->s = s;
- it->ns = ns;
- it->n = 0;
- it->last[0] = it->last[1] = -1;
- return it;
-}
+ /** @brief Tailoring for Word_Break */
+ unicode_property_tailor *word_break;
+};
/** @brief Initialize an internal private iterator
* @param it Iterator
@@ -394,7 +520,52 @@ static void utf32__iterator_init(utf32_iterator it,
it->ns = ns;
it->n = 0;
it->last[0] = it->last[1] = -1;
- utf32_iterator_advance(it, n);
+ it->word_break = 0;
+ utf32_iterator_set(it, n);
+}
+
+/** @brief Create a new iterator pointing at the start of a string
+ * @param s Start of string
+ * @param ns Length of string
+ * @return New iterator
+ */
+utf32_iterator utf32_iterator_new(const uint32_t *s, size_t ns) {
+ utf32_iterator it = xmalloc(sizeof *it);
+ utf32__iterator_init(it, s, ns, 0);
+ return it;
+}
+
+/** @brief Tailor this iterator's interpretation of the Word_Break property.
+ * @param it Iterator
+ * @param pt Property tailor function or NULL
+ *
+ * After calling this the iterator will call @p pt to determine the Word_Break
+ * property of each code point. If it returns -1 the default value will be
+ * used otherwise the returned value will be used.
+ *
+ * @p pt can be NULL to revert to the default value of the property.
+ *
+ * It is safe to call this function at any time; the iterator's internal state
+ * will be reset to suit the new tailoring.
+ */
+void utf32_iterator_tailor_word_break(utf32_iterator it,
+ unicode_property_tailor *pt) {
+ it->word_break = pt;
+ utf32_iterator_set(it, it->n);
+}
+
+static inline enum unicode_Word_Break utf32__iterator_word_break(utf32_iterator it,
+ uint32_t c) {
+ if(!it->word_break)
+ return utf32__word_break(c);
+ else {
+ const int t = it->word_break(c);
+
+ if(t < 0)
+ return utf32__word_break(c);
+ else
+ return t;
+ }
}
/** @brief Destroy an iterator
@@ -419,19 +590,45 @@ size_t utf32_iterator_where(utf32_iterator it) {
* It is an error to position the iterator outside the string (but acceptable
* to point it at the hypothetical post-final character). If an invalid value
* of @p n is specified then the iterator is not changed.
+ *
+ * This function works by backing up and then advancing to reconstruct the
+ * iterator's internal state for position @p n. The worst case will be O(n)
+ * time complexity (with a worse constant factor that utf32_iterator_advance())
+ * but the typical case is essentially constant-time.
*/
int utf32_iterator_set(utf32_iterator it, size_t n) {
- /* TODO figure out how far we must back up to be able to re-synchronize; see
- * UAX #29 s6.4. */
- if(n > it->ns)
+ /* We can't just jump to position @p n; the @p last[] values will be wrong.
+ * What we need is to jump a bit behind @p n and then advance forward,
+ * updating @p last[] along the way. How far back? We need to cross two
+ * non-ignorable code points as we advance forwards, so we'd better pass two
+ * such characters on the way back (if such are available).
+ */
+ size_t m;
+
+ if(n > it->ns) /* range check */
return -1;
- if(n >= it->n)
- n -= it->n;
- else {
- it->n = 0;
- it->last[0] = it->last[1] = -1;
+ /* Walk backwards skipping ignorable code points */
+ m = n;
+ while(m > 0
+ && (utf32__boundary_ignorable(utf32__iterator_word_break(it,
+ it->s[m-1]))))
+ --m;
+ /* Either m=0 or s[m-1] is not ignorable */
+ if(m > 0) {
+ --m;
+ /* s[m] is our first non-ignorable code; look for a second in the same
+ way **/
+ while(m > 0
+ && (utf32__boundary_ignorable(utf32__iterator_word_break(it,
+ it->s[m-1]))))
+ --m;
+ /* Either m=0 or s[m-1] is not ignorable */
+ if(m > 0)
+ --m;
}
- return utf32_iterator_advance(it, n);
+ it->last[0] = it->last[1] = -1;
+ it->n = m;
+ return utf32_iterator_advance(it, n - m);
}
/** @brief Advance an iterator
@@ -450,7 +647,7 @@ int utf32_iterator_advance(utf32_iterator it, size_t count) {
if(count <= it->ns - it->n) {
while(count > 0) {
const uint32_t c = it->s[it->n];
- const enum unicode_Word_Break wb = utf32__word_break(c);
+ const enum unicode_Word_Break wb = utf32__iterator_word_break(it, c);
if(it->last[1] == (uint32_t)-1
|| !utf32__boundary_ignorable(wb)) {
it->last[0] = it->last[1];
@@ -482,6 +679,11 @@ uint32_t utf32_iterator_code(utf32_iterator it) {
/** @brief Test for a grapheme boundary
* @param it Iterator
* @return Non-0 if pointing just after a grapheme boundary, otherwise 0
+ *
+ * This function identifies default grapheme cluster boundaries as described in
+ * UAX #29 s3. It returns non-0 if @p it points at the code point just after a
+ * grapheme cluster boundary (including the hypothetical code point just after
+ * the end of the string).
*/
int utf32_iterator_grapheme_boundary(utf32_iterator it) {
uint32_t before, after;
@@ -528,6 +730,12 @@ int utf32_iterator_grapheme_boundary(utf32_iterator it) {
/* GB9 */
if(gbafter == unicode_Grapheme_Break_Extend)
return 0;
+ /* GB9a */
+ if(gbafter == unicode_Grapheme_Break_SpacingMark)
+ return 0;
+ /* GB9b */
+ if(gbbefore == unicode_Grapheme_Break_Prepend)
+ return 0;
/* GB10 */
return 1;
@@ -536,96 +744,119 @@ int utf32_iterator_grapheme_boundary(utf32_iterator it) {
/** @brief Test for a word boundary
* @param it Iterator
* @return Non-0 if pointing just after a word boundary, otherwise 0
+ *
+ * This function identifies default word boundaries as described in UAX #29 s4.
+ * It returns non-0 if @p it points at the code point just after a word
+ * boundary (including the hypothetical code point just after the end of the
+ * string) and 0 otherwise.
*/
int utf32_iterator_word_boundary(utf32_iterator it) {
- enum unicode_Word_Break twobefore, before, after, twoafter;
+ uint32_t before, after;
+ enum unicode_Word_Break wbtwobefore, wbbefore, wbafter, wbtwoafter;
size_t nn;
/* WB1 and WB2 */
if(it->n == 0 || it->n == it->ns)
return 1;
+ before = it->s[it->n-1];
+ after = it->s[it->n];
/* WB3 */
- if(it->s[it->n-1] == 0x000D && it->s[it->n] == 0x000A)
+ if(before == 0x000D && after == 0x000A)
return 0;
+ /* WB3a */
+ if(utf32__iterator_word_break(it, before) == unicode_Word_Break_Newline
+ || before == 0x000D
+ || before == 0x000A)
+ return 1;
+ /* WB3b */
+ if(utf32__iterator_word_break(it, after) == unicode_Word_Break_Newline
+ || after == 0x000D
+ || after == 0x000A)
+ return 1;
/* WB4 */
/* (!Sep) x (Extend|Format) as in UAX #29 s6.2 */
- if(utf32__sentence_break(it->s[it->n-1]) != unicode_Sentence_Break_Sep
- && utf32__boundary_ignorable(utf32__word_break(it->s[it->n])))
+ if(utf32__sentence_break(before) != unicode_Sentence_Break_Sep
+ && utf32__boundary_ignorable(utf32__iterator_word_break(it, after)))
return 0;
/* Gather the property values we'll need for the rest of the test taking the
* s6.2 changes into account */
/* First we look at the code points after the proposed boundary */
nn = it->n; /* ns */
- after = utf32__word_break(it->s[nn++]);
- if(!utf32__boundary_ignorable(after)) {
+ wbafter = utf32__iterator_word_break(it, it->s[nn++]);
+ if(!utf32__boundary_ignorable(wbafter)) {
/* X (Extend|Format)* -> X */
while(nn < it->ns
- && utf32__boundary_ignorable(utf32__word_break(it->s[nn])))
+ && utf32__boundary_ignorable(utf32__iterator_word_break(it,
+ it->s[nn])))
++nn;
}
/* It's possible now that nn=ns */
if(nn < it->ns)
- twoafter = utf32__word_break(it->s[nn]);
+ wbtwoafter = utf32__iterator_word_break(it, it->s[nn]);
else
- twoafter = unicode_Word_Break_Other;
+ wbtwoafter = unicode_Word_Break_Other;
/* We've already recorded the non-ignorable code points before the proposed
* boundary */
- before = utf32__word_break(it->last[1]);
- twobefore = utf32__word_break(it->last[0]);
+ wbbefore = utf32__iterator_word_break(it, it->last[1]);
+ wbtwobefore = utf32__iterator_word_break(it, it->last[0]);
/* WB5 */
- if(before == unicode_Word_Break_ALetter
- && after == unicode_Word_Break_ALetter)
+ if(wbbefore == unicode_Word_Break_ALetter
+ && wbafter == unicode_Word_Break_ALetter)
return 0;
/* WB6 */
- if(before == unicode_Word_Break_ALetter
- && after == unicode_Word_Break_MidLetter
- && twoafter == unicode_Word_Break_ALetter)
+ if(wbbefore == unicode_Word_Break_ALetter
+ && (wbafter == unicode_Word_Break_MidLetter
+ || wbafter == unicode_Word_Break_MidNumLet)
+ && wbtwoafter == unicode_Word_Break_ALetter)
return 0;
/* WB7 */
- if(twobefore == unicode_Word_Break_ALetter
- && before == unicode_Word_Break_MidLetter
- && after == unicode_Word_Break_ALetter)
+ if(wbtwobefore == unicode_Word_Break_ALetter
+ && (wbbefore == unicode_Word_Break_MidLetter
+ || wbbefore == unicode_Word_Break_MidNumLet)
+ && wbafter == unicode_Word_Break_ALetter)
return 0;
- /* WB8 */
- if(before == unicode_Word_Break_Numeric
- && after == unicode_Word_Break_Numeric)
+ /* WB8 */
+ if(wbbefore == unicode_Word_Break_Numeric
+ && wbafter == unicode_Word_Break_Numeric)
return 0;
/* WB9 */
- if(before == unicode_Word_Break_ALetter
- && after == unicode_Word_Break_Numeric)
+ if(wbbefore == unicode_Word_Break_ALetter
+ && wbafter == unicode_Word_Break_Numeric)
return 0;
/* WB10 */
- if(before == unicode_Word_Break_Numeric
- && after == unicode_Word_Break_ALetter)
+ if(wbbefore == unicode_Word_Break_Numeric
+ && wbafter == unicode_Word_Break_ALetter)
return 0;
/* WB11 */
- if(twobefore == unicode_Word_Break_Numeric
- && before == unicode_Word_Break_MidNum
- && after == unicode_Word_Break_Numeric)
+ if(wbtwobefore == unicode_Word_Break_Numeric
+ && (wbbefore == unicode_Word_Break_MidNum
+ || wbbefore == unicode_Word_Break_MidNumLet)
+ && wbafter == unicode_Word_Break_Numeric)
return 0;
/* WB12 */
- if(before == unicode_Word_Break_Numeric
- && after == unicode_Word_Break_MidNum
- && twoafter == unicode_Word_Break_Numeric)
+ if(wbbefore == unicode_Word_Break_Numeric
+ && (wbafter == unicode_Word_Break_MidNum
+ || wbafter == unicode_Word_Break_MidNumLet)
+ && wbtwoafter == unicode_Word_Break_Numeric)
return 0;
/* WB13 */
- if(before == unicode_Word_Break_Katakana
- && after == unicode_Word_Break_Katakana)
+ if(wbbefore == unicode_Word_Break_Katakana
+ && wbafter == unicode_Word_Break_Katakana)
return 0;
/* WB13a */
- if((before == unicode_Word_Break_ALetter
- || before == unicode_Word_Break_Numeric
- || before == unicode_Word_Break_Katakana
- || before == unicode_Word_Break_ExtendNumLet)
- && after == unicode_Word_Break_ExtendNumLet)
+ if((wbbefore == unicode_Word_Break_ALetter
+ || wbbefore == unicode_Word_Break_Numeric
+ || wbbefore == unicode_Word_Break_Katakana
+ || wbbefore == unicode_Word_Break_ExtendNumLet)
+ && wbafter == unicode_Word_Break_ExtendNumLet)
return 0;
/* WB13b */
- if(before == unicode_Word_Break_ExtendNumLet
- && (after == unicode_Word_Break_ALetter
- || after == unicode_Word_Break_Numeric
- || after == unicode_Word_Break_Katakana))
+ if(wbbefore == unicode_Word_Break_ExtendNumLet
+ && (wbafter == unicode_Word_Break_ALetter
+ || wbafter == unicode_Word_Break_Numeric
+ || wbafter == unicode_Word_Break_Katakana))
return 0;
/* WB14 */
return 1;
@@ -680,7 +911,7 @@ static void utf32__sort_ccc(uint32_t *s, size_t ns, uint32_t *buffer) {
/* Merge them back into one, via the buffer */
bp = buffer;
while(na > 0 && nb > 0) {
- /* We want descending order of combining class (hence <)
+ /* We want ascending order of combining class (hence <)
* and we want stability within combining classes (hence <=)
*/
if(utf32__combining_class(*a) <= utf32__combining_class(*b)) {
@@ -707,13 +938,13 @@ static void utf32__sort_ccc(uint32_t *s, size_t ns, uint32_t *buffer) {
/** @brief Put combining characters into canonical order
* @param s Pointer to UTF-32 string
* @param ns Length of @p s
- * @return 0 on success, -1 on error
+ * @return 0 on success, non-0 on error
*
* @p s is modified in-place. See Unicode 5.0 s3.11 for details of the
* ordering.
*
* Currently we only support a maximum of 1024 combining characters after each
- * base character. If this limit is exceeded then -1 is returned.
+ * base character. If this limit is exceeded then a non-0 value is returned.
*/
static int utf32__canonical_ordering(uint32_t *s, size_t ns) {
size_t nc;
@@ -755,7 +986,7 @@ static int utf32__canonical_ordering(uint32_t *s, size_t ns) {
/** @brief Guts of the decomposition lookup functions */
#define utf32__decompose_one_generic(WHICH) do { \
- const uint32_t *dc = utf32__unidata(c)->WHICH; \
+ const uint32_t *dc = utf32__decomposition_##WHICH(c); \
if(dc) { \
/* Found a canonical decomposition in the table */ \
while(*dc) \
@@ -778,7 +1009,7 @@ static int utf32__canonical_ordering(uint32_t *s, size_t ns) {
/** @brief Recursively compute the canonical decomposition of @p c
* @param d Dynamic string to store decomposition in
* @param c Code point to decompose (must be a valid!)
- * @return 0 on success, -1 on error
+ * @return 0 on success, non-0 on error
*/
static void utf32__decompose_one_canon(struct dynstr_ucs4 *d, uint32_t c) {
utf32__decompose_one_generic(canon);
@@ -787,14 +1018,159 @@ static void utf32__decompose_one_canon(struct dynstr_ucs4 *d, uint32_t c) {
/** @brief Recursively compute the compatibility decomposition of @p c
* @param d Dynamic string to store decomposition in
* @param c Code point to decompose (must be a valid!)
- * @return 0 on success, -1 on error
+ * @return 0 on success, non-0 on error
*/
static void utf32__decompose_one_compat(struct dynstr_ucs4 *d, uint32_t c) {
utf32__decompose_one_generic(compat);
}
-/** @brief Guts of the decomposition functions */
-#define utf32__decompose_generic(WHICH) do { \
+/** @brief Magic utf32__compositions() return value for Hangul Choseong */
+static const uint32_t utf32__hangul_L[1];
+
+/** @brief Return the list of compositions that @p c starts
+ * @param c Starter code point
+ * @return Composition list or NULL
+ *
+ * For Hangul leading (Choseong) jamo we return the special value
+ * utf32__hangul_L. These code points are not listed as the targets of
+ * canonical decompositions (make-unidata checks) so there is no confusion with
+ * real decompositions here.
+ */
+static const uint32_t *utf32__compositions(uint32_t c) {
+ const uint32_t *compositions = utf32__unidata(c)->composed;
+
+ if(compositions)
+ return compositions;
+ /* Special-casing for Hangul */
+ switch(utf32__grapheme_break(c)) {
+ default:
+ return 0;
+ case unicode_Grapheme_Break_L:
+ return utf32__hangul_L;
+ }
+}
+
+/** @brief Composition step
+ * @param s Start of string
+ * @param ns Length of string
+ * @return New length of string
+ *
+ * This is called from utf32__decompose_generic() to compose the result string
+ * in place.
+ */
+static size_t utf32__compose(uint32_t *s, size_t ns) {
+ const uint32_t *compositions;
+ uint32_t *start = s, *t = s, *tt, cc;
+
+ while(ns > 0) {
+ uint32_t starter = *s++;
+ int block_starters = 0;
+ --ns;
+ /* We don't attempt to compose the following things:
+ * - final characters whatever kind they are
+ * - non-starter characters
+ * - starters that don't take part in a canonical decomposition mapping
+ */
+ if(ns == 0
+ || utf32__combining_class(starter)
+ || !(compositions = utf32__compositions(starter))) {
+ *t++ = starter;
+ continue;
+ }
+ if(compositions != utf32__hangul_L) {
+ /* Where we'll put the eventual starter */
+ tt = t++;
+ do {
+ /* See if we can find composition of starter+*s */
+ const uint32_t cchar = *s, *cp = compositions;
+ while((cc = *cp++)) {
+ const uint32_t *decomp = utf32__decomposition_canon(cc);
+ /* We know decomp[0] == starter */
+ if(decomp[1] == cchar)
+ break;
+ }
+ if(cc) {
+ /* Found a composition: cc decomposes to starter,*s */
+ starter = cc;
+ compositions = utf32__compositions(starter);
+ ++s;
+ --ns;
+ } else {
+ /* No composition found. */
+ const int class = utf32__combining_class(*s);
+ if(class) {
+ /* Transfer the uncomposable combining character to the output */
+ *t++ = *s++;
+ --ns;
+ /* All the combining characters of the same class of the
+ * uncomposable character are blocked by it, but there may be
+ * others of higher class later. We eat the uncomposable and
+ * blocked characters and go back round the loop for that higher
+ * class. */
+ while(ns > 0 && utf32__combining_class(*s) == class) {
+ *t++ = *s++;
+ --ns;
+ }
+ /* Block any subsequent starters */
+ block_starters = 1;
+ } else {
+ /* The uncombinable character is itself a starter, so we don't
+ * transfer it to the output but instead go back round the main
+ * loop. */
+ break;
+ }
+ }
+ /* Keep going while there are still characters and the starter takes
+ * part in some composition */
+ } while(ns > 0 && compositions
+ && (!block_starters || utf32__combining_class(*s)));
+ /* Store any remaining combining characters */
+ while(ns > 0 && utf32__combining_class(*s)) {
+ *t++ = *s++;
+ --ns;
+ }
+ /* Store the resulting starter */
+ *tt = starter;
+ } else {
+ /* Special-casing for Hangul
+ *
+ * If there are combining characters between the L and the V then they
+ * will block the V and so no composition happens. Similarly combining
+ * characters between V and T will block the T and so we only get as far
+ * as LV.
+ */
+ if(utf32__grapheme_break(*s) == unicode_Grapheme_Break_V) {
+ const uint32_t V = *s++;
+ const uint32_t LIndex = starter - LBase;
+ const uint32_t VIndex = V - VBase;
+ uint32_t TIndex;
+ --ns;
+ if(ns > 0
+ && utf32__grapheme_break(*s) == unicode_Grapheme_Break_T) {
+ /* We have an L V T sequence */
+ const uint32_t T = *s++;
+ TIndex = T - TBase;
+ --ns;
+ } else
+ /* It's just L V */
+ TIndex = 0;
+ /* Compose to LVT or LV as appropriate */
+ starter = (LIndex * VCount + VIndex) * TCount + TIndex + SBase;
+ } /* else we only have L or LV and no V or T */
+ *t++ = starter;
+ /* There could be some combining characters that belong to the V or T.
+ * These will be treated as non-starter characters at the top of the loop
+ * and thuss transferred to the output. */
+ }
+ }
+ return t - start;
+}
+
+/** @brief Guts of the composition and decomposition functions
+ * @param WHICH @c canon or @c compat to choose decomposition
+ * @param COMPOSE @c 0 or @c 1 to compose
+ */
+#define utf32__decompose_generic(WHICH, COMPOSE) do { \
struct dynstr_ucs4 d; \
uint32_t c; \
\
@@ -808,6 +1184,8 @@ static void utf32__decompose_one_compat(struct dynstr_ucs4 *d, uint32_t c) {
} \
if(utf32__canonical_ordering(d.vec, d.nvec)) \
goto error; \
+ if(COMPOSE) \
+ d.nvec = utf32__compose(d.vec, d.nvec); \
dynstr_ucs4_terminate(&d); \
if(ndp) \
*ndp = d.nvec; \
@@ -821,38 +1199,89 @@ error: \
* @param s Pointer to string
* @param ns Length of string
* @param ndp Where to store length of result
- * @return Pointer to result string, or NULL
+ * @return Pointer to result string, or NULL on error
*
- * Computes the canonical decomposition of a string and stably sorts combining
- * characters into canonical order. The result is in Normalization Form D and
- * (at the time of writing!) passes the NFD tests defined in Unicode 5.0's
- * NormalizationTest.txt.
+ * Computes NFD (Normalization Form D) of the string at @p s. This implies
+ * performing all canonical decompositions and then normalizing the order of
+ * combining characters.
*
* Returns NULL if the string is not valid for either of the following reasons:
* - it codes for a UTF-16 surrogate
* - it codes for a value outside the unicode code space
+ *
+ * See also:
+ * - utf32_decompose_compat()
+ * - utf32_compose_canon()
*/
uint32_t *utf32_decompose_canon(const uint32_t *s, size_t ns, size_t *ndp) {
- utf32__decompose_generic(canon);
+ utf32__decompose_generic(canon, 0);
}
/** @brief Compatibility decompose @p [s,s+ns)
* @param s Pointer to string
* @param ns Length of string
* @param ndp Where to store length of result
- * @return Pointer to result string, or NULL
+ * @return Pointer to result string, or NULL on error
*
- * Computes the compatibility decomposition of a string and stably sorts
- * combining characters into canonical order. The result is in Normalization
- * Form KD and (at the time of writing!) passes the NFKD tests defined in
- * Unicode 5.0's NormalizationTest.txt.
+ * Computes NFKD (Normalization Form KD) of the string at @p s. This implies
+ * performing all canonical and compatibility decompositions and then
+ * normalizing the order of combining characters.
*
* Returns NULL if the string is not valid for either of the following reasons:
* - it codes for a UTF-16 surrogate
* - it codes for a value outside the unicode code space
+ *
+ * See also:
+ * - utf32_decompose_canon()
+ * - utf32_compose_compat()
*/
uint32_t *utf32_decompose_compat(const uint32_t *s, size_t ns, size_t *ndp) {
- utf32__decompose_generic(compat);
+ utf32__decompose_generic(compat, 0);
+}
+
+/** @brief Canonically compose @p [s,s+ns)
+ * @param s Pointer to string
+ * @param ns Length of string
+ * @param ndp Where to store length of result
+ * @return Pointer to result string, or NULL on error
+ *
+ * Computes NFC (Normalization Form C) of the string at @p s. This implies
+ * performing all canonical decompositions, normalizing the order of combining
+ * characters and then composing all unblocked primary compositables.
+ *
+ * Returns NULL if the string is not valid for either of the following reasons:
+ * - it codes for a UTF-16 surrogate
+ * - it codes for a value outside the unicode code space
+ *
+ * See also:
+ * - utf32_compose_compat()
+ * - utf32_decompose_canon()
+ */
+uint32_t *utf32_compose_canon(const uint32_t *s, size_t ns, size_t *ndp) {
+ utf32__decompose_generic(canon, 1);
+}
+
+/** @brief Compatibility compose @p [s,s+ns)
+ * @param s Pointer to string
+ * @param ns Length of string
+ * @param ndp Where to store length of result
+ * @return Pointer to result string, or NULL on error
+ *
+ * Computes NFKC (Normalization Form KC) of the string at @p s. This implies
+ * performing all canonical and compatibility decompositions, normalizing the
+ * order of combining characters and then composing all unblocked primary
+ * compositables.
+ *
+ * Returns NULL if the string is not valid for either of the following reasons:
+ * - it codes for a UTF-16 surrogate
+ * - it codes for a value outside the unicode code space
+ *
+ * See also:
+ * - utf32_compose_canon()
+ * - utf32_decompose_compat()
+ */
+uint32_t *utf32_compose_compat(const uint32_t *s, size_t ns, size_t *ndp) {
+ utf32__decompose_generic(compat, 1);
}
/** @brief Single-character case-fold and decompose operation */
@@ -870,7 +1299,7 @@ uint32_t *utf32_decompose_compat(const uint32_t *s, size_t ns, size_t *ndp) {
* @param s Pointer to string
* @param ns Length of string
* @param ndp Where to store length of result
- * @return Pointer to result string, or NULL
+ * @return Pointer to result string, or NULL on error
*
* Case-fold the string at @p s according to full default case-folding rules
* (s3.13) for caseless matching. The result will be in NFD.
@@ -919,11 +1348,11 @@ error:
return 0;
}
-/** @brief Compatibilit case-fold @p [s,s+ns)
+/** @brief Compatibility case-fold @p [s,s+ns)
* @param s Pointer to string
* @param ns Length of string
* @param ndp Where to store length of result
- * @return Pointer to result string, or NULL
+ * @return Pointer to result string, or NULL on error
*
* Case-fold the string at @p s according to full default case-folding rules
* (s3.13) for compatibility caseless matching. The result will be in NFKD.
@@ -1001,9 +1430,12 @@ int utf32_cmp(const uint32_t *a, const uint32_t *b) {
* @return 1 at a grapheme cluster boundary, 0 otherwise
*
* This function identifies default grapheme cluster boundaries as described in
- * UAX #29 s3. It returns 1 if @p n points at the code point just after a
+ * UAX #29 s3. It returns non-0 if @p n points at the code point just after a
* grapheme cluster boundary (including the hypothetical code point just after
* the end of the string).
+ *
+ * This function uses utf32_iterator_set() internally; see that function for
+ * remarks on performance.
*/
int utf32_is_grapheme_boundary(const uint32_t *s, size_t ns, size_t n) {
struct utf32_iterator_data it[1];
@@ -1019,8 +1451,11 @@ int utf32_is_grapheme_boundary(const uint32_t *s, size_t ns, size_t n) {
* @return 1 at a word boundary, 0 otherwise
*
* This function identifies default word boundaries as described in UAX #29 s4.
- * It returns 1 if @p n points at the code point just after a word boundary
+ * It returns non-0 if @p n points at the code point just after a word boundary
* (including the hypothetical code point just after the end of the string).
+ *
+ * This function uses utf32_iterator_set() internally; see that function for
+ * remarks on performance.
*/
int utf32_is_word_boundary(const uint32_t *s, size_t ns, size_t n) {
struct utf32_iterator_data it[1];
@@ -1029,6 +1464,64 @@ int utf32_is_word_boundary(const uint32_t *s, size_t ns, size_t n) {
return utf32_iterator_word_boundary(it);
}
+/** @brief Split [s,ns) into multiple words
+ * @param s Pointer to start of string
+ * @param ns Length of string
+ * @param nwp Where to store word count, or NULL
+ * @param wbreak Word_Break property tailor, or NULL
+ * @return Pointer to array of pointers to words
+ *
+ * The returned array is terminated by a NULL pointer and individual
+ * strings are 0-terminated.
+ */
+uint32_t **utf32_word_split(const uint32_t *s, size_t ns, size_t *nwp,
+ unicode_property_tailor *wbreak) {
+ struct utf32_iterator_data it[1];
+ size_t b1 = 0, b2 = 0 ,i;
+ int isword;
+ struct vector32 v32[1];
+ uint32_t *w;
+
+ vector32_init(v32);
+ utf32__iterator_init(it, s, ns, 0);
+ it->word_break = wbreak;
+ /* Work our way through the string stopping at each word break. */
+ do {
+ if(utf32_iterator_word_boundary(it)) {
+ /* We've found a new boundary */
+ b1 = b2;
+ b2 = it->n;
+ /*fprintf(stderr, "[%zu, %zu) is a candidate word\n", b1, b2);*/
+ /* Inspect the characters between the boundary and form an opinion as to
+ * whether they are a word or not */
+ isword = 0;
+ for(i = b1; i < b2; ++i) {
+ switch(utf32__iterator_word_break(it, it->s[i])) {
+ case unicode_Word_Break_ALetter:
+ case unicode_Word_Break_Numeric:
+ case unicode_Word_Break_Katakana:
+ isword = 1;
+ break;
+ default:
+ break;
+ }
+ }
+ /* If it's a word add it to the list of results */
+ if(isword) {
+ const size_t len = b2 - b1;
+ w = xcalloc_noptr(len + 1, sizeof(uint32_t));
+ memcpy(w, it->s + b1, len * sizeof (uint32_t));
+ w[len] = 0;
+ vector32_append(v32, w);
+ }
+ }
+ } while(!utf32_iterator_advance(it, 1));
+ vector32_terminate(v32);
+ if(nwp)
+ *nwp = v32->nvec;
+ return v32->vec;
+}
+
/*@}*/
/** @defgroup utf8 Functions that operate on UTF-8 strings */
/*@{*/
@@ -1052,17 +1545,19 @@ error: \
* @param s Pointer to string
* @param ns Length of string
* @param ndp Where to store length of result
- * @return Pointer to result string, or NULL
+ * @return Pointer to result string, or NULL on error
*
- * Computes the canonical decomposition of a string and stably sorts combining
- * characters into canonical order. The result is in Normalization Form D and
- * (at the time of writing!) passes the NFD tests defined in Unicode 5.0's
- * NormalizationTest.txt.
+ * Computes NFD (Normalization Form D) of the string at @p s. This implies
+ * performing all canonical decompositions and then normalizing the order of
+ * combining characters.
*
* Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
* this might be.
*
- * See also utf32_decompose_canon().
+ * See also:
+ * - utf32_decompose_canon().
+ * - utf8_decompose_compat()
+ * - utf8_compose_canon()
*/
char *utf8_decompose_canon(const char *s, size_t ns, size_t *ndp) {
utf8__transform(utf32_decompose_canon);
@@ -1072,27 +1567,74 @@ char *utf8_decompose_canon(const char *s, size_t ns, size_t *ndp) {
* @param s Pointer to string
* @param ns Length of string
* @param ndp Where to store length of result
- * @return Pointer to result string, or NULL
+ * @return Pointer to result string, or NULL on error
*
- * Computes the compatibility decomposition of a string and stably sorts
- * combining characters into canonical order. The result is in Normalization
- * Form KD and (at the time of writing!) passes the NFKD tests defined in
- * Unicode 5.0's NormalizationTest.txt.
+ * Computes NFKD (Normalization Form KD) of the string at @p s. This implies
+ * performing all canonical and compatibility decompositions and then
+ * normalizing the order of combining characters.
*
* Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
* this might be.
*
- * See also utf32_decompose_compat().
+ * See also:
+ * - utf32_decompose_compat().
+ * - utf8_decompose_canon()
+ * - utf8_compose_compat()
*/
char *utf8_decompose_compat(const char *s, size_t ns, size_t *ndp) {
utf8__transform(utf32_decompose_compat);
}
+/** @brief Canonically compose @p [s,s+ns)
+ * @param s Pointer to string
+ * @param ns Length of string
+ * @param ndp Where to store length of result
+ * @return Pointer to result string, or NULL on error
+ *
+ * Computes NFC (Normalization Form C) of the string at @p s. This implies
+ * performing all canonical decompositions, normalizing the order of combining
+ * characters and then composing all unblocked primary compositables.
+ *
+ * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
+ * this might be.
+ *
+ * See also:
+ * - utf32_compose_canon()
+ * - utf8_compose_compat()
+ * - utf8_decompose_canon()
+ */
+char *utf8_compose_canon(const char *s, size_t ns, size_t *ndp) {
+ utf8__transform(utf32_compose_canon);
+}
+
+/** @brief Compatibility compose @p [s,s+ns)
+ * @param s Pointer to string
+ * @param ns Length of string
+ * @param ndp Where to store length of result
+ * @return Pointer to result string, or NULL on error
+ *
+ * Computes NFKC (Normalization Form KC) of the string at @p s. This implies
+ * performing all canonical and compatibility decompositions, normalizing the
+ * order of combining characters and then composing all unblocked primary
+ * compositables.
+ *
+ * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
+ * this might be.
+ *
+ * See also:
+ * - utf32_compose_compat()
+ * - utf8_compose_canon()
+ * - utf8_decompose_compat()
+ */
+char *utf8_compose_compat(const char *s, size_t ns, size_t *ndp) {
+ utf8__transform(utf32_compose_compat);
+}
+
/** @brief Case-fold @p [s,s+ns)
* @param s Pointer to string
* @param ns Length of string
* @param ndp Where to store length of result
- * @return Pointer to result string, or NULL
+ * @return Pointer to result string, or NULL on error
*
* Case-fold the string at @p s according to full default case-folding rules
* (s3.13). The result will be in NFD.
@@ -1108,7 +1650,7 @@ char *utf8_casefold_canon(const char *s, size_t ns, size_t *ndp) {
* @param s Pointer to string
* @param ns Length of string
* @param ndp Where to store length of result
- * @return Pointer to result string, or NULL
+ * @return Pointer to result string, or NULL on error
*
* Case-fold the string at @p s according to full default case-folding rules
* (s3.13). The result will be in NFKD.
@@ -1120,8 +1662,63 @@ char *utf8_casefold_compat(const char *s, size_t ns, size_t *ndp) {
utf8__transform(utf32_casefold_compat);
}
+/** @brief Split [s,ns) into multiple words
+ * @param s Pointer to start of string
+ * @param ns Length of string
+ * @param nwp Where to store word count, or NULL
+ * @param wbreak Word_Break property tailor, or NULL
+ * @return Pointer to array of pointers to words
+ *
+ * The returned array is terminated by a NULL pointer and individual
+ * strings are 0-terminated.
+ */
+char **utf8_word_split(const char *s, size_t ns, size_t *nwp,
+ unicode_property_tailor *wbreak) {
+ uint32_t *to32 = 0, **v32 = 0;
+ size_t nto32, nv, n;
+ char **v8 = 0, **ret = 0;
+
+ if(!(to32 = utf8_to_utf32(s, ns, &nto32))) goto error;
+ if(!(v32 = utf32_word_split(to32, nto32, &nv, wbreak))) goto error;
+ v8 = xcalloc(sizeof (char *), nv + 1);
+ for(n = 0; n < nv; ++n)
+ if(!(v8[n] = utf32_to_utf8(v32[n], utf32_len(v32[n]), 0)))
+ goto error;
+ ret = v8;
+ *nwp = nv;
+ v8 = 0; /* don't free */
+error:
+ if(v8) {
+ for(n = 0; n < nv; ++n)
+ xfree(v8[n]);
+ xfree(v8);
+ }
+ if(v32) {
+ for(n = 0; n < nv; ++n)
+ xfree(v32[n]);
+ xfree(v32);
+ }
+ xfree(to32);
+ return ret;
+}
+
+
/*@}*/
+/** @brief Return the length of a 0-terminated UTF-16 string
+ * @param s Pointer to 0-terminated string
+ * @return Length of string in code points (excluding terminator)
+ *
+ * Unlike the conversion functions no validity checking is done on the string.
+ */
+size_t utf16_len(const uint16_t *s) {
+ const uint16_t *t = s;
+
+ while(*t)
+ ++t;
+ return (size_t)(t - s);
+}
+
/*
Local Variables:
c-basic-offset:2