chiark / gitweb /
utf32_word_split() and utf8_word_split() splits a string into words
[disorder] / lib / unicode.c
CommitLineData
e5a5a138
RK
1/*
2 * This file is part of DisOrder
3 * Copyright (C) 2007 Richard Kettlewell
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
18 * USA
19 */
20/** @file lib/unicode.c
21 * @brief Unicode support functions
22 *
23 * Here by UTF-8 and UTF-8 we mean the encoding forms of those names (not the
35b651f0
RK
24 * encoding schemes). The primary encoding form is UTF-32 but convenience
25 * wrappers using UTF-8 are provided for a number of functions.
e5a5a138
RK
26 *
27 * The idea is that all the strings that hit the database will be in a
28 * particular normalization form, and for the search and tags database
29 * in case-folded form, so they can be naively compared within the
30 * database code.
31 *
32 * As the code stands this guarantee is not well met!
0ae60b83
RK
33 *
34 * Subpages:
35 * - @ref utf32props
36 * - @ref utftransform
37 * - @ref utf32iterator
38 * - @ref utf32
39 * - @ref utf8
e5a5a138
RK
40 */
41
42#include <config.h>
43#include "types.h"
44
45#include <string.h>
46#include <stdio.h> /* TODO */
47
48#include "mem.h"
49#include "vector.h"
50#include "unicode.h"
51#include "unidata.h"
52
092f426f
RK
53/** @defgroup utf32props Unicode Code Point Properties */
54/*@{*/
55
56static const struct unidata *utf32__unidata_hard(uint32_t c);
57
58/** @brief Find definition of code point @p c
59 * @param c Code point
60 * @return Pointer to @ref unidata structure for @p c
61 *
62 * @p c can be any 32-bit value, a sensible value will be returned regardless.
63 * The returned pointer is NOT guaranteed to be unique to @p c.
64 */
65static inline const struct unidata *utf32__unidata(uint32_t c) {
66 /* The bottom half of the table contains almost everything of interest
67 * and we can just return the right thing straight away */
68 if(c < UNICODE_BREAK_START)
69 return &unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS];
70 else
71 return utf32__unidata_hard(c);
72}
73
74/** @brief Find definition of code point @p c
75 * @param c Code point
76 * @return Pointer to @ref unidata structure for @p c
77 *
78 * @p c can be any 32-bit value, a sensible value will be returned regardless.
79 * The returned pointer is NOT guaranteed to be unique to @p c.
80 *
81 * Don't use this function (although it will work fine) - use utf32__unidata()
82 * instead.
83 */
84static const struct unidata *utf32__unidata_hard(uint32_t c) {
85 if(c < UNICODE_BREAK_START)
86 return &unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS];
87 /* Within the break everything is unassigned */
88 if(c < UNICODE_BREAK_END)
89 return utf32__unidata(0xFFFF); /* guaranteed to be Cn */
90 /* Planes 15 and 16 are (mostly) private use */
91 if((c >= 0xF0000 && c <= 0xFFFFD)
92 || (c >= 0x100000 && c <= 0x10FFFD))
93 return utf32__unidata(0xE000); /* first Co code point */
94 /* Everything else above the break top is unassigned */
95 if(c >= UNICODE_BREAK_TOP)
96 return utf32__unidata(0xFFFF); /* guaranteed to be Cn */
97 /* Currently the rest is language tags and variation selectors */
98 c -= (UNICODE_BREAK_END - UNICODE_BREAK_START);
99 return &unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS];
100}
101
102/** @brief Return the combining class of @p c
103 * @param c Code point
104 * @return Combining class of @p c
105 *
106 * @p c can be any 32-bit value, a sensible value will be returned regardless.
107 */
108static inline int utf32__combining_class(uint32_t c) {
109 return utf32__unidata(c)->ccc;
110}
111
112/** @brief Return the General_Category value for @p c
0ae60b83 113 * @param c Code point
092f426f
RK
114 * @return General_Category property value
115 *
116 * @p c can be any 32-bit value, a sensible value will be returned regardless.
117 */
118static inline enum unicode_General_Category utf32__general_category(uint32_t c) {
119 return utf32__unidata(c)->general_category;
120}
121
122/** @brief Determine Grapheme_Break property
123 * @param c Code point
124 * @return Grapheme_Break property value of @p c
125 *
126 * @p c can be any 32-bit value, a sensible value will be returned regardless.
127 */
128static inline enum unicode_Grapheme_Break utf32__grapheme_break(uint32_t c) {
129 return utf32__unidata(c)->grapheme_break;
130}
131
132/** @brief Determine Word_Break property
133 * @param c Code point
134 * @return Word_Break property value of @p c
135 *
136 * @p c can be any 32-bit value, a sensible value will be returned regardless.
137 */
138static inline enum unicode_Word_Break utf32__word_break(uint32_t c) {
139 return utf32__unidata(c)->word_break;
140}
141
142/** @brief Determine Sentence_Break property
143 * @param c Code point
144 * @return Word_Break property value of @p c
145 *
146 * @p c can be any 32-bit value, a sensible value will be returned regardless.
147 */
148static inline enum unicode_Sentence_Break utf32__sentence_break(uint32_t c) {
149 return utf32__unidata(c)->sentence_break;
150}
151
152/** @brief Return true if @p c is ignorable for boundary specifications
153 * @param wb Word break property value
154 * @return non-0 if @p wb is unicode_Word_Break_Extend or unicode_Word_Break_Format
155 */
156static inline int utf32__boundary_ignorable(enum unicode_Word_Break wb) {
157 return (wb == unicode_Word_Break_Extend
158 || wb == unicode_Word_Break_Format);
159}
160
f98fcddb
RK
161/** @brief Return the canonical decomposition of @p c
162 * @param c Code point
163 * @return 0-terminated canonical decomposition, or 0
164 */
165static inline const uint32_t *utf32__decomposition_canon(uint32_t c) {
166 const struct unidata *const data = utf32__unidata(c);
167 const uint32_t *const decomp = data->decomp;
168
169 if(decomp && !(data->flags & unicode_compatibility_decomposition))
170 return decomp;
171 else
172 return 0;
173}
174
175/** @brief Return the compatibility decomposition of @p c
176 * @param c Code point
177 * @return 0-terminated decomposition, or 0
178 */
179static inline const uint32_t *utf32__decomposition_compat(uint32_t c) {
180 return utf32__unidata(c)->decomp;
181}
182
092f426f 183/*@}*/
e5a5a138
RK
184/** @defgroup utftransform Functions that transform between different Unicode encoding forms */
185/*@{*/
186
187/** @brief Convert UTF-32 to UTF-8
188 * @param s Source string
189 * @param ns Length of source string in code points
190 * @param ndp Where to store length of destination string (or NULL)
191 * @return Newly allocated destination string or NULL on error
192 *
56fd389c
RK
193 * If the UTF-32 is not valid then NULL is returned. A UTF-32 code point is
194 * invalid if:
e5a5a138
RK
195 * - it codes for a UTF-16 surrogate
196 * - it codes for a value outside the unicode code space
197 *
56fd389c
RK
198 * The return value is always 0-terminated. The value returned via @p *ndp
199 * does not include the terminator.
e5a5a138
RK
200 */
201char *utf32_to_utf8(const uint32_t *s, size_t ns, size_t *ndp) {
202 struct dynstr d;
203 uint32_t c;
204
205 dynstr_init(&d);
206 while(ns > 0) {
207 c = *s++;
208 if(c < 0x80)
209 dynstr_append(&d, c);
210 else if(c < 0x0800) {
211 dynstr_append(&d, 0xC0 | (c >> 6));
212 dynstr_append(&d, 0x80 | (c & 0x3F));
213 } else if(c < 0x10000) {
56fd389c 214 if(c >= 0xD800 && c <= 0xDFFF)
e5a5a138
RK
215 goto error;
216 dynstr_append(&d, 0xE0 | (c >> 12));
217 dynstr_append(&d, 0x80 | ((c >> 6) & 0x3F));
218 dynstr_append(&d, 0x80 | (c & 0x3F));
219 } else if(c < 0x110000) {
220 dynstr_append(&d, 0xF0 | (c >> 18));
221 dynstr_append(&d, 0x80 | ((c >> 12) & 0x3F));
222 dynstr_append(&d, 0x80 | ((c >> 6) & 0x3F));
223 dynstr_append(&d, 0x80 | (c & 0x3F));
224 } else
225 goto error;
226 --ns;
227 }
228 dynstr_terminate(&d);
229 if(ndp)
230 *ndp = d.nvec;
231 return d.vec;
232error:
233 xfree(d.vec);
234 return 0;
235}
236
237/** @brief Convert UTF-8 to UTF-32
238 * @param s Source string
239 * @param ns Length of source string in code points
240 * @param ndp Where to store length of destination string (or NULL)
f98fcddb 241 * @return Newly allocated destination string or NULL on error
e5a5a138 242 *
56fd389c
RK
243 * The return value is always 0-terminated. The value returned via @p *ndp
244 * does not include the terminator.
e5a5a138
RK
245 *
246 * If the UTF-8 is not valid then NULL is returned. A UTF-8 sequence
247 * for a code point is invalid if:
248 * - it is not the shortest possible sequence for the code point
249 * - it codes for a UTF-16 surrogate
250 * - it codes for a value outside the unicode code space
251 */
252uint32_t *utf8_to_utf32(const char *s, size_t ns, size_t *ndp) {
253 struct dynstr_ucs4 d;
32b158f2 254 uint32_t c32;
e5a5a138 255 const uint8_t *ss = (const uint8_t *)s;
32b158f2 256 int n;
e5a5a138
RK
257
258 dynstr_ucs4_init(&d);
259 while(ns > 0) {
32b158f2
RK
260 const struct unicode_utf8_row *const r = &unicode_utf8_valid[*ss];
261 if(r->count <= ns) {
262 switch(r->count) {
263 case 1:
264 c32 = *ss;
265 break;
266 case 2:
267 if(ss[1] < r->min2 || ss[1] > r->max2)
268 goto error;
269 c32 = *ss & 0x1F;
270 break;
271 case 3:
272 if(ss[1] < r->min2 || ss[1] > r->max2)
273 goto error;
274 c32 = *ss & 0x0F;
275 break;
276 case 4:
277 if(ss[1] < r->min2 || ss[1] > r->max2)
278 goto error;
279 c32 = *ss & 0x07;
280 break;
281 default:
282 goto error;
283 }
e5a5a138
RK
284 } else
285 goto error;
32b158f2
RK
286 for(n = 1; n < r->count; ++n) {
287 if(ss[n] < 0x80 || ss[n] > 0xBF)
288 goto error;
289 c32 = (c32 << 6) | (ss[n] & 0x3F);
290 }
e5a5a138 291 dynstr_ucs4_append(&d, c32);
32b158f2
RK
292 ss += r->count;
293 ns -= r->count;
e5a5a138
RK
294 }
295 dynstr_ucs4_terminate(&d);
296 if(ndp)
297 *ndp = d.nvec;
298 return d.vec;
299error:
300 xfree(d.vec);
301 return 0;
302}
303
18cda350
RK
304/** @brief Test whether [s,s+ns) is valid UTF-8
305 * @param s Start of string
306 * @param ns Length of string
307 * @return non-0 if @p s is valid UTF-8, 0 if it is not valid
308 *
309 * This function is intended to be much faster than calling utf8_to_utf32() and
310 * throwing away the result.
311 */
312int utf8_valid(const char *s, size_t ns) {
313 const uint8_t *ss = (const uint8_t *)s;
314 while(ns > 0) {
315 const struct unicode_utf8_row *const r = &unicode_utf8_valid[*ss];
316 if(r->count <= ns) {
317 switch(r->count) {
318 case 1:
319 break;
320 case 2:
321 if(ss[1] < r->min2 || ss[1] > r->max2)
322 return 0;
323 break;
324 case 3:
325 if(ss[1] < r->min2 || ss[1] > r->max2)
326 return 0;
327 if(ss[2] < 0x80 || ss[2] > 0xBF)
328 return 0;
329 break;
330 case 4:
331 if(ss[1] < r->min2 || ss[1] > r->max2)
332 return 0;
333 if(ss[2] < 0x80 || ss[2] > 0xBF)
334 return 0;
335 if(ss[3] < 0x80 || ss[3] > 0xBF)
336 return 0;
337 break;
338 default:
339 return 0;
340 }
341 } else
342 return 0;
343 ss += r->count;
344 ns -= r->count;
345 }
346 return 1;
347}
348
092f426f
RK
349/*@}*/
350/** @defgroup utf32iterator UTF-32 string iterators */
351/*@{*/
352
353struct utf32_iterator_data {
354 /** @brief Start of string */
355 const uint32_t *s;
356
357 /** @brief Length of string */
358 size_t ns;
359
360 /** @brief Current position */
361 size_t n;
362
363 /** @brief Last two non-ignorable characters or (uint32_t)-1
364 *
365 * last[1] is the non-Extend/Format character just before position @p n;
366 * last[0] is the one just before that.
367 *
368 * Exception 1: if there is no such non-Extend/Format character then an
369 * Extend/Format character is accepted instead.
370 *
371 * Exception 2: if there is no such character even taking that into account
372 * the value is (uint32_t)-1.
373 */
374 uint32_t last[2];
375};
376
377/** @brief Create a new iterator pointing at the start of a string
378 * @param s Start of string
379 * @param ns Length of string
380 * @return New iterator
381 */
382utf32_iterator utf32_iterator_new(const uint32_t *s, size_t ns) {
383 utf32_iterator it = xmalloc(sizeof *it);
384 it->s = s;
385 it->ns = ns;
386 it->n = 0;
387 it->last[0] = it->last[1] = -1;
388 return it;
389}
390
391/** @brief Initialize an internal private iterator
392 * @param it Iterator
393 * @param s Start of string
394 * @param ns Length of string
395 * @param n Absolute position
396 */
397static void utf32__iterator_init(utf32_iterator it,
398 const uint32_t *s, size_t ns, size_t n) {
399 it->s = s;
400 it->ns = ns;
401 it->n = 0;
402 it->last[0] = it->last[1] = -1;
b21a155c 403 utf32_iterator_set(it, n);
092f426f
RK
404}
405
406/** @brief Destroy an iterator
407 * @param it Iterator
408 */
409void utf32_iterator_destroy(utf32_iterator it) {
410 xfree(it);
411}
412
413/** @brief Find the current position of an interator
414 * @param it Iterator
415 */
416size_t utf32_iterator_where(utf32_iterator it) {
417 return it->n;
418}
419
420/** @brief Set an iterator's absolute position
421 * @param it Iterator
422 * @param n Absolute position
423 * @return 0 on success, non-0 on error
424 *
425 * It is an error to position the iterator outside the string (but acceptable
426 * to point it at the hypothetical post-final character). If an invalid value
427 * of @p n is specified then the iterator is not changed.
f98fcddb
RK
428 *
429 * This function works by backing up and then advancing to reconstruct the
430 * iterator's internal state for position @p n. The worst case will be O(n)
431 * time complexity (with a worse constant factor that utf32_iterator_advance())
432 * but the typical case is essentially constant-time.
092f426f
RK
433 */
434int utf32_iterator_set(utf32_iterator it, size_t n) {
5617aaff
RK
435 /* We can't just jump to position @p n; the @p last[] values will be wrong.
436 * What we need is to jump a bit behind @p n and then advance forward,
437 * updating @p last[] along the way. How far back? We need to cross two
438 * non-ignorable code points as we advance forwards, so we'd better pass two
439 * such characters on the way back (if such are available).
440 */
b21a155c 441 size_t m;
5617aaff
RK
442
443 if(n > it->ns) /* range check */
092f426f 444 return -1;
b21a155c
RK
445 /* Walk backwards skipping ignorable code points */
446 m = n;
447 while(m > 0 && (utf32__boundary_ignorable(utf32__word_break(it->s[m-1]))))
448 --m;
449 /* Either m=0 or s[m-1] is not ignorable */
450 if(m > 0) {
451 --m;
452 /* s[m] is our first non-ignorable code; look for a second in the same
453 way **/
454 while(m > 0 && (utf32__boundary_ignorable(utf32__word_break(it->s[m-1]))))
5617aaff 455 --m;
b21a155c
RK
456 /* Either m=0 or s[m-1] is not ignorable */
457 if(m > 0)
458 --m;
459 }
460 it->last[0] = it->last[1] = -1;
5617aaff
RK
461 it->n = m;
462 return utf32_iterator_advance(it, n - m);
092f426f
RK
463}
464
465/** @brief Advance an iterator
466 * @param it Iterator
467 * @param count Number of code points to advance by
468 * @return 0 on success, non-0 on error
469 *
470 * It is an error to advance an iterator beyond the hypothetical post-final
471 * character of the string. If an invalid value of @p n is specified then the
472 * iterator is not changed.
473 *
474 * This function has O(n) time complexity: it works by advancing naively
475 * forwards through the string.
476 */
477int utf32_iterator_advance(utf32_iterator it, size_t count) {
478 if(count <= it->ns - it->n) {
479 while(count > 0) {
480 const uint32_t c = it->s[it->n];
481 const enum unicode_Word_Break wb = utf32__word_break(c);
482 if(it->last[1] == (uint32_t)-1
483 || !utf32__boundary_ignorable(wb)) {
484 it->last[0] = it->last[1];
485 it->last[1] = c;
486 }
487 ++it->n;
488 --count;
489 }
490 return 0;
491 } else
492 return -1;
493}
494
495/** @brief Find the current code point
496 * @param it Iterator
497 * @return Current code point or 0
498 *
499 * If the iterator points at the hypothetical post-final character of the
500 * string then 0 is returned. NB that this doesn't mean that there aren't any
501 * 0 code points inside the string!
502 */
503uint32_t utf32_iterator_code(utf32_iterator it) {
504 if(it->n < it->ns)
505 return it->s[it->n];
506 else
507 return 0;
508}
509
510/** @brief Test for a grapheme boundary
511 * @param it Iterator
512 * @return Non-0 if pointing just after a grapheme boundary, otherwise 0
f98fcddb
RK
513 *
514 * This function identifies default grapheme cluster boundaries as described in
515 * UAX #29 s3. It returns non-0 if @p it points at the code point just after a
516 * grapheme cluster boundary (including the hypothetical code point just after
517 * the end of the string).
092f426f
RK
518 */
519int utf32_iterator_grapheme_boundary(utf32_iterator it) {
520 uint32_t before, after;
521 enum unicode_Grapheme_Break gbbefore, gbafter;
522 /* GB1 and GB2 */
523 if(it->n == 0 || it->n == it->ns)
524 return 1;
525 /* Now we know that s[n-1] and s[n] are safe to inspect */
526 /* GB3 */
527 before = it->s[it->n-1];
528 after = it->s[it->n];
529 if(before == 0x000D && after == 0x000A)
530 return 0;
531 gbbefore = utf32__grapheme_break(before);
532 gbafter = utf32__grapheme_break(after);
533 /* GB4 */
534 if(gbbefore == unicode_Grapheme_Break_Control
535 || before == 0x000D
536 || before == 0x000A)
537 return 1;
538 /* GB5 */
539 if(gbafter == unicode_Grapheme_Break_Control
540 || after == 0x000D
541 || after == 0x000A)
542 return 1;
543 /* GB6 */
544 if(gbbefore == unicode_Grapheme_Break_L
545 && (gbafter == unicode_Grapheme_Break_L
546 || gbafter == unicode_Grapheme_Break_V
547 || gbafter == unicode_Grapheme_Break_LV
548 || gbafter == unicode_Grapheme_Break_LVT))
549 return 0;
550 /* GB7 */
551 if((gbbefore == unicode_Grapheme_Break_LV
552 || gbbefore == unicode_Grapheme_Break_V)
553 && (gbafter == unicode_Grapheme_Break_V
554 || gbafter == unicode_Grapheme_Break_T))
555 return 0;
556 /* GB8 */
557 if((gbbefore == unicode_Grapheme_Break_LVT
558 || gbbefore == unicode_Grapheme_Break_T)
559 && gbafter == unicode_Grapheme_Break_T)
560 return 0;
561 /* GB9 */
562 if(gbafter == unicode_Grapheme_Break_Extend)
563 return 0;
564 /* GB10 */
565 return 1;
566
567}
568
569/** @brief Test for a word boundary
570 * @param it Iterator
571 * @return Non-0 if pointing just after a word boundary, otherwise 0
f98fcddb
RK
572 *
573 * This function identifies default word boundaries as described in UAX #29 s4.
574 * It returns non-0 if @p it points at the code point just after a word
575 * boundary (including the hypothetical code point just after the end of the
576 * string) and 0 otherwise.
092f426f
RK
577 */
578int utf32_iterator_word_boundary(utf32_iterator it) {
579 enum unicode_Word_Break twobefore, before, after, twoafter;
580 size_t nn;
581
582 /* WB1 and WB2 */
583 if(it->n == 0 || it->n == it->ns)
584 return 1;
585 /* WB3 */
586 if(it->s[it->n-1] == 0x000D && it->s[it->n] == 0x000A)
587 return 0;
588 /* WB4 */
589 /* (!Sep) x (Extend|Format) as in UAX #29 s6.2 */
590 if(utf32__sentence_break(it->s[it->n-1]) != unicode_Sentence_Break_Sep
591 && utf32__boundary_ignorable(utf32__word_break(it->s[it->n])))
592 return 0;
593 /* Gather the property values we'll need for the rest of the test taking the
594 * s6.2 changes into account */
595 /* First we look at the code points after the proposed boundary */
596 nn = it->n; /* <it->ns */
597 after = utf32__word_break(it->s[nn++]);
598 if(!utf32__boundary_ignorable(after)) {
599 /* X (Extend|Format)* -> X */
600 while(nn < it->ns
601 && utf32__boundary_ignorable(utf32__word_break(it->s[nn])))
602 ++nn;
603 }
604 /* It's possible now that nn=ns */
605 if(nn < it->ns)
606 twoafter = utf32__word_break(it->s[nn]);
607 else
608 twoafter = unicode_Word_Break_Other;
609
610 /* We've already recorded the non-ignorable code points before the proposed
611 * boundary */
612 before = utf32__word_break(it->last[1]);
613 twobefore = utf32__word_break(it->last[0]);
614
615 /* WB5 */
616 if(before == unicode_Word_Break_ALetter
617 && after == unicode_Word_Break_ALetter)
618 return 0;
619 /* WB6 */
620 if(before == unicode_Word_Break_ALetter
621 && after == unicode_Word_Break_MidLetter
622 && twoafter == unicode_Word_Break_ALetter)
623 return 0;
624 /* WB7 */
625 if(twobefore == unicode_Word_Break_ALetter
626 && before == unicode_Word_Break_MidLetter
627 && after == unicode_Word_Break_ALetter)
628 return 0;
629 /* WB8 */
630 if(before == unicode_Word_Break_Numeric
631 && after == unicode_Word_Break_Numeric)
632 return 0;
633 /* WB9 */
634 if(before == unicode_Word_Break_ALetter
635 && after == unicode_Word_Break_Numeric)
636 return 0;
637 /* WB10 */
638 if(before == unicode_Word_Break_Numeric
639 && after == unicode_Word_Break_ALetter)
640 return 0;
641 /* WB11 */
642 if(twobefore == unicode_Word_Break_Numeric
643 && before == unicode_Word_Break_MidNum
644 && after == unicode_Word_Break_Numeric)
645 return 0;
646 /* WB12 */
647 if(before == unicode_Word_Break_Numeric
648 && after == unicode_Word_Break_MidNum
649 && twoafter == unicode_Word_Break_Numeric)
650 return 0;
651 /* WB13 */
652 if(before == unicode_Word_Break_Katakana
653 && after == unicode_Word_Break_Katakana)
654 return 0;
655 /* WB13a */
656 if((before == unicode_Word_Break_ALetter
657 || before == unicode_Word_Break_Numeric
658 || before == unicode_Word_Break_Katakana
659 || before == unicode_Word_Break_ExtendNumLet)
660 && after == unicode_Word_Break_ExtendNumLet)
661 return 0;
662 /* WB13b */
663 if(before == unicode_Word_Break_ExtendNumLet
664 && (after == unicode_Word_Break_ALetter
665 || after == unicode_Word_Break_Numeric
666 || after == unicode_Word_Break_Katakana))
667 return 0;
668 /* WB14 */
669 return 1;
670}
671
e5a5a138
RK
672/*@}*/
673/** @defgroup utf32 Functions that operate on UTF-32 strings */
674/*@{*/
675
676/** @brief Return the length of a 0-terminated UTF-32 string
677 * @param s Pointer to 0-terminated string
678 * @return Length of string in code points (excluding terminator)
679 *
56fd389c 680 * Unlike the conversion functions no validity checking is done on the string.
e5a5a138
RK
681 */
682size_t utf32_len(const uint32_t *s) {
683 const uint32_t *t = s;
684
685 while(*t)
686 ++t;
687 return (size_t)(t - s);
688}
689
e5a5a138
RK
690/** @brief Stably sort [s,s+ns) into descending order of combining class
691 * @param s Start of array
692 * @param ns Number of elements, must be at least 1
693 * @param buffer Buffer of at least @p ns elements
694 */
695static void utf32__sort_ccc(uint32_t *s, size_t ns, uint32_t *buffer) {
696 uint32_t *a, *b, *bp;
697 size_t na, nb;
698
699 switch(ns) {
700 case 1: /* 1-element array is always sorted */
701 return;
702 case 2: /* 2-element arrays are trivial to sort */
703 if(utf32__combining_class(s[0]) > utf32__combining_class(s[1])) {
704 uint32_t tmp = s[0];
705 s[0] = s[1];
706 s[1] = tmp;
707 }
708 return;
709 default:
710 /* Partition the array */
711 na = ns / 2;
712 nb = ns - na;
713 a = s;
714 b = s + na;
715 /* Sort the two halves of the array */
716 utf32__sort_ccc(a, na, buffer);
717 utf32__sort_ccc(b, nb, buffer);
718 /* Merge them back into one, via the buffer */
719 bp = buffer;
720 while(na > 0 && nb > 0) {
16506c9d 721 /* We want ascending order of combining class (hence <)
e5a5a138
RK
722 * and we want stability within combining classes (hence <=)
723 */
724 if(utf32__combining_class(*a) <= utf32__combining_class(*b)) {
725 *bp++ = *a++;
726 --na;
727 } else {
728 *bp++ = *b++;
729 --nb;
730 }
731 }
732 while(na > 0) {
733 *bp++ = *a++;
734 --na;
735 }
736 while(nb > 0) {
737 *bp++ = *b++;
738 --nb;
739 }
740 memcpy(s, buffer, ns * sizeof(uint32_t));
741 return;
742 }
743}
744
745/** @brief Put combining characters into canonical order
746 * @param s Pointer to UTF-32 string
747 * @param ns Length of @p s
f98fcddb 748 * @return 0 on success, non-0 on error
e5a5a138 749 *
56fd389c
RK
750 * @p s is modified in-place. See Unicode 5.0 s3.11 for details of the
751 * ordering.
e5a5a138 752 *
56fd389c 753 * Currently we only support a maximum of 1024 combining characters after each
f98fcddb 754 * base character. If this limit is exceeded then a non-0 value is returned.
e5a5a138
RK
755 */
756static int utf32__canonical_ordering(uint32_t *s, size_t ns) {
757 size_t nc;
758 uint32_t buffer[1024];
759
760 /* The ordering amounts to a stable sort of each contiguous group of
761 * characters with non-0 combining class. */
762 while(ns > 0) {
763 /* Skip non-combining characters */
764 if(utf32__combining_class(*s) == 0) {
765 ++s;
766 --ns;
767 continue;
768 }
769 /* We must now have at least one combining character; see how many
770 * there are */
771 for(nc = 1; nc < ns && utf32__combining_class(s[nc]) != 0; ++nc)
772 ;
773 if(nc > 1024)
774 return -1;
775 /* Sort the array */
776 utf32__sort_ccc(s, nc, buffer);
777 s += nc;
778 ns -= nc;
779 }
780 return 0;
781}
782
783/* Magic numbers from UAX #15 s16 */
784#define SBase 0xAC00
785#define LBase 0x1100
786#define VBase 0x1161
787#define TBase 0x11A7
788#define LCount 19
789#define VCount 21
790#define TCount 28
791#define NCount (VCount * TCount)
792#define SCount (LCount * NCount)
793
794/** @brief Guts of the decomposition lookup functions */
795#define utf32__decompose_one_generic(WHICH) do { \
f98fcddb 796 const uint32_t *dc = utf32__decomposition_##WHICH(c); \
e5a5a138
RK
797 if(dc) { \
798 /* Found a canonical decomposition in the table */ \
799 while(*dc) \
800 utf32__decompose_one_##WHICH(d, *dc++); \
801 } else if(c >= SBase && c < SBase + SCount) { \
802 /* Mechanically decomposable Hangul syllable (UAX #15 s16) */ \
803 const uint32_t SIndex = c - SBase; \
804 const uint32_t L = LBase + SIndex / NCount; \
805 const uint32_t V = VBase + (SIndex % NCount) / TCount; \
806 const uint32_t T = TBase + SIndex % TCount; \
807 dynstr_ucs4_append(d, L); \
808 dynstr_ucs4_append(d, V); \
809 if(T != TBase) \
810 dynstr_ucs4_append(d, T); \
811 } else \
812 /* Equal to own canonical decomposition */ \
813 dynstr_ucs4_append(d, c); \
814} while(0)
815
816/** @brief Recursively compute the canonical decomposition of @p c
817 * @param d Dynamic string to store decomposition in
818 * @param c Code point to decompose (must be a valid!)
f98fcddb 819 * @return 0 on success, non-0 on error
e5a5a138
RK
820 */
821static void utf32__decompose_one_canon(struct dynstr_ucs4 *d, uint32_t c) {
822 utf32__decompose_one_generic(canon);
823}
824
825/** @brief Recursively compute the compatibility decomposition of @p c
826 * @param d Dynamic string to store decomposition in
827 * @param c Code point to decompose (must be a valid!)
f98fcddb 828 * @return 0 on success, non-0 on error
e5a5a138
RK
829 */
830static void utf32__decompose_one_compat(struct dynstr_ucs4 *d, uint32_t c) {
831 utf32__decompose_one_generic(compat);
832}
833
16506c9d
RK
834/** @brief Magic utf32__compositions() return value for Hangul Choseong */
835static const uint32_t utf32__hangul_L[1];
836
837/** @brief Return the list of compositions that @p c starts
838 * @param c Starter code point
839 * @return Composition list or NULL
840 *
841 * For Hangul leading (Choseong) jamo we return the special value
842 * utf32__hangul_L. These code points are not listed as the targets of
843 * canonical decompositions (make-unidata checks) so there is no confusion with
844 * real decompositions here.
845 */
846static const uint32_t *utf32__compositions(uint32_t c) {
847 const uint32_t *compositions = utf32__unidata(c)->composed;
848
849 if(compositions)
850 return compositions;
851 /* Special-casing for Hangul */
852 switch(utf32__grapheme_break(c)) {
853 default:
854 return 0;
855 case unicode_Grapheme_Break_L:
856 return utf32__hangul_L;
857 }
858}
859
860/** @brief Composition step
861 * @param s Start of string
862 * @param ns Length of string
863 * @return New length of string
864 *
865 * This is called from utf32__decompose_generic() to compose the result string
866 * in place.
867 */
868static size_t utf32__compose(uint32_t *s, size_t ns) {
869 const uint32_t *compositions;
870 uint32_t *start = s, *t = s, *tt, cc;
871
872 while(ns > 0) {
873 uint32_t starter = *s++;
874 int block_starters = 0;
875 --ns;
876 /* We don't attempt to compose the following things:
877 * - final characters whatever kind they are
878 * - non-starter characters
879 * - starters that don't take part in a canonical decomposition mapping
880 */
881 if(ns == 0
882 || utf32__combining_class(starter)
883 || !(compositions = utf32__compositions(starter))) {
884 *t++ = starter;
885 continue;
886 }
887 if(compositions != utf32__hangul_L) {
888 /* Where we'll put the eventual starter */
889 tt = t++;
890 do {
891 /* See if we can find composition of starter+*s */
892 const uint32_t cchar = *s, *cp = compositions;
893 while((cc = *cp++)) {
894 const uint32_t *decomp = utf32__decomposition_canon(cc);
895 /* We know decomp[0] == starter */
896 if(decomp[1] == cchar)
897 break;
898 }
899 if(cc) {
900 /* Found a composition: cc decomposes to starter,*s */
901 starter = cc;
902 compositions = utf32__compositions(starter);
903 ++s;
904 --ns;
905 } else {
906 /* No composition found. */
907 const int class = utf32__combining_class(*s);
908 if(class) {
909 /* Transfer the uncomposable combining character to the output */
910 *t++ = *s++;
911 --ns;
912 /* All the combining characters of the same class of the
913 * uncomposable character are blocked by it, but there may be
914 * others of higher class later. We eat the uncomposable and
915 * blocked characters and go back round the loop for that higher
916 * class. */
917 while(ns > 0 && utf32__combining_class(*s) == class) {
918 *t++ = *s++;
919 --ns;
920 }
921 /* Block any subsequent starters */
922 block_starters = 1;
923 } else {
924 /* The uncombinable character is itself a starter, so we don't
925 * transfer it to the output but instead go back round the main
926 * loop. */
927 break;
928 }
929 }
930 /* Keep going while there are still characters and the starter takes
931 * part in some composition */
932 } while(ns > 0 && compositions
933 && (!block_starters || utf32__combining_class(*s)));
934 /* Store any remaining combining characters */
935 while(ns > 0 && utf32__combining_class(*s)) {
936 *t++ = *s++;
937 --ns;
938 }
939 /* Store the resulting starter */
940 *tt = starter;
941 } else {
942 /* Special-casing for Hangul
943 *
944 * If there are combining characters between the L and the V then they
945 * will block the V and so no composition happens. Similarly combining
946 * characters between V and T will block the T and so we only get as far
947 * as LV.
948 */
949 if(utf32__grapheme_break(*s) == unicode_Grapheme_Break_V) {
950 const uint32_t V = *s++;
951 const uint32_t LIndex = starter - LBase;
952 const uint32_t VIndex = V - VBase;
953 uint32_t TIndex;
954 --ns;
955 if(ns > 0
956 && utf32__grapheme_break(*s) == unicode_Grapheme_Break_T) {
957 /* We have an L V T sequence */
958 const uint32_t T = *s++;
959 TIndex = T - TBase;
960 --ns;
961 } else
962 /* It's just L V */
963 TIndex = 0;
964 /* Compose to LVT or LV as appropriate */
965 starter = (LIndex * VCount + VIndex) * TCount + TIndex + SBase;
966 } /* else we only have L or LV and no V or T */
967 *t++ = starter;
968 /* There could be some combining characters that belong to the V or T.
969 * These will be treated as non-starter characters at the top of the loop
970 * and thuss transferred to the output. */
971 }
972 }
973 return t - start;
974}
975
976/** @brief Guts of the composition and decomposition functions
977 * @param WHICH @c canon or @c compat to choose decomposition
978 * @param COMPOSE @c 0 or @c 1 to compose
979 */
980#define utf32__decompose_generic(WHICH, COMPOSE) do { \
e5a5a138
RK
981 struct dynstr_ucs4 d; \
982 uint32_t c; \
983 \
984 dynstr_ucs4_init(&d); \
985 while(ns) { \
986 c = *s++; \
56fd389c 987 if((c >= 0xD800 && c <= 0xDFFF) || c > 0x10FFFF) \
e5a5a138
RK
988 goto error; \
989 utf32__decompose_one_##WHICH(&d, c); \
990 --ns; \
991 } \
992 if(utf32__canonical_ordering(d.vec, d.nvec)) \
993 goto error; \
16506c9d
RK
994 if(COMPOSE) \
995 d.nvec = utf32__compose(d.vec, d.nvec); \
e5a5a138
RK
996 dynstr_ucs4_terminate(&d); \
997 if(ndp) \
998 *ndp = d.nvec; \
999 return d.vec; \
1000error: \
1001 xfree(d.vec); \
1002 return 0; \
1003} while(0)
1004
1005/** @brief Canonically decompose @p [s,s+ns)
1006 * @param s Pointer to string
1007 * @param ns Length of string
1008 * @param ndp Where to store length of result
f98fcddb 1009 * @return Pointer to result string, or NULL on error
e5a5a138 1010 *
16506c9d
RK
1011 * Computes NFD (Normalization Form D) of the string at @p s. This implies
1012 * performing all canonical decompositions and then normalizing the order of
1013 * combining characters.
e5a5a138 1014 *
56fd389c 1015 * Returns NULL if the string is not valid for either of the following reasons:
e5a5a138
RK
1016 * - it codes for a UTF-16 surrogate
1017 * - it codes for a value outside the unicode code space
16506c9d
RK
1018 *
1019 * See also:
1020 * - utf32_decompose_compat()
1021 * - utf32_compose_canon()
e5a5a138
RK
1022 */
1023uint32_t *utf32_decompose_canon(const uint32_t *s, size_t ns, size_t *ndp) {
16506c9d 1024 utf32__decompose_generic(canon, 0);
e5a5a138
RK
1025}
1026
1027/** @brief Compatibility decompose @p [s,s+ns)
1028 * @param s Pointer to string
1029 * @param ns Length of string
1030 * @param ndp Where to store length of result
f98fcddb 1031 * @return Pointer to result string, or NULL on error
e5a5a138 1032 *
16506c9d
RK
1033 * Computes NFKD (Normalization Form KD) of the string at @p s. This implies
1034 * performing all canonical and compatibility decompositions and then
1035 * normalizing the order of combining characters.
e5a5a138 1036 *
56fd389c 1037 * Returns NULL if the string is not valid for either of the following reasons:
e5a5a138
RK
1038 * - it codes for a UTF-16 surrogate
1039 * - it codes for a value outside the unicode code space
16506c9d
RK
1040 *
1041 * See also:
1042 * - utf32_decompose_canon()
1043 * - utf32_compose_compat()
e5a5a138
RK
1044 */
1045uint32_t *utf32_decompose_compat(const uint32_t *s, size_t ns, size_t *ndp) {
16506c9d
RK
1046 utf32__decompose_generic(compat, 0);
1047}
1048
1049/** @brief Canonically compose @p [s,s+ns)
1050 * @param s Pointer to string
1051 * @param ns Length of string
1052 * @param ndp Where to store length of result
1053 * @return Pointer to result string, or NULL on error
1054 *
1055 * Computes NFC (Normalization Form C) of the string at @p s. This implies
1056 * performing all canonical decompositions, normalizing the order of combining
1057 * characters and then composing all unblocked primary compositables.
1058 *
1059 * Returns NULL if the string is not valid for either of the following reasons:
1060 * - it codes for a UTF-16 surrogate
1061 * - it codes for a value outside the unicode code space
1062 *
1063 * See also:
1064 * - utf32_compose_compat()
1065 * - utf32_decompose_canon()
1066 */
1067uint32_t *utf32_compose_canon(const uint32_t *s, size_t ns, size_t *ndp) {
1068 utf32__decompose_generic(canon, 1);
1069}
1070
1071/** @brief Compatibility compose @p [s,s+ns)
1072 * @param s Pointer to string
1073 * @param ns Length of string
1074 * @param ndp Where to store length of result
1075 * @return Pointer to result string, or NULL on error
1076 *
1077 * Computes NFKC (Normalization Form KC) of the string at @p s. This implies
1078 * performing all canonical and compatibility decompositions, normalizing the
1079 * order of combining characters and then composing all unblocked primary
1080 * compositables.
1081 *
1082 * Returns NULL if the string is not valid for either of the following reasons:
1083 * - it codes for a UTF-16 surrogate
1084 * - it codes for a value outside the unicode code space
1085 *
1086 * See also:
1087 * - utf32_compose_canon()
1088 * - utf32_decompose_compat()
1089 */
1090uint32_t *utf32_compose_compat(const uint32_t *s, size_t ns, size_t *ndp) {
1091 utf32__decompose_generic(compat, 1);
e5a5a138
RK
1092}
1093
56fd389c
RK
1094/** @brief Single-character case-fold and decompose operation */
1095#define utf32__casefold_one(WHICH) do { \
bcf9ed7f 1096 const uint32_t *cf = utf32__unidata(c)->casefold; \
56fd389c
RK
1097 if(cf) { \
1098 /* Found a case-fold mapping in the table */ \
1099 while(*cf) \
1100 utf32__decompose_one_##WHICH(&d, *cf++); \
1101 } else \
1102 utf32__decompose_one_##WHICH(&d, c); \
1103} while(0)
e5a5a138
RK
1104
1105/** @brief Case-fold @p [s,s+ns)
1106 * @param s Pointer to string
1107 * @param ns Length of string
1108 * @param ndp Where to store length of result
f98fcddb 1109 * @return Pointer to result string, or NULL on error
e5a5a138
RK
1110 *
1111 * Case-fold the string at @p s according to full default case-folding rules
56fd389c 1112 * (s3.13) for caseless matching. The result will be in NFD.
e5a5a138 1113 *
56fd389c 1114 * Returns NULL if the string is not valid for either of the following reasons:
e5a5a138
RK
1115 * - it codes for a UTF-16 surrogate
1116 * - it codes for a value outside the unicode code space
1117 */
1118uint32_t *utf32_casefold_canon(const uint32_t *s, size_t ns, size_t *ndp) {
1119 struct dynstr_ucs4 d;
1120 uint32_t c;
1121 size_t n;
1122 uint32_t *ss = 0;
1123
1124 /* If the canonical decomposition of the string includes any combining
1125 * character that case-folds to a non-combining character then we must
1126 * normalize before we fold. In Unicode 5.0.0 this means 0345 COMBINING
1127 * GREEK YPOGEGRAMMENI in its decomposition and the various characters that
1128 * canonically decompose to it. */
bcf9ed7f
RK
1129 for(n = 0; n < ns; ++n)
1130 if(utf32__unidata(s[n])->flags & unicode_normalize_before_casefold)
e5a5a138 1131 break;
e5a5a138
RK
1132 if(n < ns) {
1133 /* We need a preliminary decomposition */
1134 if(!(ss = utf32_decompose_canon(s, ns, &ns)))
1135 return 0;
1136 s = ss;
1137 }
1138 dynstr_ucs4_init(&d);
1139 while(ns) {
1140 c = *s++;
56fd389c 1141 if((c >= 0xD800 && c <= 0xDFFF) || c > 0x10FFFF)
e5a5a138 1142 goto error;
56fd389c 1143 utf32__casefold_one(canon);
e5a5a138
RK
1144 --ns;
1145 }
1146 if(utf32__canonical_ordering(d.vec, d.nvec))
1147 goto error;
1148 dynstr_ucs4_terminate(&d);
1149 if(ndp)
1150 *ndp = d.nvec;
1151 return d.vec;
1152error:
1153 xfree(d.vec);
1154 xfree(ss);
1155 return 0;
1156}
1157
f98fcddb 1158/** @brief Compatibility case-fold @p [s,s+ns)
56fd389c
RK
1159 * @param s Pointer to string
1160 * @param ns Length of string
1161 * @param ndp Where to store length of result
f98fcddb 1162 * @return Pointer to result string, or NULL on error
56fd389c
RK
1163 *
1164 * Case-fold the string at @p s according to full default case-folding rules
1165 * (s3.13) for compatibility caseless matching. The result will be in NFKD.
1166 *
1167 * Returns NULL if the string is not valid for either of the following reasons:
1168 * - it codes for a UTF-16 surrogate
1169 * - it codes for a value outside the unicode code space
1170 */
1171uint32_t *utf32_casefold_compat(const uint32_t *s, size_t ns, size_t *ndp) {
1172 struct dynstr_ucs4 d;
1173 uint32_t c;
1174 size_t n;
1175 uint32_t *ss = 0;
1176
bcf9ed7f
RK
1177 for(n = 0; n < ns; ++n)
1178 if(utf32__unidata(s[n])->flags & unicode_normalize_before_casefold)
56fd389c 1179 break;
56fd389c
RK
1180 if(n < ns) {
1181 /* We need a preliminary _canonical_ decomposition */
1182 if(!(ss = utf32_decompose_canon(s, ns, &ns)))
1183 return 0;
1184 s = ss;
1185 }
1186 /* This computes NFKD(toCaseFold(s)) */
1187#define compat_casefold_middle() do { \
1188 dynstr_ucs4_init(&d); \
1189 while(ns) { \
1190 c = *s++; \
1191 if((c >= 0xD800 && c <= 0xDFFF) || c > 0x10FFFF) \
1192 goto error; \
1193 utf32__casefold_one(compat); \
1194 --ns; \
1195 } \
1196 if(utf32__canonical_ordering(d.vec, d.nvec)) \
1197 goto error; \
1198} while(0)
1199 /* Do the inner (NFKD o toCaseFold) */
1200 compat_casefold_middle();
1201 /* We can do away with the NFD'd copy of the input now */
1202 xfree(ss);
1203 s = ss = d.vec;
1204 ns = d.nvec;
1205 /* Do the outer (NFKD o toCaseFold) */
1206 compat_casefold_middle();
1207 /* That's all */
1208 dynstr_ucs4_terminate(&d);
1209 if(ndp)
1210 *ndp = d.nvec;
1211 return d.vec;
1212error:
1213 xfree(d.vec);
1214 xfree(ss);
1215 return 0;
1216}
1217
e5a5a138
RK
1218/** @brief Order a pair of UTF-32 strings
1219 * @param a First 0-terminated string
1220 * @param b Second 0-terminated string
1221 * @return -1, 0 or 1 for a less than, equal to or greater than b
1222 *
1223 * "Comparable to strcmp() at its best."
1224 */
1225int utf32_cmp(const uint32_t *a, const uint32_t *b) {
1226 while(*a && *b && *a == *b) {
1227 ++a;
1228 ++b;
1229 }
1230 return *a < *b ? -1 : (*a > *b ? 1 : 0);
1231}
1232
35b651f0
RK
1233/** @brief Identify a grapheme cluster boundary
1234 * @param s Start of string (must be NFD)
1235 * @param ns Length of string
1236 * @param n Index within string (in [0,ns].)
1237 * @return 1 at a grapheme cluster boundary, 0 otherwise
1238 *
1239 * This function identifies default grapheme cluster boundaries as described in
f98fcddb 1240 * UAX #29 s3. It returns non-0 if @p n points at the code point just after a
35b651f0
RK
1241 * grapheme cluster boundary (including the hypothetical code point just after
1242 * the end of the string).
f98fcddb
RK
1243 *
1244 * This function uses utf32_iterator_set() internally; see that function for
1245 * remarks on performance.
35b651f0 1246 */
1625e11a 1247int utf32_is_grapheme_boundary(const uint32_t *s, size_t ns, size_t n) {
092f426f 1248 struct utf32_iterator_data it[1];
35b651f0 1249
092f426f
RK
1250 utf32__iterator_init(it, s, ns, n);
1251 return utf32_iterator_grapheme_boundary(it);
0b7052da
RK
1252}
1253
1254/** @brief Identify a word boundary
1255 * @param s Start of string (must be NFD)
1256 * @param ns Length of string
1257 * @param n Index within string (in [0,ns].)
1258 * @return 1 at a word boundary, 0 otherwise
1259 *
1260 * This function identifies default word boundaries as described in UAX #29 s4.
f98fcddb 1261 * It returns non-0 if @p n points at the code point just after a word boundary
0b7052da 1262 * (including the hypothetical code point just after the end of the string).
f98fcddb
RK
1263 *
1264 * This function uses utf32_iterator_set() internally; see that function for
1265 * remarks on performance.
0b7052da
RK
1266 */
1267int utf32_is_word_boundary(const uint32_t *s, size_t ns, size_t n) {
092f426f 1268 struct utf32_iterator_data it[1];
0b7052da 1269
092f426f
RK
1270 utf32__iterator_init(it, s, ns, n);
1271 return utf32_iterator_word_boundary(it);
0b7052da
RK
1272}
1273
8818b7fc
RK
1274/** @brief Split [s,ns) into multiple words
1275 * @param s Pointer to start of string
1276 * @param ns Length of string
1277 * @param nwp Where to store word count, or NULL
1278 * @return Pointer to array of pointers to words
1279 *
1280 * The returned array is terminated by a NULL pointer and individual
1281 * strings are 0-terminated.
1282 */
1283uint32_t **utf32_word_split(const uint32_t *s, size_t ns, size_t *nwp) {
1284 struct utf32_iterator_data it[1];
1285 size_t b1 = 0, b2 = 0 ,i;
1286 int isword;
1287 struct vector32 v32[1];
1288 uint32_t *w;
1289
1290 vector32_init(v32);
1291 utf32__iterator_init(it, s, ns, 0);
1292 /* Work our way through the string stopping at each word break. */
1293 do {
1294 if(utf32_iterator_word_boundary(it)) {
1295 /* We've found a new boundary */
1296 b1 = b2;
1297 b2 = it->n;
1298 /*fprintf(stderr, "[%zu, %zu) is a candidate word\n", b1, b2);*/
1299 /* Inspect the characters between the boundary and form an opinion as to
1300 * whether they are a word or not */
1301 isword = 0;
1302 for(i = b1; i < b2; ++i) {
1303 switch(utf32__word_break(it->s[i])) {
1304 case unicode_Word_Break_ALetter:
1305 case unicode_Word_Break_Numeric:
1306 case unicode_Word_Break_Katakana:
1307 isword = 1;
1308 break;
1309 default:
1310 break;
1311 }
1312 }
1313 /* If it's a word add it to the list of results */
1314 if(isword) {
1315 w = xcalloc(b2 - b1 + 1, sizeof(uint32_t));
1316 memcpy(w, it->s + b1, (b2 - b1) * sizeof (uint32_t));
1317 vector32_append(v32, w);
1318 }
1319 }
1320 } while(!utf32_iterator_advance(it, 1));
1321 vector32_terminate(v32);
1322 if(nwp)
1323 *nwp = v32->nvec;
1324 return v32->vec;
1325}
1326
e5a5a138 1327/*@}*/
349b7b74 1328/** @defgroup utf8 Functions that operate on UTF-8 strings */
e5a5a138
RK
1329/*@{*/
1330
1331/** @brief Wrapper to transform a UTF-8 string using the UTF-32 function */
1332#define utf8__transform(FN) do { \
1333 uint32_t *to32 = 0, *decomp32 = 0; \
1334 size_t nto32, ndecomp32; \
1335 char *decomp8 = 0; \
1336 \
1337 if(!(to32 = utf8_to_utf32(s, ns, &nto32))) goto error; \
1338 if(!(decomp32 = FN(to32, nto32, &ndecomp32))) goto error; \
1339 decomp8 = utf32_to_utf8(decomp32, ndecomp32, ndp); \
1340error: \
1341 xfree(to32); \
1342 xfree(decomp32); \
1343 return decomp8; \
1344} while(0)
1345
1346/** @brief Canonically decompose @p [s,s+ns)
1347 * @param s Pointer to string
1348 * @param ns Length of string
1349 * @param ndp Where to store length of result
f98fcddb 1350 * @return Pointer to result string, or NULL on error
e5a5a138 1351 *
0ae60b83
RK
1352 * Computes NFD (Normalization Form D) of the string at @p s. This implies
1353 * performing all canonical decompositions and then normalizing the order of
1354 * combining characters.
e5a5a138
RK
1355 *
1356 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
1357 * this might be.
1358 *
0ae60b83
RK
1359 * See also:
1360 * - utf32_decompose_canon().
1361 * - utf8_decompose_compat()
1362 * - utf8_compose_canon()
e5a5a138
RK
1363 */
1364char *utf8_decompose_canon(const char *s, size_t ns, size_t *ndp) {
1365 utf8__transform(utf32_decompose_canon);
1366}
1367
1368/** @brief Compatibility decompose @p [s,s+ns)
1369 * @param s Pointer to string
1370 * @param ns Length of string
1371 * @param ndp Where to store length of result
f98fcddb 1372 * @return Pointer to result string, or NULL on error
e5a5a138 1373 *
0ae60b83
RK
1374 * Computes NFKD (Normalization Form KD) of the string at @p s. This implies
1375 * performing all canonical and compatibility decompositions and then
1376 * normalizing the order of combining characters.
e5a5a138
RK
1377 *
1378 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
1379 * this might be.
1380 *
0ae60b83
RK
1381 * See also:
1382 * - utf32_decompose_compat().
1383 * - utf8_decompose_canon()
1384 * - utf8_compose_compat()
e5a5a138
RK
1385 */
1386char *utf8_decompose_compat(const char *s, size_t ns, size_t *ndp) {
1387 utf8__transform(utf32_decompose_compat);
1388}
1389
0ae60b83
RK
1390/** @brief Canonically compose @p [s,s+ns)
1391 * @param s Pointer to string
1392 * @param ns Length of string
1393 * @param ndp Where to store length of result
1394 * @return Pointer to result string, or NULL on error
1395 *
1396 * Computes NFC (Normalization Form C) of the string at @p s. This implies
1397 * performing all canonical decompositions, normalizing the order of combining
1398 * characters and then composing all unblocked primary compositables.
1399 *
1400 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
1401 * this might be.
1402 *
1403 * See also:
1404 * - utf32_compose_canon()
1405 * - utf8_compose_compat()
1406 * - utf8_decompose_canon()
1407 */
1408char *utf8_compose_canon(const char *s, size_t ns, size_t *ndp) {
1409 utf8__transform(utf32_compose_canon);
1410}
1411
1412/** @brief Compatibility compose @p [s,s+ns)
1413 * @param s Pointer to string
1414 * @param ns Length of string
1415 * @param ndp Where to store length of result
1416 * @return Pointer to result string, or NULL on error
1417 *
1418 * Computes NFKC (Normalization Form KC) of the string at @p s. This implies
1419 * performing all canonical and compatibility decompositions, normalizing the
1420 * order of combining characters and then composing all unblocked primary
1421 * compositables.
1422 *
1423 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
1424 * this might be.
1425 *
1426 * See also:
1427 * - utf32_compose_compat()
1428 * - utf8_compose_canon()
1429 * - utf8_decompose_compat()
1430 */
1431char *utf8_compose_compat(const char *s, size_t ns, size_t *ndp) {
1432 utf8__transform(utf32_compose_compat);
1433}
1434
e5a5a138
RK
1435/** @brief Case-fold @p [s,s+ns)
1436 * @param s Pointer to string
1437 * @param ns Length of string
1438 * @param ndp Where to store length of result
f98fcddb 1439 * @return Pointer to result string, or NULL on error
e5a5a138
RK
1440 *
1441 * Case-fold the string at @p s according to full default case-folding rules
1442 * (s3.13). The result will be in NFD.
1443 *
1444 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
1445 * this might be.
1446 */
1447char *utf8_casefold_canon(const char *s, size_t ns, size_t *ndp) {
1448 utf8__transform(utf32_casefold_canon);
1449}
1450
1451/** @brief Compatibility case-fold @p [s,s+ns)
1452 * @param s Pointer to string
1453 * @param ns Length of string
1454 * @param ndp Where to store length of result
f98fcddb 1455 * @return Pointer to result string, or NULL on error
e5a5a138
RK
1456 *
1457 * Case-fold the string at @p s according to full default case-folding rules
1458 * (s3.13). The result will be in NFKD.
1459 *
1460 * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
1461 * this might be.
1462 */
e5a5a138
RK
1463char *utf8_casefold_compat(const char *s, size_t ns, size_t *ndp) {
1464 utf8__transform(utf32_casefold_compat);
1465}
e5a5a138 1466
8818b7fc
RK
1467/** @brief Split [s,ns) into multiple words
1468 * @param s Pointer to start of string
1469 * @param ns Length of string
1470 * @param nwp Where to store word count, or NULL
1471 * @return Pointer to array of pointers to words
1472 *
1473 * The returned array is terminated by a NULL pointer and individual
1474 * strings are 0-terminated.
1475 */
1476char **utf8_word_split(const char *s, size_t ns, size_t *nwp) {
1477 uint32_t *to32 = 0, **v32 = 0;
1478 size_t nto32, nv, n;
1479 char **v8 = 0, **ret = 0;
1480
1481 if(!(to32 = utf8_to_utf32(s, ns, &nto32))) goto error;
1482 if(!(v32 = utf32_word_split(to32, nto32, &nv))) goto error;
1483 v8 = xcalloc(sizeof (char *), nv + 1);
1484 for(n = 0; n < nv; ++n)
1485 if(!(v8[n] = utf32_to_utf8(v32[n], utf32_len(v32[n]), 0)))
1486 goto error;
1487 ret = v8;
1488 *nwp = nv;
1489 v8 = 0; /* don't free */
1490error:
1491 if(v8) {
1492 for(n = 0; n < nv; ++n)
1493 xfree(v8[n]);
1494 xfree(v8);
1495 }
1496 if(v32) {
1497 for(n = 0; n < nv; ++n)
1498 xfree(v32[n]);
1499 xfree(v32);
1500 }
1501 xfree(to32);
1502 return ret;
1503}
1504
1505
e5a5a138
RK
1506/*@}*/
1507
1508/*
1509Local Variables:
1510c-basic-offset:2
1511comment-column:40
1512fill-column:79
1513indent-tabs-mode:nil
1514End:
1515*/