5 # Setup for Catacomb/Python bindings
7 # (c) 2004 Straylight/Edgeware
10 #----- Licensing notice -----------------------------------------------------
12 # This file is part of the Python interface to Catacomb.
14 # Catacomb/Python is free software; you can redistribute it and/or modify
15 # it under the terms of the GNU General Public License as published by
16 # the Free Software Foundation; either version 2 of the License, or
17 # (at your option) any later version.
19 # Catacomb/Python is distributed in the hope that it will be useful,
20 # but WITHOUT ANY WARRANTY; without even the implied warranty of
21 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 # GNU General Public License for more details.
24 # You should have received a copy of the GNU General Public License
25 # along with Catacomb/Python; if not, write to the Free Software Foundation,
26 # Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
28 #----- Imports --------------------------------------------------------------
31 import types as _types
32 from binascii import hexlify as _hexify, unhexlify as _unhexify
33 from sys import argv as _argv
35 #----- Basic stuff ----------------------------------------------------------
37 ## For the benefit of the default keyreporter, we need the program na,e.
40 ## Initialize the module. Drag in the static methods of the various
41 ## classes; create names for the various known crypto algorithms.
48 for i in ['MP', 'GF', 'Field',
49 'ECPt', 'ECPtCurve', 'ECCurve', 'ECInfo',
50 'DHInfo', 'BinDHInfo', 'RSAPriv', 'BBSPriv',
51 'PrimeFilter', 'RabinMiller',
59 setattr(c, j[plen:], classmethod(b[j]))
60 for i in [gcciphers, gchashes, gcmacs, gcprps]:
61 for c in i.itervalues():
62 d[c.name.replace('-', '_')] = c
63 for c in gccrands.itervalues():
64 d[c.name.replace('-', '_') + 'rand'] = c
67 ## A handy function for our work: add the methods of a named class to an
68 ## existing class. This is how we write the Python-implemented parts of our
73 if type(a) is _types.MethodType:
75 elif type(a) not in (_types.FunctionType, staticmethod, classmethod):
79 ## Parsing functions tend to return the object parsed and the remainder of
80 ## the input. This checks that the remainder is input and, if so, returns
85 raise SyntaxError, 'junk at end of string'
88 #----- Bytestrings ----------------------------------------------------------
92 return ByteString(_unhexify(x))
93 fromhex = staticmethod(fromhex)
97 return 'bytes(%r)' % hex(me)
98 _augment(ByteString, _tmp)
99 bytes = ByteString.fromhex
101 #----- Multiprecision integers and binary polynomials -----------------------
104 def negp(x): return x < 0
105 def posp(x): return x > 0
106 def zerop(x): return x == 0
107 def oddp(x): return x.testbit(0)
108 def evenp(x): return not x.testbit(0)
109 def mont(x): return MPMont(x)
110 def barrett(x): return MPBarrett(x)
111 def reduce(x): return MPReduce(x)
114 if x < 0: raise ValueError, 'factorial argument must be > 0'
115 return MPMul.product(xrange(1, x + 1))
116 factorial = staticmethod(factorial)
120 def reduce(x): return GFReduce(x)
125 'product(ITERABLE) or product(I, ...) -> PRODUCT'
126 return MPMul(*arg).done()
127 product = staticmethod(product)
128 _augment(MPMul, _tmp)
130 #----- Abstract fields ------------------------------------------------------
133 def fromstring(str): return _checkend(Field.parse(str))
134 fromstring = staticmethod(fromstring)
135 _augment(Field, _tmp)
138 def __repr__(me): return '%s(%sL)' % (type(me).__name__, me.p)
139 def ec(me, a, b): return ECPrimeProjCurve(me, a, b)
140 _augment(PrimeField, _tmp)
143 def __repr__(me): return '%s(%sL)' % (type(me).__name__, hex(me.p))
144 def ec(me, a, b): return ECBinProjCurve(me, a, b)
145 _augment(BinField, _tmp)
148 def __str__(me): return str(me.value)
149 def __repr__(me): return '%s(%s)' % (repr(me.field), repr(me.value))
152 #----- Elliptic curves ------------------------------------------------------
156 return '%s(%r, %s, %s)' % (type(me).__name__, me.field, me.a, me.b)
158 return ecpt.frombuf(me, s)
160 return ecpt.fromraw(me, s)
162 return ECPt(me, *args)
163 _augment(ECCurve, _tmp)
167 if not me: return 'ECPt()'
168 return 'ECPt(%s, %s)' % (me.ix, me.iy)
170 if not me: return 'inf'
171 return '(%s, %s)' % (me.ix, me.iy)
176 return 'ECInfo(curve = %r, G = %r, r = %s, h = %s)' % \
177 (me.curve, me.G, me.r, me.h)
180 _augment(ECInfo, _tmp)
184 if not me: return '%r()' % (me.curve)
185 return '%r(%s, %s)' % (me.curve, me.x, me.y)
187 if not me: return 'inf'
188 return '(%s, %s)' % (me.x, me.y)
189 _augment(ECPtCurve, _tmp)
191 #----- Key sizes ------------------------------------------------------------
194 def __repr__(me): return 'KeySZAny(%d)' % me.default
195 def check(me, sz): return True
196 def best(me, sz): return sz
197 _augment(KeySZAny, _tmp)
201 return 'KeySZRange(%d, %d, %d, %d)' % \
202 (me.default, me.min, me.max, me.mod)
203 def check(me, sz): return me.min <= sz <= me.max and sz % me.mod == 0
205 if sz < me.min: raise ValueError, 'key too small'
206 elif sz > me.max: return me.max
207 else: return sz - (sz % me.mod)
208 _augment(KeySZRange, _tmp)
211 def __repr__(me): return 'KeySZSet(%d, %s)' % (me.default, me.set)
212 def check(me, sz): return sz in me.set
216 if found < i <= sz: found = i
217 if found < 0: raise ValueError, 'key too small'
219 _augment(KeySZSet, _tmp)
221 #----- Abstract groups ------------------------------------------------------
225 return '%s(p = %s, r = %s, g = %s)' % \
226 (type(me).__name__, me.p, me.r, me.g)
227 _augment(FGInfo, _tmp)
230 def group(me): return PrimeGroup(me)
231 _augment(DHInfo, _tmp)
234 def group(me): return BinGroup(me)
235 _augment(BinDHInfo, _tmp)
239 return '%s(%r)' % (type(me).__name__, me.info)
240 _augment(Group, _tmp)
244 return '%r(%r)' % (me.group, str(me))
247 #----- RSA encoding techniques ----------------------------------------------
249 class PKCS1Crypt (object):
250 def __init__(me, ep = '', rng = rand):
253 def encode(me, msg, nbits):
254 return _base._p1crypt_encode(msg, nbits, me.ep, me.rng)
255 def decode(me, ct, nbits):
256 return _base._p1crypt_decode(ct, nbits, me.ep, me.rng)
258 class PKCS1Sig (object):
259 def __init__(me, ep = '', rng = rand):
262 def encode(me, msg, nbits):
263 return _base._p1sig_encode(msg, nbits, me.ep, me.rng)
264 def decode(me, msg, sig, nbits):
265 return _base._p1sig_decode(msg, sig, nbits, me.ep, me.rng)
268 def __init__(me, mgf = sha_mgf, hash = sha, ep = '', rng = rand):
273 def encode(me, msg, nbits):
274 return _base._oaep_encode(msg, nbits, me.mgf, me.hash, me.ep, me.rng)
275 def decode(me, ct, nbits):
276 return _base._oaep_decode(ct, nbits, me.mgf, me.hash, me.ep, me.rng)
279 def __init__(me, mgf = sha_mgf, hash = sha, saltsz = None, rng = rand):
286 def encode(me, msg, nbits):
287 return _base._pss_encode(msg, nbits, me.mgf, me.hash, me.saltsz, me.rng)
288 def decode(me, msg, sig, nbits):
289 return _base._pss_decode(msg, sig, nbits,
290 me.mgf, me.hash, me.saltsz, me.rng)
293 def encrypt(me, msg, enc):
294 return me.pubop(enc.encode(msg, me.n.nbits))
295 def verify(me, msg, sig, enc):
296 if msg is None: return enc.decode(msg, me.pubop(sig), me.n.nbits)
298 x = enc.decode(msg, me.pubop(sig), me.n.nbits)
299 return x is None or x == msg
302 _augment(RSAPub, _tmp)
305 def decrypt(me, ct, enc): return enc.decode(me.privop(ct), me.n.nbits)
306 def sign(me, msg, enc): return me.privop(enc.encode(msg, me.n.nbits))
307 _augment(RSAPriv, _tmp)
309 #----- Built-in named curves and prime groups -------------------------------
311 class _groupmap (object):
312 def __init__(me, map, nth):
315 me.i = [None] * (max(map.values()) + 1)
317 return '{%s}' % ', '.join(['%r: %r' % (k, me[k]) for k in me])
318 def __contains__(me, k):
320 def __getitem__(me, k):
325 def __setitem__(me, k, v):
326 raise TypeError, "immutable object"
330 return [k for k in me]
332 return [me[k] for k in me]
333 eccurves = _groupmap(_base._eccurves, ECInfo._curven)
334 primegroups = _groupmap(_base._pgroups, DHInfo._groupn)
335 bingroups = _groupmap(_base._bingroups, BinDHInfo._groupn)
337 #----- Prime number generation ----------------------------------------------
339 class PrimeGenEventHandler (object):
340 def pg_begin(me, ev):
344 def pg_abort(me, ev):
351 class SophieGermainStepJump (object):
352 def pg_begin(me, ev):
353 me.lf = PrimeFilter(ev.x)
354 me.hf = me.lf.muladd(2, 1)
360 while me.lf.status == PGEN_FAIL or me.hf.status == PGEN_FAIL:
362 if me.lf.status == PGEN_ABORT or me.hf.status == PGEN_ABORT:
365 if me.lf.status == PGEN_DONE and me.hf.status == PGEN_DONE:
372 class SophieGermainStepper (SophieGermainStepJump):
373 def __init__(me, step):
380 class SophieGermainJumper (SophieGermainStepJump):
381 def __init__(me, jump):
382 me.ljump = PrimeFilter(jump);
383 me.hjump = me.ljump.muladd(2, 0)
390 SophieGermainStepJump.pg_done(me, ev)
392 class SophieGermainTester (object):
395 def pg_begin(me, ev):
396 me.lr = RabinMiller(ev.x)
397 me.hr = RabinMiller(2 * ev.x + 1)
399 lst = me.lr.test(ev.rng.range(me.lr.x))
400 if lst != PGEN_PASS and lst != PGEN_DONE:
402 rst = me.hr.test(ev.rng.range(me.hr.x))
403 if rst != PGEN_PASS and rst != PGEN_DONE:
405 if lst == PGEN_DONE and rst == PGEN_DONE:
412 class PrimitiveStepper (PrimeGenEventHandler):
418 def pg_begin(me, ev):
419 me.i = iter(smallprimes)
422 class PrimitiveTester (PrimeGenEventHandler):
423 def __init__(me, mod, hh = [], exp = None):
429 if me.exp is not None:
430 x = me.mod.exp(x, me.exp)
431 if x == 1: return PGEN_FAIL
433 if me.mod.exp(x, h) == 1: return PGEN_FAIL
437 class SimulStepper (PrimeGenEventHandler):
438 def __init__(me, mul = 2, add = 1, step = 2):
442 def _stepfn(me, step):
444 raise ValueError, 'step must be positive'
446 return lambda f: f.step(step)
447 j = PrimeFilter(step)
448 return lambda f: f.jump(j)
449 def pg_begin(me, ev):
451 me.lf = PrimeFilter(x)
452 me.hf = PrimeFilter(x * me.mul + me.add)
453 me.lstep = me._stepfn(me.step)
454 me.hstep = me._stepfn(me.step * me.mul)
455 SimulStepper._cont(me, ev)
463 while me.lf.status == PGEN_FAIL or me.hf.status == PGEN_FAIL:
465 if me.lf.status == PGEN_ABORT or me.hf.status == PGEN_ABORT:
468 if me.lf.status == PGEN_DONE and me.hf.status == PGEN_DONE:
477 class SimulTester (PrimeGenEventHandler):
478 def __init__(me, mul = 2, add = 1):
481 def pg_begin(me, ev):
483 me.lr = RabinMiller(x)
484 me.hr = RabinMiller(x * me.mul + me.add)
486 lst = me.lr.test(ev.rng.range(me.lr.x))
487 if lst != PGEN_PASS and lst != PGEN_DONE:
489 rst = me.hr.test(ev.rng.range(me.hr.x))
490 if rst != PGEN_PASS and rst != PGEN_DONE:
492 if lst == PGEN_DONE and rst == PGEN_DONE:
499 def sgprime(start, step = 2, name = 'p', event = pgen_nullev, nsteps = 0):
501 return pgen(start, name, SimulStepper(step = step), SimulTester(), event,
502 nsteps, RabinMiller.iters(start.nbits))
504 def findprimitive(mod, hh = [], exp = None, name = 'g', event = pgen_nullev):
505 return pgen(0, name, PrimitiveStepper(), PrimitiveTester(mod, hh, exp),
508 def kcdsaprime(pbits, qbits, rng = rand,
509 event = pgen_nullev, name = 'p', nsteps = 0):
510 hbits = pbits - qbits
511 h = pgen(rng.mp(hbits, 1), name + ' [h]',
512 PrimeGenStepper(2), PrimeGenTester(),
513 event, nsteps, RabinMiller.iters(hbits))
514 q = pgen(rng.mp(qbits, 1), name, SimulStepper(2 * h, 1, 2),
515 SimulTester(2 * h, 1), event, nsteps, RabinMiller.iters(qbits))
519 #----- That's all, folks ----------------------------------------------------