X-Git-Url: https://www.chiark.greenend.org.uk/ucgi/~ianmdlvl/git?p=elogind.git;a=blobdiff_plain;f=src%2Fjournal%2Ffsprg.c;fp=src%2Fjournal%2Ffsprg.c;h=0000000000000000000000000000000000000000;hp=a9f564c249f1940ba19e812766cbd522a80c5ad2;hb=4d6a9d42289f0616c7e37a6d2d7e085d5c71870e;hpb=d2d9ac67812e2f8c8b82a0f3428aa576b4d58a71 diff --git a/src/journal/fsprg.c b/src/journal/fsprg.c deleted file mode 100644 index a9f564c24..000000000 --- a/src/journal/fsprg.c +++ /dev/null @@ -1,389 +0,0 @@ -/*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/ - -/* - * fsprg v0.1 - (seekable) forward-secure pseudorandom generator - * Copyright (C) 2012 B. Poettering - * Contact: fsprg@point-at-infinity.org - * - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with this library; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA - * 02110-1301 USA - */ - -/* - * See "Practical Secure Logging: Seekable Sequential Key Generators" - * by G. A. Marson, B. Poettering for details: - * - * http://eprint.iacr.org/2013/397 - */ - -#include -#include - -#include "fsprg.h" - -#define ISVALID_SECPAR(secpar) (((secpar) % 16 == 0) && ((secpar) >= 16) && ((secpar) <= 16384)) -#define VALIDATE_SECPAR(secpar) assert(ISVALID_SECPAR(secpar)); - -#define RND_HASH GCRY_MD_SHA256 -#define RND_GEN_P 0x01 -#define RND_GEN_Q 0x02 -#define RND_GEN_X 0x03 - -/******************************************************************************/ - -static void mpi_export(void *buf, size_t buflen, const gcry_mpi_t x) { - unsigned len; - size_t nwritten; - - assert(gcry_mpi_cmp_ui(x, 0) >= 0); - len = (gcry_mpi_get_nbits(x) + 7) / 8; - assert(len <= buflen); - memzero(buf, buflen); - gcry_mpi_print(GCRYMPI_FMT_USG, buf + (buflen - len), len, &nwritten, x); - assert(nwritten == len); -} - -static gcry_mpi_t mpi_import(const void *buf, size_t buflen) { - gcry_mpi_t h; - unsigned len; - - gcry_mpi_scan(&h, GCRYMPI_FMT_USG, buf, buflen, NULL); - len = (gcry_mpi_get_nbits(h) + 7) / 8; - assert(len <= buflen); - assert(gcry_mpi_cmp_ui(h, 0) >= 0); - - return h; -} - -static void uint64_export(void *buf, size_t buflen, uint64_t x) { - assert(buflen == 8); - ((uint8_t*) buf)[0] = (x >> 56) & 0xff; - ((uint8_t*) buf)[1] = (x >> 48) & 0xff; - ((uint8_t*) buf)[2] = (x >> 40) & 0xff; - ((uint8_t*) buf)[3] = (x >> 32) & 0xff; - ((uint8_t*) buf)[4] = (x >> 24) & 0xff; - ((uint8_t*) buf)[5] = (x >> 16) & 0xff; - ((uint8_t*) buf)[6] = (x >> 8) & 0xff; - ((uint8_t*) buf)[7] = (x >> 0) & 0xff; -} - -_pure_ static uint64_t uint64_import(const void *buf, size_t buflen) { - assert(buflen == 8); - return - (uint64_t)(((uint8_t*) buf)[0]) << 56 | - (uint64_t)(((uint8_t*) buf)[1]) << 48 | - (uint64_t)(((uint8_t*) buf)[2]) << 40 | - (uint64_t)(((uint8_t*) buf)[3]) << 32 | - (uint64_t)(((uint8_t*) buf)[4]) << 24 | - (uint64_t)(((uint8_t*) buf)[5]) << 16 | - (uint64_t)(((uint8_t*) buf)[6]) << 8 | - (uint64_t)(((uint8_t*) buf)[7]) << 0; -} - -/* deterministically generate from seed/idx a string of buflen pseudorandom bytes */ -static void det_randomize(void *buf, size_t buflen, const void *seed, size_t seedlen, uint32_t idx) { - gcry_md_hd_t hd, hd2; - size_t olen, cpylen; - uint32_t ctr; - - olen = gcry_md_get_algo_dlen(RND_HASH); - gcry_md_open(&hd, RND_HASH, 0); - gcry_md_write(hd, seed, seedlen); - gcry_md_putc(hd, (idx >> 24) & 0xff); - gcry_md_putc(hd, (idx >> 16) & 0xff); - gcry_md_putc(hd, (idx >> 8) & 0xff); - gcry_md_putc(hd, (idx >> 0) & 0xff); - - for (ctr = 0; buflen; ctr++) { - gcry_md_copy(&hd2, hd); - gcry_md_putc(hd2, (ctr >> 24) & 0xff); - gcry_md_putc(hd2, (ctr >> 16) & 0xff); - gcry_md_putc(hd2, (ctr >> 8) & 0xff); - gcry_md_putc(hd2, (ctr >> 0) & 0xff); - gcry_md_final(hd2); - cpylen = (buflen < olen) ? buflen : olen; - memcpy(buf, gcry_md_read(hd2, RND_HASH), cpylen); - gcry_md_close(hd2); - buf += cpylen; - buflen -= cpylen; - } - gcry_md_close(hd); -} - -/* deterministically generate from seed/idx a prime of length `bits' that is 3 (mod 4) */ -static gcry_mpi_t genprime3mod4(int bits, const void *seed, size_t seedlen, uint32_t idx) { - size_t buflen = bits / 8; - uint8_t buf[buflen]; - gcry_mpi_t p; - - assert(bits % 8 == 0); - assert(buflen > 0); - - det_randomize(buf, buflen, seed, seedlen, idx); - buf[0] |= 0xc0; /* set upper two bits, so that n=pq has maximum size */ - buf[buflen - 1] |= 0x03; /* set lower two bits, to have result 3 (mod 4) */ - - p = mpi_import(buf, buflen); - while (gcry_prime_check(p, 0)) - gcry_mpi_add_ui(p, p, 4); - - return p; -} - -/* deterministically generate from seed/idx a quadratic residue (mod n) */ -static gcry_mpi_t gensquare(const gcry_mpi_t n, const void *seed, size_t seedlen, uint32_t idx, unsigned secpar) { - size_t buflen = secpar / 8; - uint8_t buf[buflen]; - gcry_mpi_t x; - - det_randomize(buf, buflen, seed, seedlen, idx); - buf[0] &= 0x7f; /* clear upper bit, so that we have x < n */ - x = mpi_import(buf, buflen); - assert(gcry_mpi_cmp(x, n) < 0); - gcry_mpi_mulm(x, x, x, n); - return x; -} - -/* compute 2^m (mod phi(p)), for a prime p */ -static gcry_mpi_t twopowmodphi(uint64_t m, const gcry_mpi_t p) { - gcry_mpi_t phi, r; - int n; - - phi = gcry_mpi_new(0); - gcry_mpi_sub_ui(phi, p, 1); - - /* count number of used bits in m */ - for (n = 0; (1ULL << n) <= m; n++) - ; - - r = gcry_mpi_new(0); - gcry_mpi_set_ui(r, 1); - while (n) { /* square and multiply algorithm for fast exponentiation */ - n--; - gcry_mpi_mulm(r, r, r, phi); - if (m & ((uint64_t)1 << n)) { - gcry_mpi_add(r, r, r); - if (gcry_mpi_cmp(r, phi) >= 0) - gcry_mpi_sub(r, r, phi); - } - } - - gcry_mpi_release(phi); - return r; -} - -/* Decompose $x \in Z_n$ into $(xp,xq) \in Z_p \times Z_q$ using Chinese Remainder Theorem */ -static void CRT_decompose(gcry_mpi_t *xp, gcry_mpi_t *xq, const gcry_mpi_t x, const gcry_mpi_t p, const gcry_mpi_t q) { - *xp = gcry_mpi_new(0); - *xq = gcry_mpi_new(0); - gcry_mpi_mod(*xp, x, p); - gcry_mpi_mod(*xq, x, q); -} - -/* Compose $(xp,xq) \in Z_p \times Z_q$ into $x \in Z_n$ using Chinese Remainder Theorem */ -static void CRT_compose(gcry_mpi_t *x, const gcry_mpi_t xp, const gcry_mpi_t xq, const gcry_mpi_t p, const gcry_mpi_t q) { - gcry_mpi_t a, u; - - a = gcry_mpi_new(0); - u = gcry_mpi_new(0); - *x = gcry_mpi_new(0); - gcry_mpi_subm(a, xq, xp, q); - gcry_mpi_invm(u, p, q); - gcry_mpi_mulm(a, a, u, q); /* a = (xq - xp) / p (mod q) */ - gcry_mpi_mul(*x, p, a); - gcry_mpi_add(*x, *x, xp); /* x = p * ((xq - xp) / p mod q) + xp */ - gcry_mpi_release(a); - gcry_mpi_release(u); -} - -static void initialize_libgcrypt(void) { - const char *p; - if (gcry_control(GCRYCTL_INITIALIZATION_FINISHED_P)) - return; - - p = gcry_check_version("1.4.5"); - assert(p); - - /* Turn off "secmem". Clients which whish to make use of this - * feature should initialize the library manually */ - gcry_control(GCRYCTL_DISABLE_SECMEM); - gcry_control(GCRYCTL_INITIALIZATION_FINISHED, 0); -} - -/******************************************************************************/ - -size_t FSPRG_mskinbytes(unsigned _secpar) { - VALIDATE_SECPAR(_secpar); - return 2 + 2 * (_secpar / 2) / 8; /* to store header,p,q */ -} - -size_t FSPRG_mpkinbytes(unsigned _secpar) { - VALIDATE_SECPAR(_secpar); - return 2 + _secpar / 8; /* to store header,n */ -} - -size_t FSPRG_stateinbytes(unsigned _secpar) { - VALIDATE_SECPAR(_secpar); - return 2 + 2 * _secpar / 8 + 8; /* to store header,n,x,epoch */ -} - -static void store_secpar(void *buf, uint16_t secpar) { - secpar = secpar / 16 - 1; - ((uint8_t*) buf)[0] = (secpar >> 8) & 0xff; - ((uint8_t*) buf)[1] = (secpar >> 0) & 0xff; -} - -static uint16_t read_secpar(const void *buf) { - uint16_t secpar; - secpar = - (uint16_t)(((uint8_t*) buf)[0]) << 8 | - (uint16_t)(((uint8_t*) buf)[1]) << 0; - return 16 * (secpar + 1); -} - -void FSPRG_GenMK(void *msk, void *mpk, const void *seed, size_t seedlen, unsigned _secpar) { - uint8_t iseed[FSPRG_RECOMMENDED_SEEDLEN]; - gcry_mpi_t n, p, q; - uint16_t secpar; - - VALIDATE_SECPAR(_secpar); - secpar = _secpar; - - initialize_libgcrypt(); - - if (!seed) { - gcry_randomize(iseed, FSPRG_RECOMMENDED_SEEDLEN, GCRY_STRONG_RANDOM); - seed = iseed; - seedlen = FSPRG_RECOMMENDED_SEEDLEN; - } - - p = genprime3mod4(secpar / 2, seed, seedlen, RND_GEN_P); - q = genprime3mod4(secpar / 2, seed, seedlen, RND_GEN_Q); - - if (msk) { - store_secpar(msk + 0, secpar); - mpi_export(msk + 2 + 0 * (secpar / 2) / 8, (secpar / 2) / 8, p); - mpi_export(msk + 2 + 1 * (secpar / 2) / 8, (secpar / 2) / 8, q); - } - - if (mpk) { - n = gcry_mpi_new(0); - gcry_mpi_mul(n, p, q); - assert(gcry_mpi_get_nbits(n) == secpar); - - store_secpar(mpk + 0, secpar); - mpi_export(mpk + 2, secpar / 8, n); - - gcry_mpi_release(n); - } - - gcry_mpi_release(p); - gcry_mpi_release(q); -} - -void FSPRG_GenState0(void *state, const void *mpk, const void *seed, size_t seedlen) { - gcry_mpi_t n, x; - uint16_t secpar; - - initialize_libgcrypt(); - - secpar = read_secpar(mpk + 0); - n = mpi_import(mpk + 2, secpar / 8); - x = gensquare(n, seed, seedlen, RND_GEN_X, secpar); - - memcpy(state, mpk, 2 + secpar / 8); - mpi_export(state + 2 + 1 * secpar / 8, secpar / 8, x); - memzero(state + 2 + 2 * secpar / 8, 8); - - gcry_mpi_release(n); - gcry_mpi_release(x); -} - -void FSPRG_Evolve(void *state) { - gcry_mpi_t n, x; - uint16_t secpar; - uint64_t epoch; - - initialize_libgcrypt(); - - secpar = read_secpar(state + 0); - n = mpi_import(state + 2 + 0 * secpar / 8, secpar / 8); - x = mpi_import(state + 2 + 1 * secpar / 8, secpar / 8); - epoch = uint64_import(state + 2 + 2 * secpar / 8, 8); - - gcry_mpi_mulm(x, x, x, n); - epoch++; - - mpi_export(state + 2 + 1 * secpar / 8, secpar / 8, x); - uint64_export(state + 2 + 2 * secpar / 8, 8, epoch); - - gcry_mpi_release(n); - gcry_mpi_release(x); -} - -uint64_t FSPRG_GetEpoch(const void *state) { - uint16_t secpar; - secpar = read_secpar(state + 0); - return uint64_import(state + 2 + 2 * secpar / 8, 8); -} - -void FSPRG_Seek(void *state, uint64_t epoch, const void *msk, const void *seed, size_t seedlen) { - gcry_mpi_t p, q, n, x, xp, xq, kp, kq, xm; - uint16_t secpar; - - initialize_libgcrypt(); - - secpar = read_secpar(msk + 0); - p = mpi_import(msk + 2 + 0 * (secpar / 2) / 8, (secpar / 2) / 8); - q = mpi_import(msk + 2 + 1 * (secpar / 2) / 8, (secpar / 2) / 8); - - n = gcry_mpi_new(0); - gcry_mpi_mul(n, p, q); - - x = gensquare(n, seed, seedlen, RND_GEN_X, secpar); - CRT_decompose(&xp, &xq, x, p, q); /* split (mod n) into (mod p) and (mod q) using CRT */ - - kp = twopowmodphi(epoch, p); /* compute 2^epoch (mod phi(p)) */ - kq = twopowmodphi(epoch, q); /* compute 2^epoch (mod phi(q)) */ - - gcry_mpi_powm(xp, xp, kp, p); /* compute x^(2^epoch) (mod p) */ - gcry_mpi_powm(xq, xq, kq, q); /* compute x^(2^epoch) (mod q) */ - - CRT_compose(&xm, xp, xq, p, q); /* combine (mod p) and (mod q) to (mod n) using CRT */ - - store_secpar(state + 0, secpar); - mpi_export(state + 2 + 0 * secpar / 8, secpar / 8, n); - mpi_export(state + 2 + 1 * secpar / 8, secpar / 8, xm); - uint64_export(state + 2 + 2 * secpar / 8, 8, epoch); - - gcry_mpi_release(p); - gcry_mpi_release(q); - gcry_mpi_release(n); - gcry_mpi_release(x); - gcry_mpi_release(xp); - gcry_mpi_release(xq); - gcry_mpi_release(kp); - gcry_mpi_release(kq); - gcry_mpi_release(xm); -} - -void FSPRG_GetKey(const void *state, void *key, size_t keylen, uint32_t idx) { - uint16_t secpar; - - initialize_libgcrypt(); - - secpar = read_secpar(state + 0); - det_randomize(key, keylen, state + 2, 2 * secpar / 8 + 8, idx); -}