From 0ea398fd0deefa25d31fb4caa8903a930aea5cf8 Mon Sep 17 00:00:00 2001 From: Ian Jackson Date: Thu, 8 Mar 2012 15:25:27 +0000 Subject: [PATCH] wip merge complex - C = D --- article.tex | 24 ++++++++++-------------- 1 file changed, 10 insertions(+), 14 deletions(-) diff --git a/article.tex b/article.tex index b97f7bb..701422d 100644 --- a/article.tex +++ b/article.tex @@ -576,19 +576,15 @@ $C \haspatch \p \equiv M \nothaspatch \p$. \proofstarts -Merge Ends applies. - -$D \isin Y \equiv D \le Y$. $D \not\isin X$. Recall that we -are considering $D \in \py$. - -Consider $D = C$. Thus $C \in \py, L \in \py$. -But $X \not\haspatch \p$ means xxx wip -But $X \not\haspatch \p$ means $D \not\in X$, - -so we have $L = Y, R = -X$. Thus $R \not\haspatch \p$ and by Tip Self Inpatch $R \not\in -\py$. Thus by Tip Merge $R \in \pn$ and $M = \baseof{L}$. -So by Base Acyclic, $M \nothaspatch \py$. Thus we are expecting -$C \haspatch \py$. And indeed $D \isin C$ and $D \le C$. OK. +Merge Ends applies. Recall that we are considering $D \in \py$. +$D \isin Y \equiv D \le Y$. $D \not\isin X$. +We will show for each of +various cases that $D \isin C \equiv M \nothaspatch \p \land D \le C$ +(which suffices by definition of $\haspatch$ and $\nothaspatch$). + +Consider $D = C$. Thus $C \in \py, L \in \py$, and by Tip +Self Inpatch $L \haspatch \p$, so $L=Y, R=X$. By Tip Merge, +$M=\baseof{L}$. So by Base Acyclic $D \not\isin M$, i.e. +$M \nothaspatch \p$. And indeed $D \isin C$ and $D \le C$. OK. \end{document} -- 2.30.2