From: Ian Jackson Date: Mon, 5 Mar 2012 19:20:05 +0000 (+0000) Subject: No Replay for Merge Results X-Git-Tag: f0.2~152 X-Git-Url: https://www.chiark.greenend.org.uk/ucgi/~ian/git?a=commitdiff_plain;h=fe4881a01172df0a21e3951fc1f01e73f17c50cc;p=topbloke-formulae.git No Replay for Merge Results --- diff --git a/article.tex b/article.tex index f712ba6..674e593 100644 --- a/article.tex +++ b/article.tex @@ -254,6 +254,34 @@ by the LHS. And $A \le A''$. }\] XXX proof TBD. +\subsection{No Replay for Merge Results} + +If we are constructing $C$ such that $\merge{C}{L}{M}{R}$, No Replay +is preserved. {\it Proof:} + +\subsubsection{For $D=C$:} $D \isin C, D \le C$. OK. + +\subsubsection{For $D \isin L \land D \isin R$:} +$D \isin C$. And $D \isin L \implies D \le L \implies D \le C$. OK. + +\subsubsection{For $D \neq C \land D \not\isin L \land D \not\isin R$:} +$D \not\isin C$. OK. + +\subsubsection{For $D \neq C \land D \not\isin L \land D \not\isin R$:} +$D \not\isin C$. OK. + +\subsubsection{For $D \neq C \land (D \isin L \equiv D \not\isin R) + \land D \not\isin M$:} +$D \isin C$. Also $D \isin L \lor D \isin R$ so $D \le L \lor D \le +R$ so $D \le C$. OK. + +\subsubsection{For $D \neq C \land (D \isin L \equiv D \not\isin R) + \land D \isin M$:} +$D \not\isin C$. Also $D \isin L \lor D \isin R$ so $D \le L \lor D \le +R$ so $D \le C$. OK. + +$\qed$ + \section{Commit annotation} We annotate each Topbloke commit $C$ with: @@ -406,30 +434,9 @@ Merge commits $L$ and $R$ using merge base $M$ ($M < L, M < R$): \end{cases} }\] -\subsection{No Replay} - -\subsubsection{For $D=C$:} $D \isin C, D \le C$. OK. - -\subsubsection{For $D \isin L \land D \isin R$:} -$D \isin C$. And $D \isin L \implies D \le L \implies D \le C$. OK. - -\subsubsection{For $D \neq C \land D \not\isin L \land D \not\isin R$:} -$D \not\isin C$. OK. - -\subsubsection{For $D \neq C \land D \not\isin L \land D \not\isin R$:} -$D \not\isin C$. OK. - -\subsubsection{For $D \neq C \land (D \isin L \equiv D \not\isin R) - \land D \not\isin M$:} -$D \isin C$. Also $D \isin L \lor D \isin R$ so $D \le L \lor D \le -R$ so $D \le C$. OK. - -\subsubsection{For $D \neq C \land (D \isin L \equiv D \not\isin R) - \land D \isin M$:} -$D \not\isin C$. Also $D \isin L \lor D \isin R$ so $D \le L \lor D \le -R$ so $D \le C$. OK. +\subsection{Merge Results} -$\qed$ +As above. \subsection{Unique Base}