\statement{Correct Base}{
\baseof{\tipcy} = \tipcn
}
+\statement{Base Correct Contents}{
+ \tipcn \haspatch \pd
+ \equiv
+ \pc \hasdep \pd
+}
\statement{Tip Exceeds Inputs}{
\tipcy \ge \pendsof{\allsrcs}{\pcy}
}
\item
-Use $\alg{Create Base}$ with $L$ = $\pdy,\; \pq = \pc$ to generate $C$
+Use $\alg{Create Base}$ with $L$ = $\tipdy,\; \pq = \pc$ to generate $C$
and set $W \iassign C$. (Recreate Base Beginning.)
\item
WIP WHAT ABOUT PROVING ALL THE TRAVERSAL RESULTS
+\subsection{Traversal Lemmas}
+
+Firstly, some lemmas.
+
+\statement{Tip Correct Contents}{
+ \tipcy \haspatch \pd
+ \equiv
+ \pc = \pd \lor \pc \hasdep \pd
+}
+\proof{
+ WIP
+}
+
\subsection{Base Dependency Merge, Base Sibling Merge}
We do not prove that the preconditions are met. Instead, we check
\subsection{Recreate Base Beginning}
-WHAT IF $\pendsof{L}{\pqy} \neq \{\}$ ?
-FIX BY CHANGE PRECOND OF CREATE BASE
+\subsubsection{Create Acyclic}
+
+$L = \tipdy$ so
\subsection{Tip Base Merge}