\bigforall_{C,\p} C \haspatch \p \lor C \nothaspatch \p
}\]
\[\eqn{Unique Tips:}{
- \bigforall_{C,\p} C \haspatch \p \implies \pendsof{C}{\p} = \{ T \}
+ \bigforall_{C,\p} C \haspatch \p \implies \pendsof{C}{\py} = \{ T \}
}\]
\[\eqn{Foreign Inclusion:}{
\bigforall_{D \text{ s.t. } \patchof{D} = \bot} D \isin C \equiv D \leq C
\Big[
C \hasparents \{ A \}
\Big] \implies \left[
- \bigforall_{P \patchisin C} \pendsof{C}{\p} = \{ T \}
+ \bigforall_{P \patchisin C} \pendsof{C}{\py} = \{ T \}
\right]
$$
\proof{
- Trivial for $C \in \p$.
- For $C \not\in \p$, $\pancsof{C}{\p} = \pancsof{A}{\p}$,
+ Trivial for $C \in \py$.
+ For $C \not\in \py$, $\pancsof{C}{\py} = \pancsof{A}{\py}$,
so Unique Tips of $A$ suffices.
}
}\]
\[ \eqn{ Suitable Tip }{
\bigexists_T
- \pendsof{J}{\p} = \{ T \}
+ \pendsof{J}{\py} = \{ T \}
\land
- \forall_{E \in \pendsof{K}{\p}} T \ge E
+ \forall_{E \in \pendsof{K}{\py}} T \ge E
, \text{where} \{J,K\} = \{L,R\}
}\]
\[ \eqn{ Foreign Merges }{