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This started off as an experiment with recurrence relations in Excel. Con-
sider
ap = Qp—1 — Gp-3.
The a; grow quite quickly, but (because of the subtraction) in a much less
uniform way than the Fibonacci numbers grow; in particular, if you start ag = 0,
a1 = 1, as = 2, you see that agq through ags and agg through azg are all five-
figure numbers, but ag; = 295.

Recurrence relations and polynomials

It’s a standard A-level exercise to see what value z has to take on for a,, = 2™
to be a solution to a recurrence relation; x has to be a root of the associated
polynomial f,

An+3 — Qni1 +ap =0=2" —2 +1=0,
and (at least if the associated polynomial has unique roots 61, ..., 6, ), the series
07 are a basis for the solutions to the relation.

0.1 Some strange, and possibly instructive, graphs

Define
b — V |G —1n41]
n— - 1 1
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the ratio by which a,, differs from the value predicted as the geometric mean of
its neighbours, and plot it for a large number of n. You observe that the peaks
appear to be very regularly spaced; for example, b,, is noticeably higher than its
neighbours for n = 191, 374,557,740 .. a series with entries differing by 183.

With different start conditions, the position of the peaks changes, but the
spacing between consecutive peaks does not; changing the recurrence relation
changes the spacing.

We could also, knowing that the trend is to have |a,| =~ 6™ where 6 is
the root of the polynomial with largest absolute value, plot ¢, = log|a,0~"|
against n. This is somehow a cleaner definition than b, (since we’re not making
an arbitrary choice as to the number of neighbours to take), and we get (at
suitable scales) a cleaner pattern looking like the superposition of a number of
pointed arches.



Contriving to make a point small

Let ro(n) be the “impulse response sequence’ generated by ag = 1,a1 = 0, a2 = 0,
r1(n) be generated by ap = 0,a1 = 1,a2 = 0, and ry(n) likewise. Then we
certainly have

an = agro(n) + a1r1(n) + azsra(n).

For any particular n, we can easily compute r;(n); by picking an appropriate
A and reducing the lattice

1 00
01 0
0 01

we can pick ag . ..as to make a,, either equal to zero (if we took a large enough
A) or at least unusually small for a of the relevant size (if we took a very small
A). For instance, the sequence beginning 43 —41 69 has a19p = —9 while its
neighbours are in the tens of millions. The sequence beginning 19 —112 —45
has aggg in the tens of millions with neighbours in the hundreds of trillions.

If we take one of these contrived cases, we see echoes further up the sequence
at intervals, once again, of 183; so the obvious experiment is to hit a;g3. This
doesn’t cause anything interesting to happen; on the other hand, if we hit aq93,
and use large coefficients in ag . ..as to make aj93 = —1, we do see that aqq is
small in comparison to its neighbours. We also see that the arithmetic in Excel
is not capable of distinguishing 1 and 0 for numbers around ajg9s ~ 5 x 10%6.

What’s really going on?

Seeing an obvious effect, which occurs at the points of an arithmetic progression
and with an amplitude that clearly peaks somewhere and drops off in what looks
like a x~¢ curve, makes me think of resonances; we've got something which is
oscillating with a period which is very nearly an integer multiple of ﬁ.

So, let’s look more closely at the ;. The recurrence relation is only of degree
3, so we could in principle solve it by radicals; on the other hand, we’ll end up
with quantities involving the cube root of expressions involving +/—23, which
sounds like something to be avoided. We have

01 0.75488
02 —0.87744 — 0.744867
03 ~ —0.87744 + 0.744861

Q

Q

We can ignore 6; because its absolute value is less than 1. The argument of
03 is about 0.775957; magma takes half a second to compute 03 /7 to a thousand
decimal places and to write down its continued fraction

0,1,3,2,6,3,25,1,1,7,1,3550,...



whose convergents turn out to be

3 7 45 142 3595 3737 7332 55061 62393 221550211
479’ 58 1837 46337 48167 94497 70959 80408’ 285519359 ~
So there’s the answer; 183 is the denominator of a convergent in the con-

tinued fraction which appears before a relatively-large term, so 648% has an
imaginary part small in relation to its real part; the expression for a,, must be
symmetric in 6 and 63 because it’s a real number, and thus it will have an
approximate period of 183. If we compute tens of thousands of terms of the
recurrence (which is not completely trivial because the terms get quite large:
but ¢, is what we’re interested in, and it’s defined in terms of log |a,|, so we
can work in the logarithmic domain throughout), we do indeed see peaks in ¢,
at 4464, 13913, 23362, with common difference the convergent 9449.

Polynomial recurrences with small max |6;|

In the long run, the largest contribution to the root of a, will be given by the
root of f of the largest absolute value. So if one wants slowly-growing recurrence
relations, it would be nice to find polynomials with integer coefficients (we need
to insist they’re monic otherwise the problem’s poorly-defined, and it’s probably
helpful to insist on constant coefficient 1) such that max |6;| is small. I coded
this up in magma (requiring also that there are at most two non-zero middle
coefficients, and those are taken from {+1,+2}) and left it running all evening.

If the root of largest absolute value has absolute value 1, then all the roots
have absolute value 1 (since the constant coefficient of a monic polynomial is, up
to sign, the product of the roots), and the solutions to the recurrence relation
just consist of repetitions of an initial segment; this is uninteresting.

There’s one other degenerate case: if f(x) = g(a™), we get a recurrence
relation whose solution is the interleaving of n independent solutions to the
recurrence relation g. This is uninteresting, so I restricted to f with the GCD
of the exponents equal to 1.

After an evening of computation, the best value I found was just under
1.0422925, for the polynomial 2 — 2% + 2 4 1, along with a general trend that
higher-degree polynomials offered values nearer to 1; it may of course be that
this is because there’s a larger space of higher-degree polynomials to sample.
The largest I observed was just over 2.831177, for z3 + 222 — 2z + 1, but I'm
sure larger values would appear if I allowed the middle terms to have coefficients
larger than 2.

Obvious questions

1. Can you get max (|¢;|) arbitrarily close to 1 for a sparse polynomial with
small coefficients?

2. Does this have anything to do with Pisot numbers and their ilk, the stuff
James McKee was studying at Oxford at the end of the nineties?



