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0.2 Basic Graph Theory

A vertex is an object, usually a point represented by a number. We denote
a set of m vertices by V = {1,...,m}. An edge is a set of vertices (not
necessarily just two). A set of n edges is denoted & = {F1, ..., E,}. A graph
is a pair G = (V,€) with E C V VE € £. A graph is complete if every set
of vertices that could be an edge is in £. A k-edge is an edge consisting of k£
vertices, and k-graph is a graph where all edges are k-edges.

A graph is c-colourable if we can colour the vertices in V' with ¢ colours so
no edge E € £ is monochromatic (all vertices v € E have the same colour).

For d > 2, a d-cycle in G = (V,€) is a sequence Ej,..., E; of distinct
edges in £ where we can find distinct vertices v; € E;UE; (1 Vi € {1, ..., d}
with E4.1 = E;. There is no such thing as a 1-cycle.



0.3 Partitions and Their Preservation

A graph G = (V, €) is called p-partite if there is a partition V=1, U---UV,
such that |[EUV;| < 1VE € £,5 € {1,...,p}. For these theorems simply
knowing that a graph is p-partite is not enough — we want to specify the
p-partition of a particular graph. We will write G = ((V}),£,p) to mean
G = (Ui, v}, €) with the partition Vi U--- UV},

Knowing the p-partition of a graph G = ((V}), &, p), we need to be able
to preserve it under certain operations. Let H = ((W;), F,q).

e A map b: G — H must have p = ¢ and satisfy b(v) € W; Vv € V.

The graphs G and H are isomorphic iff there is a (partition preserving)
bijection B : V — W with B(V;) = W, Vj and B(E) € Fiff E € €.

The graph G is a subgraph of Hiff p=¢, V; CW; Vj and £ C F.

A copy of G in H is a subgraph of H isomorphic to G.

Note that we do not allow permution of the partitions — a subgraph of a
p-partite graph will also have p partitions (although some may be empty).
Similarly, if H consists of of n copies of G then H has the same number of
partitions as G, each containing n copies of the corresponding partition in G.

I cannot emphasise enough how important the concept of preserving par-
titions is to constructing sparse Ramsey graphs and proving they have the
desired properties. In particular, note the following construction.

Let S be a graph with [ vertices. This is [-partite with one vertex x; in

each partition z;. An edge v = {x,,,...,X,,} spans partitions z,,, ..., Z,,.
After any combination of (partition preserving) copying and mapping, the
graph is still [-partite, each copy of the edge v spans partitions z,,, ..., Z,,,

and each copy of an edge or set of edges in S has at most one vertex in each
partition.



0.4 Ramsey Theory

Theorem 1 (Ramsey on k-graphs).

Denote a complete k-graph with r vertices by Gy(r). Then for all positive
integers ¢ and k there is a function by : 1 — s such that given r, any c-
colouring of the graph Gi(s) has a monochromatic subset G(r).

Proof. (Induction on k)

The case k£ = 1 is trivial.
c(r—1)+1

For k > 2, let b7 (r) = 1+ bp_i (... (14 bes(r ))...) and assert
that by(r) < b V" (r). Let a(E) be a c-colouring of Gy, (bt V1 (7))
C0n31der the graph H® = G;_1(b} clr - 1)Jrl(r)) with the same vertices as

Ge(b" VT (r)). Choose a vertex of v of H° and consider the c-colouring
of 7—(0 — {v1} induced by @'(F) = a(E U {v:}). By induction this has a
monochromatic subset H' = G_1 (b}, c(r D= '(r)) with colour a;. Repeat to
give a sequence of vertices vy, .. vc(r_l)ﬂ and colours as, . .., Gr—1)41-

There are r elements of ay,...,a,r-1)+1 sharing the same colour. The
vertices corresponding to these form a monochromatic graph Gi(r).

O

Theorem 2 (Ramsey on k-partite k-graphs).

Let Gi(r1,...,1x) represent a complete k-partite k-graph with r; vertices
in the ith partition. Then for all positive integers ¢ and k there is a function
by :71,...,7k = S1,..., 8 such that given r,...,r, any c-colouring of the
graph Gi(s1,...,Sk) has a monochromatic subset Gg(r1,...,7k).

Proof. (Induction on k)
The case k =1 is trivial.
c(rg—1)+1

For k > 2, let b D e me ) = b (o beoa (P, ooy Pht) -2
and assert that bg(ry,...,rx) < bz(_r’fl)ﬂ(rl, coeyTi—1),¢(rg — 1) + 1. Let
a(E) be a c-colouring of gk(bz(j§71)+1(r1, ooy Tk—1),¢(rg — 1) + 1) and write
the set of vertices in the kth partion as {vi, ..., Ve(r,—1)+1}

Consider the c-colouring of H° = gk_l(bz(f’{‘l)“ (ri,...,mg—1)) induced
by ¢'(E) = a(E U {v;}). By induction this contains a monochromatic sub-
set H' = Gy_1(bj, (T’“ DY rk_1)) with colour ai. Repeat to give
Helre—D+1 gk_l(rl, ...,mk—1) and a sequence of colours ai, ..., Ge(ry—1)41-

There are 7 elements of ay, ..., a¢r,—1)+1 sharing the same colour. The
vertices in the kth partition corresponding to these, and the vertices in

He =D+ form a monochromatic subset Gy (71, ..., 7%) .
]



1 Vertex Form

1.1 Main Theorem

This is the method we use to construct sparse Ramsey graphs, in its most
basic form. There is an example of how we use the method in section 1.2
and a list of variables it uses in appendix A. Finally, let me reemphasise the
importance of partition preservation which was discussed in section 0.3.

Theorem 3 (Sparse Ramsey - Vertex Form).
For positive integers ¢, D and k, we can construct a k-graph G such that

1. G s not c-colourable.

2. For D # 1 write G = (V,€) and choose Ey # Fy in £. Then E; and
FEs have at most one vertex in common.

[This statement is equivalent to saying that G has no 2-cycles. I have
left it separate from condition 3 because it needs to be proved separately.]

3. G has no d-cycles for d < D.

Proof. (Induction on D)

When D = 1 there are no restrictions on cycles and so we only need to
construct G satisfying condition 1. We can do this by Ramsey as follows.
Let G be a complete k-graph with k(¢ — 1) + 1 edges. For any c-colouring
there are k vertices with the same colour. Since G is complete, there is an
edge consisting of these vertices. Thus G is not c-colourable.

Suppose the theorem is true for D — 1. Then the following construction
gives a graph G satisfying the conditions.

1. Using the same method that we used in the case D = 1, find a graph
G* = (V*,&*) satisfying condition 1. Write V* = {of,...,v}} and
& = {Ef,...,E;}. Now choose partitions V = {vj} to give the
m-partite graph G* = ((V}), £*,m).

2. Let G° = ((V}?), £ m) consist of n copies of G*, each copy correspond-
ing to an edge Ef € £*. Since we are preserving partitions this gives
us V; = {all copies of V*} and £° = {all copies of £*}.

For each copy of G* in G°, remove all edges E except the edge which
the copy corresponds to. Now remove all v € V° not in some E € £°.
[Removing vertices is not strictly necessary as their presence doesn’t
affect the properties of the graph, but it makes the process cleaner.|



3. Suppose we have constructed the graph Gi ! = ((Vji_l),c‘:i’l, m). We
will now construct the graph G'.

Consider the partition V! and let K = |V/~!|. By induction construct
a K-graph H' = (W', F*), such that H* is not c-colourable and has no
d-cycles when d < D — 1.

Take |F¢| copies of G*1, each copy corresponding to an edge F' € F'
of #'. Given F, define a partition preserving bijection b%, which maps
vertices v € V! in the copy corresponding to F into F itself, and acts

as the identity operator otherwise. Now define B% to be a bijection
such that B%(E) = {b%(v) : v € E}.
Now let V} = U,Uevji—l’Fe}— br(v) V= U;n:1 Vi

& = UEesijl,Fef BF(E) ,
This gives a graph G' = ((V}),£*,m). Note that £ does not contain
any edges of 7* — we’re only using them to guide the mapping.

4. The graph G = G™ is the desired graph.

We have claimed that G is the desired graph. Certainly G is a k-graph,
so we only need to check that it satisfies the conditions.

1. G s not c-colourable.

Suppose otherwise. Then there is a c-colouring of G = G™. Apply the
following inductively.

Given a c-colouring of G*, consider the c-colouring this induces on H'.
By construction this is not c-colourable, so we can find a monochro-
matic edge F. The copy of G*~! corresponding to F has a monochro-
matic ith partition. Now consider G*~! with the induced c-colouring.

This gives a graph G° in which every partition is monochromatically
coloured. Colour G* so that each vertex is the same colour as the
corresponding partition. By construction, G* is not c-colourable, so
this gives a monochromatic edge. The corresponding edge in G° C G is
also monochromatic which is a contradiction.

2. For D # 1 write G = (V,€) and choose Ey # FEy in £. Then E; and
FEs have at most one vertex in common.

We will prove this by induction on i. The edges in G° are disjoint, so
i = 0 is trivially true. Suppose the claim is true for 7 — 1 and let E¢,
Ej be edges of G' = ((V}), &, m). Write E} = bj, (Ei). It Fy = B,
then the claim is true by induction.



Otherwise F; # F; and all common vertices are in partition ¢. Now,
because all edges in G* are copies of edges in G*, and G* has at most
one vertex in each partition, we know that E! and EY have at most
one vertex in each partition. Thus they intersect at most once for each
partition they have in common.

Note that because E; contains the vertices of F}, the common vertex
of £} and Ej will be the same as the common vertex of F} and F5.

3. G has no d-cycles for d < D.

Suppose for contradiction that the graph G has a d-cycle for some
d < D. We know that G° is disjoint, and so has no d-cycle, or indeed
any cycle. Thus there is an ¢ such that G*~! has no d-cycle with d < D
but G does. Note that G* does not have a d-cycle with d < 2 because
of condition 2, and the fact that d-cycles with d < 1 do not exist.

Thus we have a d-cycle with 3 < d < D, with distinct edges [E%, ..., E]
and distinct vertices v; € EINEL,, where E}, | = E}. Write each edge
as B} = b, (E;.’l) and consider how many different F;’s there are.

e Ifthereis only one (i.e. Fy = Fy =...= F,), then [E]™",... EY]
forms a d-cycle in in G*~!, which is a contradiction.

e If there are two, then w.l.o.g. let F} # Fy and F; # F;; withi # 1.
Condition 2 tells us that if two adjacent edges have different Fj’s,
then they have a single common vertex which is also the single
common vertex of the Fj’s. As there are only two different F}’s,
the vertex between F} and F5 must be the same as the vertex
between F; and F;,;, which is a contradiction as we have stated
that they are distinct.

o If there are p different Fj’s, where 3 < p < D, then the set of
different F}’s forms a p-cycle in H*, with p < D — 1. But H’
contains no such cycle by construction, so this is a contradiction.

e If there are D, then every Fj is different. Condition 2 tells us that
if two adjacent edges have different F}’s, then the edges have a
single common vertex in partition . Now, because all edges in
G are copies of edges in G*, and G* only has one vertex in each
partition, every edge in the cycle has only one vertex in partition
. Thus the vertices v; are all the same vertex in partition 7,
contradicting the statement that they are distinct.

This completes the proof.



stop in stage 3 when
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The following is the start of the construction of the sparse Ramsey graph
2, as drawing over 4000 vertices seems somewhat wasteful.
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given in theorem 3,
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2 Edge Form

2.1 Main Theorem

This theorem generalises the main theorem of paper [2] from graphs to k-
graphs. I have considerably reworked the proof so that it is as similar in form
to that of theorem 3 as possible, preserving in particular the same structure
and variables. Thus, if you have any problems refer back to the corresponding
part of theorem 3. There is an example of the use of this method in section
2.2 and a list of variables used in appendix A.

Theorem 4 (Sparse Ramsey - Edge Form).

Let ¢, D and k be positive integers and R = (x,U) be a k-graph. Define
‘G on S’ to mean that G is a graph whose vertices are edges of the k-graph
S and each of whose edges E € £ induces a graph isomorphic to R (unless
we state otherwise). Now we can construct G on S such that

1. If R is k-partite then S is k-partite.
2. G 1s not c-colourable.

3. For D # 1 write G = (V,€) and choose Ey # E5 in €. Then E; and

Es have at most one vertex in common.

[This statement is equivalent to saying that G has no 2-cycles. I have
left it separate because it needs to be proved separately. In their proof
of this theorem, Nesetril and Rodl used a stronger statement instead —
this is unnecessary, and moreover is false for k # 2.]

4. G has no d-cycles for d < D.

Proof. (Induction on D)

When D = 1 there are no restrictions on cycles and so we only need to
construct G on S satisfying conditions 1 and 2. We can do this by Ramsey.

If R is not k-partite, let R° be the complete k-graph on x and apply
theorem 1. This gives S = (y, V') with a monochromatic copy of R¢ and thus
a monochromatic copy of R C R°. Thus G = (V,€) with & = {set of all
subsets of S isomorphic to R} satisfies the conditions.

If R is k-partite, write R = ({x;),U,k). Let R® be the complete k-
partite k-graph on (z;) and apply theorem 2. This gives a k-partite k-
graph S = ((y;),V, k) containing a monochromatic copy of R® and thus a
monochromatic copy of R C R°. Thus G = (V,&) with & = {set of all
subsets of S isomorphic to R} satisfies the conditions.



Suppose the theorem is true for D — 1. Then the following construction
gives graphs G on S satisfying the conditions.

1. Using the same method that we used in the case D = 1, find graphs
Gg* = (V*&*) on S* = (y*, V*) satisfying both conditions 1 and 2.
Write y* = {y%,...,y7}, V* = {v},...,v%} and & = {EF,...,E}}.
Now choose partitions V = {v}} to give G* = ((V}*), £*, m) m-partite
and choose partitions y; = {y}} to give S* = ((yj), V*,l) l-partite.

2. Let G° = ((V}),€% m) on S° = ((y3),V",1) consist of n copies of G*

on S$*, each copy corresponding to an edge EF € £*. Since we are
preserving partitions, this gives us yJ = {all copies of y;}, V} = {all
copies of V;*} and £° = {all copies of £*}.
For each copy of G* in G°, remove all edges E except the edge which the
copy corresponds to. Now remove all v € V? not in some E € £°, and
then all y € y° not in some v € V?. [Removing v and y is not strictly
necessary, as their presence doesn’t affect the properties of the graph,
but their removal makes the process cleaner and allows corollary 6.]

3. Suppose we have constructed the graphs G:=! = ((‘/;i_l),gi_l,m) on
St = ((y 1), Vi~ 1). We will now construct the graphs G on 5.

Consider the partition V!, containing % partitions Yoty of

y"~'. These form a k-partite k-graph R' = ((y;-"),V; ™", k). By induc-
tion, construct H' = (W*, F*) on a k-partite k-graph T" = ({z;,), W', k)
each of whose edges F' € F* induces a graph isomorphic to R', such
that 4’ is not c-colourable, obeys condition 3 if D —1 # 1, and has no
d-cycles when d < D — 1.

Take || copies of G*~' on S*', each copy corresponding to an edge
F € F? of H'. Given F, define a partition preserving bijection b%
which, for j € {p1,...,pr}, maps vertices y € y;-’l in the copy corre-
sponding to F to z € 2} N (U,crw), and acts as the identity operator
otherwise. Now define b%, to be a bijection such that b%(v) = {b%(x) :
x € v} and B% to be a bijection such that B%(FE) = {b%(v) : v € E}.
. . l .

Now let y; = UyEy;-_l,FE}" br(y) y' = Uj:l Y;

ij = Uvevj‘l,Fe}' bF(U) V= U;n:1 V;'Z

gZ = UEES”_I,FE]:BF(E) . . .
This gives graphs G* = ((V}/), &', m) on S* = ((y}), V", 1)

4. The graph G = G™ on S = S™ is the desired graph.
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We have claimed that G on S is the desired graph. Certainly G is a
graph whose vertices are edges of the k-graph S and whose edges E' € £ are
isomorphic to R. So we need to check that it satisfies the conditions.

1. If R is k-partite then S is k-partite.

Let R be k-partite. Now S is k-partite when D = 1 and similarly S* is
k-partite when D # 1. But S* is also [-partite, and every k-partition
can be formed by joining [-partitions. We claim S is k-partite with
each k-partition formed by joining the same [-partitions as S*.

Suppose for contradiction that this is not the case. Then there is an
edge in S which has more than one vertex in some k-partitions. But this
edge is a copy of an edge in S*, which because of partition preservation
must also have more than one vertex in the corresponding k-partition.
Thus S* is not k-partite, which is a contradiction.

2. G is not c-colourable.
Consider an c-colouring on G = G" and apply the following inductively.

Given a c-colouring of G*, consider the c-colouring this induces on H.
By construction this is not c-colourable, so we can find a monochro-
matic edge F. The copy of G*~! corresponding to F has a monochro-
matic sth partition. Now consider G'~! with the induced c-colouring.

This gives a graph G° in which every partition is monochromatically
coloured. Colour G* so that each vertex v is the same colour as the
corresponding partition. By construction, G* is not c-colourable, so
this gives a monochromatic edge. The corresponding edge in G° C G is
also monochromatic and so G is not c-colourable.

3. For D # 1 write G = (V,€) and choose Ey # FEy in £. Then E; and

Es have at most one vertex in common.

We will prove this by induction on 7. The edges in G are disjoint, so
i = 0 is trivially true. Suppose the claim is true for i —1 and let Ej, Ej
be edges of G' = ((V}), &', m). Write E} = by, (Ej™"). If Fy = F, then
the claim is true by induction.

Otherwise F; # F, and all common vertices are in partition i. Now,
because all edges in G' are copies of edges in G*, and G* has at most
one vertex in each partition, we know that E! and E% have at most
one vertex in each partition. Thus they intersect at most once for each
partition they have in common.

Note that because E; contains the vertices of F}, the common vertex
of Et and E% will be the same as the common vertex of F; and Fb.

11



4. G has no d-cycles for d < D.

Suppose for contradiction that the graph G has a d-cycle where d < D.
We know that G° is disjoint, and so has no d-cycle, or indeed any cycle.
Thus there is an ¢ such that G*~! has no d-cycle with d < D but G*
does. Note that G' does not have d < 2 because of condition 3, and
the fact that d-cycles with d < 1 do not exist.

Thus we have a d-cycle with 3 < d < D, with distinct edges [EY, ..., EY]
and distinct vertices v; € E; N E},, where Ej,, = E}. Write each edge
as F} = ng(E;I—l) and consider how many different F; there are.

e Ifthereisonlyone (i.e. F} = Fp =...= Fy), then [E}l ',... E} ]
forms a d-cycle in in G*~!, which is a contradiction.

e If there are two, then w.l.o.g. let F} # Fy and F; # F; 1 withi # 1.
Condition 3 tells us that if two adjacent edges have different Fj’s,
then they have a single common vertex which is also the single
common vertex of the Fj’s. As there are only two different F}’s,
the vertex between F} and F5 must be the same as the vertex
between F; and F;,;, which is a contradiction as we have stated
that they are distinct.

o If there are p different F}’s, where 3 < p < D, then the set of
different F}’s forms a p-cycle in H’, with p < D — 1. But H’
contains no such cycle by construction, so this is a contradiction.

e If there are D, then every Fj is different. Condition 3 tells us that
if two adjacent edges have different F}’s, then the edges have a
single common vertex in partition . Now, because all edges in
G are copies of edges in G*, and G* only has one vertex in each
partition, every edge in the cycle has only one vertex in partition
t. Thus the vertices v; are all the same vertex in partition 7,
contradicting the statement that they are distinct.

This completes the proof.

12



2.2 Example

The following is the start of the construction of the sparse Ramsey graph
given in theorem 4, with ¢ =2, D = 3, k£ = 2 and R consisting of two edges
joined at one end. I have used colours to distinguish elements of £ — a line
with a dashed colour is part of two edges. I stop in stage 3 because the
construction is too hard to draw when 7 = 2, 3.

fffffffffffff

Step 1. and 2.

Partition 1

Copy for
each edge

Partition 2

Partition 3

Step 3. (i=1)

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3
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2.3 Corollaries

For completeness, I have reworked the corollary in paper [2]| into the form
used in theorem 4.

Corollary 5.

Let ¢, D and k be positive integers and R = (z,U) be a complete k-graph.
Then we can construct G = (V,€) on S = (y,V) such all the conditions in
theorem 4 are satisfied, and € = {all copies of R in S}.

Proof.

If we follow the construction in theorem 4 with R = (z,U) a complete
k-graph, then we get G = (V,&) on S = (y, V) satisfying all the conditions.
We claim that £ = {all copies of R in S} and £* = {all copies of R in S'}.

We will prove this by induction on 7. The edges in G° are disjoint, and
we have removed all vertices not in some edge F € £°, so when i = 0, the
claim must be true. Suppose the claim is true for : — 1 and suppose for
contradiction that it is not true for . Then there is some F = a copy of R
in S%, such that £ ¢ &

If E is completely contained in one copy of S*~!, then the claim cannot
be true for 7 — 1, which is a contradiction. Otherwise, E has two edges v1, vy
such that each is in a copy of S*~! that the other is not in. In turn, these
contain vertices y,,y, such that each is in a copy of S*~! that the other is not
in. But then y, and y, are not in the same edge as each other, contradicting
the claim that F is copy of a complete graph.

U

It is also conjectured that for any R, we can construct G = (V,€) on
S = (y,V) such that all the conditions in theorem 4 are satisfied, and
& = {all copies of R in S}.

14



3 Space Form

3.1 Main Theorem

The technique described in sections 1 and 2 can be applied more generally
than just on graphs. The theorem below is an example of this — applying the
technique to Graham-Rothschild.

It is assumed that you are comfortable with Graham-Rothschild and
therefore with manipulating combinatorial spaces. The proof is deliberately
light on the exact details of how you apply it, because I found that the proof
in paper [3] tended to get bogged down in explanations.

Note that we are not using the notation developed in the previous sections,
although I have tried to preserve some common elements. Again you can find
a list of variables in appendix A.

Theorem 6 (Sparse Ramsey - Space Form).
Given an e-space E' containing a family of a-spaces €, and integers ¢ and
b > a, we can find a g-space G containing a family of a-spaces G such that

1. Given a c-colouring of the b-spaces contained in G, we can find an
e-space in G containing a family of a-spaces E' C G such that £’ is
1somorphic to £ and the b-spaces contained in £’ are monochromatic.

2. Gwen b < d < e, if we can’t find a d-space contained in &, then we
can’t find a d-space contained in G. [This is true for all d, but only
interesting in these cases|.

Proof.

1. Use Graham-Rothschild to find an g*-space G* such that, given an
arbitrary c-colouring of the b-spaces in G*, we can find an e-space in
which all b-spaces are monochromatic. Label the e-spaces in G* as
Ni, ..., N, and let every IN; contain a family of a-spaces isomorphic to
E. Let G* be the union of all a-spaces in N; and note that G* and G*
satisfy condition 1. Label the b-spaces in G* as M, ..., M,,.

2. Define the projection of a space or set of spaces to be the structure
in G* isomorphic to the structure found in the first g* dimensions of
the space it is in. Construct a g%-space G° which contains e-spaces
Ny, ..., N, where the projection of N; is N; and which are pairwise
disjoint. Furthermore, let every IV} contain a family of a-spaces iso-
morphic to £, such that the projection of each a-space is an a-space in
N;. The union of these gives a family of a-spaces G°. Note that the
projection of every b-space in G° is a b-space in G*.

15



3. Given G* 1, let Ly,...,L; be the set of b-spaces whose projection is
M;. Use Graham-Rothschild to construct an h'-space H® containing
a monochromatic line length [, where each vertex in H' is a separate
b-space. For each line in H?, take a copy of G*~! corresponding to
that line and replace Ly, ..., L; with the b-spaces in the line (you may
have to adjust the b-spaces in the line so that they overlap correctly
before you do so). Finally merge the first g*-dimensions of each copy
together, which gives the g'-space G*. It has a family of a-spaces G'
corresponding to the union of all the a-spaces in each copy.

4. The G = G™, and G = G™ is the desired spaces and set of a-spaces.

We have claimed that G is the desired g-space. So we need to check that
it satisfies the conditions.

1. Gwen a c-colouring of the b-spaces contained in G, we can find an
e-space in G containing a family of a-spaces &' C G such that £’ is
1somorphic to € and the b-spaces contained in £’ are monochromatic.

Suppose we have an arbitrary c-colouring of G™. Apply the following
step inductively.

We have a c-colouring of G*. This induces a c-colouring on H*, which
contains a monochromatic line. The copy of G*! corresponding to this
line has all b-spaces whose projection is M; monochromatic. Consider
the c-colouring on this copy of G*~.

This gives G where the colour of each b-space depends only on its
projection. This induces a colouring of G*, which has an e-space satis-
fying condition 1. The corresponding e-space in G° C G also satisfies
condition 1.

2. Gwen b < d < e, if we can’t find a d-space contained in &, then we
can’t find a d-space contained in G.

G certainly contains no d-space, so suppose for contradiction that G
does. Then we can find 7 such that G* contains a d-space, and G*!
does not. Since the only overlaps between copies of ¢~ which can
occur are b-spaces, this is a contradiction.
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A Variable Names

I have summarised all the variables used in this paper below. The font
generally signifies a relationship between sets and their elements. These are
not intended to be understood without reference to the theorems.

¢ the chromatic number of either a graph, of a set of b-spaces.

i a variable numbering a sequence of graphs G*, or of g’-spaces G".

j a useful variable used for many purposes

The following are used only in sections 1 and 2.

XEX uelU R = (z,U)

yEY veV Eec& S=(wV) G=(V,€) G ak-graph
z€z weW FeF T=(zW) H=W,F) H aK-graph
L=y m=[V* n=I[E

bz (y) br(v) Bx(E) Functions ony, v and E.

d, D the number of elements in a cycle and the girth of a graph.
P a useful variable used mainly to describe partitions

The following are only used in section 3.
sizeof aspace a<b<d<e< g < g <...< g"=g | A ...
a space E G- G ... G"=G|H'...H"
set of a-spaces E ¢ G ... gmn=g
set of b-spaces Lq,...,L; My,..., My
set of e-spaces Ni,..., N,
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