
Scanning Electronic Documents for Personally Identifiable
Information

Tuomas Aura1, Thomas A. Kuhn2, Michael Roe1

1Microsoft Research, UK 2Technische Universität München, Germany

ABSTRACT
Sometimes, it is necessary to remove author names and other per-
sonally identifiable information (PII) from documents before pub-
lication. We have implemented a novel defensive tool for detect-
ing such data automatically. By using the detection tool, we have
learned about where PII may be stored in documents and how it is
put there. A key observation is that, contrary to common belief,
user and machine identifiers and other metadata are not embedded
in documents only by a single piece of software, such as a word
processor, but by various tools used at different stages of the docu-
ment authoring process.

Keywords
Privacy, personally identifiable information, metadata

General Terms
Security, Algorithms, Experimentation

Categories and Subject Descriptors
D.2.5 [Software engineering]: Testing and debugging

; I.7.2 [Document and text processing]: Document preparation

1. INTRODUCTION
It is well known that digital documents may contain information

that is not visible when the document is printed or viewed by the
user. Most of the time, the information is there for good reasons.
It is needed by authoring and publishing tools to store parameters
(e.g., printer settings, author identifiers, etc.) that are not immedi-
ately parts of the visible document. It enables different pieces of
software in a tool chain to communicate such parameters to each
other. Automatically generated metadata also makes it easier to
index and search documents in ways that are natural for humans,
such as by who created the document and when.

While it is good that computers do things automatically for the
user, there is the danger that, if the user is not aware of the presence
of metadata or cannot control it, secret or private information may

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’06, October 30, 2006, Alexandria, VA, USA.
Copyright 2006 ACM 1-59593-556-8/06/0010 ...$5.00.

be revealed unintentionally. Sometimes, the information is stored
not because it is needed but because it is available. While it is
good software engineering practice to leave hooks that may enable
future features, the propagation of unnecessary information can be
detrimental to user privacy. Information leaks caused by metadata
may also violate an organisational security policy.

In this paper, we are mainly concerned with personally identi-
fiable information (PII) and other identifiers stored in a document
without the user’s knowledge or ability or remove them. Any name,
serial number or identifier that pinpoints a unique user, organiza-
tion, computer or software installation may be used to track the
document back to the persons and organisations that created or pub-
lished it. In this paper, we use the word publication in a broad sense
to mean either posting the document for public viewing or sending
it to selected recipients outside the authors’ trusted circle.

We will describe a novel tool for detecting PII in digital docu-
ments. The tool is defensive in the sense that it can only be used
for looking for offending data in one’s own documents. This choice
enabled us to make the tool relatively automatic and general. The
tool first harvests the user’s sensitive identifiers based on various
heuristics and then searches for them in given documents in sev-
eral common encodings. Each document is treated as a flat byte
stream that may contain strings at arbitrary locations and in arbi-
trary encodings. This means that, unlike most PII-detection and
removal tools, ours does not need to know where to look. The tool
was originally developed to test the PII removal mechanisms in the
current and beta versions of Microsoft Office. We report on several
case-studies done using our tool. We looked at an ad-hoc collection
of documents, at a typical publication process where the document
is composed with Microsoft Word and published as PDF, and, fi-
nally (mainly for fun) at a collection of anonymized conference
submissions.

The PDF case study shows that several widely held beliefs about
PII removal are invalid. Firstly, the problems are often attributed
to a single piece of authoring software, such as a word processor,
and most tools for PII removal are aimed at only one document
format. Secondly, it is common wisdom that PII in metadata is
removed when a document is converted from the native format of
the authoring tools to a print- or display-oriented format such as
Postscript, Portable Document Format (PDF) or HTML. We know
of at least one major corporation that has a policy of not publishing
or emailing word-processing documents; they must be converted to
PDF. Unfortunately, we found that unique identifiers are inserted
into documents at many stages in the authoring process, and these
identifiers often survive format conversions. The identifiers may be
added by software components from different vendors who are un-
aware of each other’s metadata, and the components may be com-
bined in ways unexpected by their authors. This means that, in

order to prevent metadata from appearing in a published document,
one must control its insertion and propagation throughout the com-
plete document lifecycle.

The rest of the paper is structured as follows: We first look at
some motivating examples and related work. Section 2 explains
the architecture of our PII detection tool, including the novel way
in which the search strings are harvested and how we deal with
variable encodings. The following three sections report the results
from our case studies. Finally, section 6 concludes the paper.

1.1 Motivating examples
The goal of this section is to motivate our work by providing ex-

amples of real-world situations where users may want to anonymize
documents.

Reports and policy documents published by governments usu-
ally do not identify the individual non-elected officials that have
been involved in their preparation. Anonymity shields the public
servants from the pressures of publicity and other undesirable in-
fluence. In a recent much-publicised case, the United Kingdom
government released a report on the Iraq war that accidentally had
the names of the authors left in the metadata [21]. This exposed the
authors to undesired public scrutiny.

Commercial companies may have similar requirements for their
published documents to represent the entire company rather than
the individual contributors. Often, the author names are removed
as a matter of general policy. Sometimes, there are specific reasons
such as preventing negotiation partners from gaining intelligence
on the company’s internal decision procedures, or making it more
difficult for competitors to hire its key personnel.

When secret military documents are declassified, they are often
purged of confidential details including codenames, the names of
specific persons, and identifiers that might indicate organisational
structure.

One application of anonymity that is probably familiar to the
reader is the anonymized review procedure of many scientific con-
ferences. The authors are required to remove their names, affili-
ations, and obvious references to themselves from the submitted
papers in order to allow the referees to assess the merits of the sub-
mission without regard to the authors’ reputation in the research
community. While no strong anonymity is required (it is often pos-
sible to guess the authors anyway), the authors may want to remove
not only visible occurrences of their names or organisations but also
any metadata with similar content.

In some universities, examination papers are anonymized before
grading. This reduces the possibility of (unintentional) bias by the
graders who may know some students personally. If coursework or
examination papers are submitted in electronic format, it might be
necessary to remove from the files all data that obviously identifies
the student.

The types of information that one might want to remove from
documents include the following:

• user names and identifiers

• device names and identifiers,

• organisation names and identifiers, and

• online-services used in the authoring process.

1.2 Background and related work
Early computer security research mostly considered information

leaks within operating systems and in the context of multi-level se-
curity, where classified information must not leak from a process

or user with a high security level to one with a lower level. When
information is intentionally released to a lower level, it is down-
graded or declassified. Before downgrading, the data can be sani-
tised. Using this terminology, we can think of the publication of a
document as downgrading and purging of the metadata as sanitiza-
tion. Hidden data in the document forms a kind of covert channel
that might bypass sanitization. (For an introduction to computer
security models, see, for example, [4].)

Apart from compliance with security policies in the presence of
adversaries, the user may be worried about accidental disclosure
and privacy. Privacy is a broad concept with many definitions. In
the context of this paper, it means that users want to know and
control where their personal information is stored and propagated.
The user may wish to remain anonymous or pseudonymous [19].
Unwanted metadata in digital documents can cause violations of
both organisational security policy and user privacy.

The information leaks related to digital documents that have re-
ceived most publicity have not been caused by PII or metadata but
by inadequate attempts to redact secret documents before publica-
tion. For example, in 2000, the New York Times published on the
web a secret CIA document about a coup in Iran [20]. The newspa-
per intended to erase the names of the persons involved but did this
by painting white rectangles over them with a PDF editor. Obvi-
ously, the names were left in the document and could be recovered
easily. In a similar case, the Washington Post blacked out a credit
card number and other details when it published a ransom letter
from the Washington sniper in 2002 [9]. The U.S. Department of
Defense has made the same mistake: in a recently published re-
port on a checkpoint shooting in Iraq, parts had been censored by
covering them with black rectangles in the PDF [12].

Documents created with old versions of Microsoft Office have
also been known to retain fragments of deleted data in the binary
file. Considering our discussion of embedded objects in section 4.3,
the most interesting case is that of embedded OLE objects that con-
tained fragments of deleted data from the source document [15].
Murdoch and Dornseif [17] discovered another common channel
for information leaks: thumbnails embedded in digital-image files.
These small images are intended for preview and should be identi-
cal to the main image. Unfortunately, some image editing software
does not update the thumbnail when the main image is modified.
This means that the thumbnail contains an uncropped or unedited
version of the image.

An early example of unique identifiers in digital documents is the
GUIDs that were used in Microsoft Office documents prior to the
year 2000. They included the hardware address of a network inter-
face on the author’s computer to guarantee global uniqueness [13].
(In later versions of the software, the GUIDs are generated entirely
randomly and we did not encounter the old type identifiers in this
work.) The privacy concerns about the GUIDs and other unique
identifiers, such as those of wireless and embedded devices, mi-
croprocessors and digital media, are summarised well by Markoff
[14].

Apart from forbidding the use of specific document formats, the
first solution to the discovery of offending data items is to pro-
vide instructions for removing them (see, e.g., [16]). There are also
many software tools for cleaning documents of metadata. Finally,
the current and future versions of Micrsoft Office provide built-in
features for removing any metadata. The common weakness of the
metadata-removal mechanisms is that they only remove data from
known locations in the document.

In most cases reported in the literature, the offending information
has been found in an ad-hoc manner, by searching or browsing the
document contents with a tool other than the software with which

� �������	��
���

��

�
�����������

��
��������������� �

�
 �!�� !�"�!��#�

$%��& ' ���

����()#' �#���

*+��(������!�&
�,���.-���� ��(

/0!�����!�&

����� (1

2+�� �' �

34��-���(�

�����,���.�����

)�' ��5���(

Figure 1: PII detection tool architecture

it was created. Even when there is a reason to think that the in-
formation has been found by a systematic search, the goal of the
adversary has been to find a few pieces of embarrassing data rather
than to find and remove them all. Byers [6] presents the results of
a more systematic search for hidden data in Word documents. In
particular, he compares the strings in the file to the ones visible in
the document. The advantage of this approach is that it can detect
data in locations that the user and the tool creator are not aware of.
Our tool gains an additional advantage from the fact that it is purely
defensive and knows which strings to search for. This enables us
to consider various data encodings that might not be easy to detect
with a simple string-extraction tool.

One preventive approach to information leaks is tainting, i.e.,
tracking the propagation of private data that must not be sent out-
side a confined system. The idea originates from a short-lived ex-
periment in Javascript 1.1 [18]. Chow et al. [7] apply tainting to
track the propagation of sensitive data in web servers. Similarly,
one could mark PII and any data values derived from it as tainted
and prevent the sending of tainted data out of the system. This ap-
proach is probably too inefficient to work in a production desktop
system but could be used to detect information leaks during soft-
ware testing.

2. PII DETECTION TOOL
This section describes the tools that we developed for detect-

ing PII in digital documents. More specifically, the purpose of the
tools is to detect identifiers in documents that could be used to trace
a document back to the persons, machines, services and organisa-
tions that were involved in authoring the document. While there are
many ways to approach such a task, we made the following design
decisions:

• We want to detect identifiers in locations that are previously
unknown to us. Indeed, the first reason to build the tool was
to discover where PII is hidden in documents and to audit the
results of software that promises to remove metadata. This
constraint leads us to look at string search for known iden-
tifiers. It also means that we could not use any of the many
metadata removal tools on the market because they only find
data in known places in the document.

• The searching should be as automatic as possible. In particu-
lar, it should not require the user to manually enter the search

Figure 2: IdHarvester automatically collects search strings

strings. How this was achieved will be explained in section
2.1.

• The tool should be able to cope with various character en-
codings, including more than one layer of encoding. Never-
theless, it should have acceptable performance even on large
document sets. The challenges and the trade-off that we
found will be described in section 2.2.

Figure 1 shows the tool architecture. The main component is the
LeakHunter that searches for a given set of strings from a collection
of documents. The set of search strings is provided by another
component called IdHarvester. The output of the search is a report
of the matched identifiers and their context.

2.1 Automatic harvesting of search strings
Our tool needs to know which strings to look for. We do not,

however, want the user to manually enter the search strings. In-
stead, we provide an automated mechanism for collecting poten-
tially compromising strings from the user’s computer and from the
Active Directory (AD), which is an administrative database in a
Windows domain and contains various pieces of PII and organisa-
tional data. The collected data items include, for example:

• user’s real name, username, domain, security id

• computer’s NetBIOS name, domain, DNS name and suffix

• user’s email addresses, mailing addresses and telephone num-
bers

• organization name

• names and addresses of various online servers such as do-
main controllers, email and webmail servers, instant mes-
saging servers, file and document servers, print servers and
printers

The list of places to obtain these identifiers is built into the tool
and can be easily extended. Although we have kept adding new
heuristics for finding and deriving potentially offending identifiers,
most information leaks in real documents are of the obvious ones
like the username.

These strings are broken up into substrings based on spaces and
other delimiters. For example, the name “John Smith” will be con-
verted to three search strings: “John”, “Smith” and “John Smith”.

Internet domain names are treated in a similar way, so “europe.mic-
rosoft.com” creates additional strings “europe”, “microsoft” and
“microsoft.com”. (The top-level domain “com” is excluded).

The user is also allowed to enter new strings manually or to im-
port them from a file. Figure 2 shows a screenshot of the ID Har-
vester.

2.2 Searching various data encodings
The LeakHunter search engine is designed to work even when

the document encoding is unknown. Thus, it must try several pos-
sibilities. The main challenge is to find an appropriate balance be-
tween efficiency and supporting a large number of string and char-
acter encodings. We have implemented the following:

• upper and lower-case characters

• 8-bit ASCII characters, Unicode UTF-16 (little and big en-
dian), UTF-8

• URL %-escapes, XML entity references and character refer-
ences [2], C string escapes

• replacing accented characters with unaccented and vice versa

• common character variations, such as “ä” written as “ae”

• replacing whitespace with other whitespace

• binary strings (e.g., IP and MAC addresses)

• NetBIOS machine names [1]

Other encodings that should be supported in the future are ISO-
8859 encodings, EBCDIC, and internationalised domain names [8].

The four main difficulties that we encountered were non-unique,
variable-length, unaligned and layered encodings. By non-unique,
we mean that the same string can be encoded in many different
ways. In the worst case, the number of encodings may be infinite.
The simplest example is that the search should work for both up-
per and lower-case strings. When searching for “John Smith”, we
ought to match also “JOHN SMITH”, “john smith”, “john SMith”
etc. Even larger numbers of combinations are caused by escape se-
quences, such as the URL encoding. “John Smith” ought to match
“John%20Smith” and even strings like “J%6fhn%20Smit%68”.

Another problem is created by variable-length character encod-
ings, such as UTF-8. It is impossible to know the length of an
encoded string without decoding each character separately. This
makes it impossible to use some efficient string-search algorithms,
such as Boyer-Moore [5], that aim to skip strings without mak-
ing any comparisons. The obvious solution is to encode the search
string first in UTF-8 and then search for it as binary data. This is
possible if there are only a few different encodings to try. The same
solution does not work for non-unique variable-length encodings
such as the escape sequences demonstrated above because there
are too may combinations to search for.

Since we do not want to assume anything about the document’s
encoding and do not try to guess it based in the document type, we
cannot assume that the strings or characters are aligned to any spe-
cific word boundaries. For example, in the UTF-16 encoding, each
character is represented by two bytes. The document might con-
sist of UTF-16 text preceded by a header in a different format, and
the header might contain an odd or even number of bytes. Thus,
we need to match UTF-16 characters aligned to both odd and even
byte boundaries. Moreover, short UTF-16-encoded strings may ap-
pear at unpredictable offsets anywhere in the document. The same
problem applies to any multi-byte character set.

Layered encoding means that the text has been encoded first in
one way and then in another way. This is common, for example,
when URLs are stored as Unicode strings and contain URL %-
escapes. When we remember that both the URL and the A–F digits
in the hexadecimal escape sequence may be in upper and lower
case, there are already four layers of encoding. Ideally, we should
support any number of encoding layers and either arbitrary combi-
nations or all sensible combinations of encodings. That task would,
however, be equivalent to parsing the document with a context-free
grammar, which has a worst-case complexity of O(n3) where n is
the length of the document. Although parsing is faster in practice,
it would still be too slow for large sets of documents (long text) and
encodings (large grammar).

In order to find an acceptable compromise, we experimented
with two types of search algorithms, described in the following two
sections, which both have their advantages and limitations.

2.3 Fast string-search algorithms
For a single search string, the fastest known algorithm is Boyer-

Moore [5]. The Aho-Corasick algorithm [3], which uses a a prefix-
tree-like automaton, is more efficient for large sets of search strings
and, thus, faster in most of our experiments. These algorithms look
for exact matches of one or more search strings in the text. It is triv-
ial to modify these algorithms to match both upper and lower-case
characters but, in general, handling a large number of encodings is
problematic. In the general case, we create all possible encodings
of the search string using a particular encoding method, and then
consider each encoding as a different search string. The resulting
search can be very fast but slows down (almost) linearly with the
number of encoding combinations. In practice, we can search for
each string in ASCII format and in the various Unicode encodings,
and match characters case-insensitively. It would not be possible
to support the almost infinite number of combinations caused by
various escape sequences.

2.4 Regular-expression matching
Regular expressions provide a more compact way of express-

ing the combinations created by non-unique and layered encodings.
Figure 3 shows how each character in the search strings is expanded
into a regular expression. For each layer of encoding, the alphabet
in the previous regular expression is replaced with sub-expressions.
The regular expression length grows exponentially with the num-
ber of encoding layers, which is why we only show 4 layers in the
figure.

The search strings are expanded into regular expressions by con-
catenating the regular expressions for each character. For a set of
strings, we structure the expressions in the form of the prefix tree.
Depending on the number and length of search strings, and on the
number of encoding layers, the resulting regular expression can be
thousands or even millions of characters long. This is quite dif-
ferent from the more typical use of regular expressions, where a
relatively short expression is typed in by a human.

The regular expression is converted into a nondeterministic fi-
nite automaton (NFA). The fastest search algorithms further com-
pile the NFA into a deterministic finite automaton (DFA). The lat-
ter step is, however, impossible for us because the size of the DFA
may grow exponentially with the size of the NFA (and the size of
the regular expression). Computer memory is clearly the limiting
factor in this type of regular expression search but, as long as the
NFA fits into the memory, the search happens at acceptable speed.
We implemented our own regular expression library to cope with
large expressions and because of the fact that we ultimately want to
search binary data, not text. We did not, however, find any partic-

original character
k
upper and lower case
(K|k)
URL %-escapes
((%4b)|(%6b)|K|k)
upper and lower case
((%4(B|b))|(%6(B|b))|K|k)
ASCII, UTF-8, little and big-Endian UTF-16
(((\x25|(\x25\x00)|(\x00\x25))(\x34|(\x34
\x00)|(\x00\x34))(\x42|(\x42\x00)|(\x00\x42)
|\x62|(\x62\x00)|(\x00\x62)))|((\x25|(\x25
\x00)|(\x00\x25))(\x36|(\x36\x00)|(\x00
\x36))(\x42|(\x42\x00)|(\x00\x42)|\x62|
(\x62\x00)|(\x00\x62)))|\x4b|(\x4b\x00)|
(\x00\x4b)|\x6b|(\x6b\x00)|(\x00\x6b))

Figure 3: Regular expressions for encodings of ‘k’

ular techniques to handle huge regular expressions and very little
about them is said in the literature.

The theoretical limitation of regular expressions in comparison
to context-free grammars is that the number and order of the en-
coding layers has to be fixed. In practice, we can cope with upper
and lower case characters; replacing whitespace with other whites-
pace; replacing accented characters with unaccented and vice versa,
other common character variations; the URL, XML and C escape
sequences in upper and lower case; and the ASCII and Unicode
character encodings. Making the different types of escapes alterna-
tive rather than layered on top of each other (i.e., combining them
into one layer) leaves us some scope for adding new encoding lay-
ers. Otherwise, with the current algorithms, it is not possible to add
further layers without a significant performance hit caused by ex-
cessive memory consumption. Typically, the creation of the NFA
and the search take minutes. The advantage compared to the exact
string-search algorithms is that a large number of encodings and
combinations of encodings is exhaustively considered.

We do not currently support decryption or decompression of data.
When the data is encrypted, the encyption usually prevents data
leaks anyway. We are only trying to detect accidental disclosures
of PII; we are not trying to detect malware that uses encryption to
covertly leak PII. Support for compressed documents, on the other
hand, is left for future work. Similar to compression are mecha-
nisms that encode binary data as ASCII, such as the Base64 encod-
ing commonly used for email attachments [10]. Although other-
wise not difficult to decode, strings in this encoding do not always
start at a byte boundary.

2.5 False negatives, positives and other limita-
tions

It is difficult to know how many false negatives there are, i.e.,
how many privacy-compromising strings are missed by the search.
This is because we can only search for the kinds of identifiers and
encodings that we know about. Clearly, this type of tool can never
be guaranteed to find all unwanted data in documents. It can, how-
ever, be argued that our tool looks for many more identifiers than
a user would consider in an ad-hoc search, and that the regular ex-
pression search covers exhaustively all combinations of string en-
codings composed of the supported layers. Thus, our tool does
provide significant additional assurance compared to previous doc-
ument inspection techniques. It complements other tools and prac-
tices and can find information leaks that we otherwise would be

unaware of.
The lack of guarantees means that our tool is not suitable for all

applications. For example, it is not suitable for redacting classi-
fied documents, although it can be used for auditing the results. In
the current form, it cannot be used for anonymizing medical case
reports because the patient is not the author of the medical docu-
ments. That is, we only address situations where the author is the
person who requires anonymity. Often, the style and contents of the
document may be sufficient to recognise the author of a document,
such as a novel or a political declaration. We obviously cannot de-
tect such leaks. In legal documents, professional interpretation is
required to determine what must and what must not be disclosed,
and no automated tool can make the decisions. Sometimes, there is
no need for sanitization. For example, when the data is entered via
a simple text interface like a web form, it is easy to avoid saving
any metadata. Currently, we have only considered offline detection
of PII and the tool is not suitable for online detection in networks.
With further development it may, however, be possible to integrate
leak detection to an application-layer firewall, document server, or
email gateway.

False positives are also a major challenge to the usability of the
search tool. The main techniques for dealing with them are based
on heuristics that sometimes require user intervention. We exclude
search strings that are known to cause problems, such as the “com”
or “net” at the end of DNS names. The most problematic iden-
tifier in our tests was “microsoft”, which is not only the current
authors’ organization but also appears in the name of many com-
mon authoring tools and, thus, could be found in almost all files.
This is, fortunately, a special case that does not apply to all users.
Very short strings (e.g. the “TU” from “TU München”) cause many
false positives because they are common parts of English text or are
likely to occur by chance in binary data. To avoid this problem, we
usually set a minimum length of three characters for search strings
and allow the user to fine tune the set of search strings to include or
exclude short names and acronyms.

Another way to deal with false positives is to present the search
results in such a way that the user can easily see the context in
which the identifiers were found and ignore any uninteresting cases.
We currently provide hexadecimal and text dumps of the data sur-
rounding the match.

3. WHERE PII IS HIDDEN
We first looked at a collection of miscellaneous documents found

on our own computers. In this section, we list various locations in
which metadata was found. Although we afterwards found refer-
ences to all these types of metadata in the literature or software
documentation, some were surprises to us.

Human-readable metadata. Office tools, including word pro-
cessing software, include features for entering metadata into docu-
ments. This metadata typically includes the document title, author,
author’s affiliation, keywords, etc. The metadata may be generated
automatically or added by the user. It is used mainly for searching
and indexing documents, and to store information about the docu-
ment’s history that may be helpful to the user. Authoring software
typically allows the user to scrub this kind of explicit metadata from
the document.

Machine-readable metadata. Authoring software may store
information about the history of the document automatically. This
information is needed mainly to remember user choices, such as
print or style settings. It is also used to facilitate collaboration,

for example, by correlating revisions of the same document. Un-
expectedly, we found little evidence that these types of metadata
cause any real harm to privacy. The reasons are that the metadata is
often stored outside the document, in the file system, Windows reg-
istry or an application-specific database, and that the GUIDs used
to identify documents in Windows are now random numbers (see
sec. 1.2).

Easily ignored printable data items. While the authors tend
to carefully review the main text of the document, some additional
parts, such as the page header and footer, may be accidentally ig-
nored. Some of these data items may be printed only in special situ-
ations, such as when producing handouts for a presentation. Fortu-
nately, authoring software increasingly warns users about this type
of data.

Tracked changes. Judging by anecdotal evidence, the type of
hidden data that has caused most embarrassment is tracked changes
or undo information (see sec. 1.1). Such information is needed
while the document is being edited but should obviously be deleted
before publication. The problem is that authoring tools have not
always made much difference between saving a document for con-
tinued editing or for publication.

Human-created comments. Documents often contain com-
ments that are not printed with the rest of the text. For example,
presentations are accompanied by a script for the speaker, which is
hidden from the audience. We found that fractions of the speaker’s
scripts were sometimes left in place when slides were cut and pasted
from one presentation to another or when one presentation was used
as a template for others. Word-processing documents may also in-
clude comments that are not printed.

Machine-generated comments. Machine-readable parts of a
document may also contain comments. Their purpose may be to fa-
cilitate debugging, help product or add-on development, or to store
metadata that is not a part of the original document format. For
example, Postscript files routinely contain the name of the software
that was used to create the document, the creation date, and the file
name of the source document. Sometimes, they contain the user-
name of the document creator. HTML files also tend to be full of
comments that may reveal unwanted facts about the documents’
history.

Hyperlinks. Hyperlinks are addresses of other documents such
as web pages. The problem with hyperlinks is that the addresses
to which they point are typically not visible when the document is
printed. This means that they may be ignored when the document
is reviewed for publication. Yet, the addresses in unintentionally
retained links may refer to web sites within the author’s organiza-
tion.

Metadata in embedded objects. Typical documents have not
been created with a single piece of software but contain embedded
tables, figures and other types of objects. The tool with which the
main document is created, such as a word processor, often has no
knowledge of the format or contents of the objects. Instead, the
editing and printing of the embedded objects is delegated to other
pieces of software, possibly from different vendors. One type of
embedded object that deserves special attention is digital images.
Images often contain metadata such as the date on which the pic-
ture was taken, the model of the camera, exposure information, the

author name, and a thumbprint image for preview. (We will have
more to say about embedded objects in section 4.3.)

Names and paths of embedded or linked objects. Embed-
ded objects are often linked to their source documents, for example,
for the purpose of keeping the object up to date with any changes
made to the source. These links are similar to hyperlinks except
that they typically point to a file on the local disk rather than to the
web. The link reveals the name and path of the file from which the
embedded item was copied. The path often contains the username
of the document author.

Template and style names. Similar to embedded objects, doc-
uments contain links to templates, style sheets (CSS) and other
types of external style information such as background images and
sounds.

Macros and scripts. Documents may contain or link to macros
and scripts, which are essentially program code. The code includes
comments, variable names and other programming idioms that re-
veal more information than is necessary for the functionality that
it implements. Moreover, macros are sometimes collected in docu-
ment templates just in case they might be needed. Macros are usu-
ally associated with Microsoft Word and Excel but other software
packages have similar features. For example, PDF may contain
Javascript and Emacs allow macros to be stored at the end of every
file. (Indeed, the latter feature was used in typesetting this paper.)

4. COMPLETE AUTHORING PROCESS
As a case study, we looked at a typical authoring process that

starts from a word processor or text editor and ends in a published
PDF document. This example was chosen partly because it is com-
mon wisdom that documents should be published in PDF format
rather than as word processing documents, such as those produced
by Microsoft Word. The main observations are summarised in the
following sections.

The important insight that we gained from this study is that the
process in which metadata is added to documents is far more com-
plex than is usually thought. It involves numerous software compo-
nents from various vendors that may all add their own pieces of data
into the document. The document authoring process depends on a
tool chain that is used for creating and transforming components of
the document, which are then compiled into one publishable entity.
This final document may again be transformed by several tools.
The final document may be used as a component in future editions,
which means that the document lifecycle does not end at the publi-
cation.

Figure 4 shows the particular processes that we considered in
this study and the kinds of metadata that was found. The dotted
arrows show the lifespan of the data from where they are inserted
to the last file in which they appear. Figure 4(a) shows an intention-
ally constructed worst-case scenario with Microsoft Word 2003 as
the main authoring software. Note that we used the Word feature
for removing PII. Figure 4(b) shows a typical process for scientific
publishing with LaTeX. It should be noted that the two scenarios
are not comparable; we could have constructed the same kind of
worst-case scenario for LaTeX as for Word. Instead, we chose to
demonstrate that even the minimal process has some leaks.

4.1 Printer driver
The first major observation made in this case study was that,

even if the authoring software carefully removes all metadata from

�������

� 	
 �	 � � � �

� � �
 �
 ��	 � �

� 	 ���
 �� �� � ���

� � �� � ��� �
 � � �	 � 	 ��

� � ��� ���� �� � � � �

� �
 �
 ��	 � �

� �	 � �� �

� �	 � � �� �

� 	
 	 �

� ��� � �

� ��

! � �

! �
 ! � � �

" # �� �

! $ � �
� � ����

� 	 ����%

& ' "

��$ � ��

� �
 �
 ��	 � �

� �	 � �� ��

� �	 � � �� (

���������	��
��������
������	��� �

� �� 	� ������

��������

	��� �
������

���� ��� ���

���������	��
������	���� �
� � ���������

! � ��

� ����� 	� ������

� ������������� ��� �� ��������� �����	�� �

(a)

������ � � 	

� �
 �� �

�� � ���

� � �� � 	 ��

� ��� � ���� � 	
 � ��

���������	
���
	��

 � � � �� �� �

� � ��

� � ��	� �� ��� �� � �� 	
���

� � ��

(b)

Figure 4: Two examples of a PDF authoring process

the document, Postscript printer drivers may unintentionally put it
back.

Printer drivers usually send to the printer metadata in addition to
the visible contents of the document. This data typically contains
the name or username of the user who invoked the printing func-
tion. The printer needs to know the name, for example, to make it
easier to browse and delete print jobs from the printer user inter-
face. Since this feature is well understood by users, it may seem
unlikely that any privacy issues would arise from such practice.
Postscript printer drivers are, however, commonly used outside the
original context for which they were developed. The drivers are
used for converting documents into Postscript files which are then
published electronically, rather than being sent to a local printer.
Often, the physical printer is not even present on the system. Al-
though not intended for that purpose, Postscript is used as a docu-
ment interchange format.

Postscript contains the same metadata regardless of whether it is
sent to the printer or saved as a file. For example, the following
headers (i.e., comments) are from Postscript files created in our
tests using different printer drivers.

%%Title: Microsoft Word - Testing.docx
%%CreationDate: 1/23/2006 19:30:21
%%For: tuomaura

%%OID_ATT_JOB_OWNER "tuomaura";
%%OID_ATT_JOB_NAME "Microsoft Word -

Testing.docx";

%%Creator: CorelDRAW 10
%%Title: test-figures.ps
%%CreationDate: Thu Apr 14 14:32:47 2005
%%For: Michael Roe

As can be seen above, the Postscript files contain the original file
name and the name or username of the person that created them.
Since the Postscript headers are manufacturer-specific, all printer
drivers produce slightly different comments. The alarming obser-
vation is that this metadata appears in the Postscript file even if all
metadata is carefully purged from the original document. It should
be noted that different Postscript printer drivers behave differently
and it is possible to find ones that do not store any metadata.

Clearly, the authoring software does not, and cannot, know about
the metadata added by the printer driver. The printer manufacturer,
on the other hand, has no reason to consider printing to a file as
a significant application of the driver. This kind of loose coupling
between the software components means that the ultimate responsi-
bility for managing metadata is left to the end-user or organization.

4.2 PDF conversion
While Postscript can still be used for online publishing of print-

able documents, it has been mostly replaced by the Portable Doc-
ument Format (PDF). We tested multiple methods for converting
documents to PDF. This is often done by printing the document
into a Postscript file and then using special conversion software to
turn the Postscript into PDF. We tested two common conversion
tools: Adobe Acrobat Distiller and Ghostscript. By default, both

copy the metadata from Postscript comments into the PDF file (al-
though for Ghostscript this appears to be version dependent). For
example:

/Title(Microsoft Word - Testing.docx)
/Author(tuomaura)

Thus, the metadata from printer drivers may be propagated to
the final PDF file. The conclusion is that publishing documents as
PDF does not guarantee freedom from unwanted metadata unless
the creator has complete control over every stage in the conversion
process or cleans the final document of metadata with a PDF ed-
itor. In general, when the final document is produced with a tool
chain that includes components from multiple vendors, such as a
printer manufacturer and different software publishers, metadata
may be introduced at any stage in the process. It is necessary but
not sufficient for privacy to be able to clean out metadata in the
main authoring tool such as the word processor.

One solution would obviously be a more integrated process for
producing the final document. For example, XFig avoids the pit-
falls associated with printer drivers because it has built-in support
for Postscript output. For another example, we experimented with
a save-as-PDF feature in a word processor and did not find it to
insert any unwanted metadata. While this may be the best solu-
tion for the particular problem of PDF conversion, it is clear that
there will always be situations where it is desirable to use a chain
of independent tools and software components. In such cases, it is
important to consider the privacy implications.

In the LaTeX-based process of Figure 4(b), similar problems oc-
curred in document conversion. Depending on how it is in invoked,
the dvips conversion tool adds either the DVI file name or its full
name and path to the Postscript output. The file path usually con-
tains the username. This information is propagated all the way to
the PDF thought Ghostscript.

4.3 Embedded objects
Complex documents often contain embedded objects that have

been produced with a different authoring tool. The objects may
contain metadata that is not detected and cannot be removed by the
software that processes the main document. In this study, we tested
three types of embedded content: Embedded Postscript (EPS) fig-
ures, JPEG digital photographs and Object Linking and Embedding
(OLE) objects, all of which were added to Word documents. All
three kinds of embedded content were found to hide some meta-
data.

Embedded Postscript objects, just as any other Postscript docu-
ments, can contain headers and comments. When the main docu-
ment is printed, the EPS is simply copied into the output file. Thus,
any metadata in the EPS file will also be in the output Postscript.
The embedded headers are not converted to PDF metadata, though,
because those values are taken from the main document.

Digital images contain metadata inside the image file in the Exif
format [11]. Most of the data is put there by the digital camera,
such as the date when the picture was taken and exposure informa-
tion. Photographers may add other notes such as the name of the
artist. When the JPEG file is embedded in a Word document, all
this metadata is retained. When printing the main document to a
Postscript file, the information is lost, however.

OLE objects can be produced with any software that is compati-
ble with the specification. If the main document and the embedded
object are produced by software from different vendors, it is gen-
erally impossible for one to know about the metadata in the other.
Thus, the data must be purged separately from each object and from

the main document. There is clearly a need for a standard inter-
face for propagating the instructions for metadata-deletion to the
objects. Moreover, the data structures for embedding objects may
contain information that exists neither in the original main docu-
ment nor in the embedded object. This information includes the
file path and name of the source file of the object and the username
of the person who did the embedding. The file path is needed as
long as the object is linked to the original file while the username
is clearly unnecessary information. It is possible to break the link
to the object file and, thus, remove the file information. Future
versions of Word also avoid storing the username in the OLE data
structures.

5. ANONYMOUS CONFERENCE SUBMIS-
SIONS

Out of curiosity, we used the PII detection tool on anonymized
conference submissions from two computer-security conferences
where privacy was a topic of interest. Clearly, it is a problem that
we need to know which strings to look for. Since we did not want
to breach the anonymity of the submissions, the test was done af-
ter the publication of the conference program. As search strings,
we used the names, affiliations and email addresses (which often
contain the username) of the authors of the accepted papers. We
searched for these strings in the original, supposedly anonymous,
submissions in Postscript and PDF formats. Any matches in the
list of references or other printable text were ignored as such oc-
currences are typically intentional.

We found that 3 out of 43 submissions had not been anonymized
correctly. One PDF document contained the authors’ names in the
\Author field, one Postscript file contained the author’s name in-
side an EPS figure, and another one contained the author’s user-
name and name in an EPS figure. Another Postscript submission
was found to contain the file path of the source DVI file, including
the author’s username, but our tool did not detect it because it was
not given the right search string.

This sample is by no means representative of all conference sub-
missions and the number of mistakes found was, in fact, lower than
expected. As the anonymization is only intended to protect against
inadvertent bias (not a malicious attacker), authors may not have
been as careful to anonymize their submissions as they would have
been in a different situation. Therefore, we will not try to draw con-
clusions based on the exact number of incorrectly anonymized pa-
pers. However, it does show that when asked to produce an anony-
mous electronic document, even security experts don’t always get
it right. In normal operation, a tool like ours would be run by the
submissions web site or, preferably, by the authors. In the former
case, the search strings could be obtained from the submission form
while, in the latter, they could be collected from the author’s com-
puter.

6. CONCLUSION
We described a tool for auditing documents for PII, including un-

intentionally hidden identifiers, that could be used to trace the doc-
ument back to the authors or their organisation. The tool has a novel
feature for automatically collecting potentially offending identifiers
and it searches for them in various encodings anywhere in the docu-
ment without needing to know anything about the document struc-
ture. We used the tool to discover where and why user, machine
and organisation identifiers are left in published documents. While
most of the literature focuses on the shortcomings of single pieces
of software, we found that the modern document authoring process
typically involves a chain of tools and software components, such

as format converters and printer drivers, that are often used in ways
not envisioned by their developers. Each software tool or compo-
nent may contribute to the metadata in the document. Therefore,
in order to create documents without identity-revealing data, one
must carefully consider every part of the authoring process.

7. REFERENCES
[1] Protocol standard for a NetBIOS service on a TCP/UDP

transport: Concepts and methods. RFC 1001, March 1987.
[2] Extensible markup language (XML) 1.0 (fourth edition).

W3C recommendation, August 2006.
[3] Alfred V. Aho and Margaret J. Corasick. Efficient string

matching: an aid to bibliographic search. Communications of
the ACM, 18(6):333–340, June 1975.

[4] Matt Bishop. Introduction to Computer Security. Addison
Wesley, 2005.

[5] Robert S. Boyer and J. Strother Moore. A fast string
searching algorithm. Communications of the ACM,
20(10):762–772, October 1977.

[6] Simon Byers. Information leakage caused by hidden data in
published documents. IEEE Security & Privacy Magazine,
2(2):23–27, March/April 2004.

[7] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and
Mendel Rosenblum. Understanding data lifetime via whole
system simulation. In Proc. 13th USENIX Security
Symposium, pages 321–336, San Diego, CA USA, August
2004.

[8] A. Costello. Punycode: A bootstring encoding of Unicode
for internationalized domain names in applications (IDNA).
RFC 3492, 2003.

[9] Kurt Foss. Washington Post’s scanned-to-PDF sniper letter
more revealing than intended. Planet PDF, October 2002.

[10] N. Freed and N. Borenstein. Multipurpose Internet mail
extensions (MIME) part one: Format of Internet message
bodies. RFC 2045, November 1996.

[11] Japan Electronics and Information Technology Industries
Association. Exchangeable image file format for digital still
cameras: Exif Version 2.2, April 2002.

[12] Anick Jesdanun. Data leak highlights complexities of
electronic documents. Associated Press, 4 May 2005.

[13] Paul J. Leach and Rich Salz. UUIDs and GUIDs. Internet
Draft draft-leach-uuids-guids-01, IETF, February 1998.
Archived at http://www.watersprings.org/.

[14] John Markoff. A growing compatability issue in the digital
age: Computers and their user’s privacy. New York Times,
March 1999.

[15] OLE update for Windows 95. Knowledge-base article
139432 revision 2.2, Microsoft, August 2004.

[16] How to minimize metadata in Word 2003. Knowledge-base
article 825576 revision 2.6, Microsoft, January 2006.

[17] Steven J. Murdoch and Maximillian Dornseif. Far more than
you ever wanted to tell: Hidden data in Internet published
documents. Presentation at 21st Chaos Communication
Congress, December 2004.

[18] Netscape Communications Corporation. Client-Side
JavaScript Reference, May 1999.

[19] Andreas Pfitzmann and Marit Hansen. Anonymity,
unlinkability, unobservability, pseudonymity, and identity
management – a consolidated proposal for terminology.
Technical Report v0.26, TU Dresden, December 2005.

[20] James Risen. Secrets of history: The C.I.A. in Iran. New York

Times on the Web, 2000.
[21] Richard M. Smith. Microsoft Word bytes Tony Blair in the

butt. Web posting, computerbytesman.com, June 2003.

