
Reconciling multiple IPsec and firewall policies

Tuomas Aura, Moritz Becker, Michael Roe, Piotr Zieliński

Microsoft Research

Abstract. Manually configuring large firewall policies can be a hard
and error-prone task. It is even harder in the case of IPsec policies that
can specify IP packets not only to be accepted or discarded, but also to
be cryptographically protected in various ways. However, in many cases
the configuration task can be simplified by writing a set of smaller, in-
dependent policies that are then reconciled consistently. Similarly, there
is often the need to reconcile policies from multiple sources into a single
one. In this paper, we discuss the issues that arise in combining multiple
IPsec and firewall policies and present algorithms for policy reconcilia-
tion.

1 Introduction

We would like to develop software tools that make it easier for system adminis-
trators to correctly configure IPsec:

– IPsec policies are typically configured using the same representation that is
used internally by the OS kernel for the IPsec operation. This representation
has not been designed for usability. It easy to make mistakes in the policy
configuration and to allow accesses that one wanted to deny, and vice versa.
We would like to provide some alternative means of specifying the security
policy — one that is easier to understand, and harder to get wrong — and
use it to automatically generate the policy that the operating system uses
internally.

– Mobile devices move regularly between networks and security domains such
as office, home, and cellular networks. Since the IPsec policy on the mobile
device is typically configured by a single administrator, it protects only com-
munication within one domain. For example, business laptops are usually not
configured to use IPsec when communicating with the user’s home PC. We
would like be able to combine policies from two or more security domains,
unless they are inherently in conflict with each other. (We are just concerned
with the policies. Each domain must have its own means of authentication,
which may also require configuration, but that is outside the scope of this
paper.)

– Applications, such as a web server, and even kernel-level protocols, such as
Mobile IPv6[4], may require changes to the local IPsec policy when they
are installed. It is impossible for a system administrator to anticipate all
such policies. Thus, it is necessary to compose policies defined by the ad-
ministrator, local user, and various applications. We would like to do this



policy composition automatically and in a provably correct way, rather than
manually by the administrators.

These objectives have led us to consider the problem of reconciling policies:
given two or more security policies, how do we automatically generate a combined
policy that meets the requirements of all of them? In the rest of this paper, we
will describe an algorithm for reconciliation and give a proof of its correctness.
Using this algorithm, complex policies can be constructed by combining simple
building blocks. For example, a system administrator could write a separate
policy for each service that a machine provides, and then reconcile them to form
a policy for the machine. When security policies are generated by instantiating
templates, as is commonly done in large systems, the reconciliation algorithm
allows us to handle machines that have multiple roles: instantiate the template
for each role separately, and then reconcile the results.

The reconciliation algorithm can also be used when a network administrator
sets a policy for every machine on a network, but the administrator of each
local machine is permitted to add additional constraints: reconcile the policies
specified by the two levels of administration. If necessary, this can be extended
to more than two policy sources, so that we could reconcile policies set by the
network administrator, the local machine administrator, the administrator of a
visited network (e.g., at home), the user, and the installed applications.

2 IPsec and firewall policies

In the IPsec architecture[5], the security policy is modelled as an ordered list of
〈selector, action〉 pairs. This list is known as the security policy database (SPD).
Each packet sent or received is compared against the selectors to find the first one
that matches, and then the corresponding action is taken. The possible actions
are:

– bypass - pass the packet through without modification
– discard - drop the packet
– protect - apply some form of cryptographic processing, such as encryption

or decryption

protect is a family of actions, rather than a single action: sending packets
through a secure tunnel to gateway A is different from sending them through a
similar tunnel to gateway B. In the same way, encrypting for confidentiality is a
different action from adding a MAC for integrity, and encrypting with DES is a
different action from encrypting with AES.

The order of the SPD entries matters. Suppose that a particular packet
matches the selectors in two SPD entries, one with an action of bypass and
another with an action of discard. The action that is taken depends on which
of the entries appears first.



3 Extended policies

The security policy database specifies a single action to be taken for each pos-
sible packet. This is what is needed to enforce the policy at run-time: the IPsec
implementation is passed a packet, it looks up the corresponding action, and
carries it out. We have found that reconciliation needs extra information about
the policy.

Suppose that we defined the reconciliation of polices pA and pB to be a policy
that takes the same action as both pA and pB . Then it would be possible to
reconcile two policies if and only if they specify the same action in all situations.
This isn’t very useful.

If actions could be ordered in such a way that a “higher” action always met
all the requirements that were met by a “lower” one, then we could reconcile
two policies by taking the least upper bound of the action specified by each.

Unfortunately, it is not possible to order actions in this way. Security policies
can express both safety properties (packets of this form must not be accepted,
because otherwise the system would be vulnerable to an attack) and liveness
properties (packets of this form must be accepted, because otherwise the system
would not be able to fulfil its function). If we are just given an action, we cannot
always tell if it relates to a safety or a liveness property, and we cannot tell which
alternative actions would also provide that property.

Suppose that the action specified by a policy is bypass. If this policy is
expressing a liveness property (packets of this form must be accepted), then
discard is not an acceptable substitute. If it is expressing a safety property
(packets of this form can be accepted without compromising security), then dis-
card is acceptable. Similarly, if a discard action is expressing a safety property
(packets of this form must be discarded), then bypass is not an acceptable sub-
stitute. But if the discard action was expressing a liveness property (the system
will continue to work even if packets of this form are dropped), then bypass is
OK. This means that we cannot order discard and bypass (or even the various
protect actions) in such a way that one is always an acceptable substitute for
the other.

To capture the additional information, we extend the SPD format to specify
a set of allowed actions, rather than a single action. The set contains every
possible action that would be acceptable — i.e. would not prevent the system
from working and would not make it vulnerable to an attack. Thus, we have to
consider all subsets of discard, bypass, and the various protect actions.

With this extra information, we can now define the reconciliation of two
policies: for all possible packets, the allowed actions under the reconciled policy
must also be allowed under each component policy.

These extended policies cannot be directly used by the IPsec implementation.
To make them usable, we need to choose just one of the permitted actions to
be the action that is actually taken. This choice could be made at random, but
this would not take into account the fact that there is often a strong preference
between different permitted actions. In a later section, we will consider how to
choose the “best” of the permitted actions.



There is a more serious problem with choosing one of the permitted actions:
the intersection of two non-empty sets can be empty. For example,

{bypass} ∩ {discard} = ∅

Here, we cannot choose an action from the (empty) set of permitted actions,
and reconciliation fails. There is a genuine conflict between the policies — one
says that packets of a certain form must be accepted, and one says that they
must be discarded. If this happens, our algorithm can output the ranges of packet
headers that cause a conflict.

4 Preferences

When a policy permits more than one action, there may still be reasons for
preferring one action over another. For example, bypass might be preferable
to protect because the system runs faster without encryption. Alternatively,
protect might be preferable to bypass because it gives a higher level of security,
even if bypass meets the policy’s minimum acceptable level of security. As we
cannot place the actions in preference order without additional information,
we need to extend the SPD format still further to include information about
preferences.

Suppose that we have reconciled N policies, and now wish to choose (for each
possible packet) a single action from the set of permitted actions. We would like
to take into account the preferences of each of the N policies. This is like holding
an election, with each of the N policies being a voter. Any existing voting scheme
can be used. We do not advocate a particular scheme, because there is no one
scheme that is best in all circumstances[1].

It may be the case that the user considers some of the reconciled policies to
be more important than others. In this case, the important policies can be given
strict priority or votes with greater weight.

If we do not include preferences, policy reconciliation is associative and com-
mutative. We can reconcile A, B and C by reconciling A with B, treating the
result as a single policy (retaining the action sets, rather than choosing a sin-
gle action), and reconciling it with C. This property is useful when we wish to
reconcile several administratively-imposed policies, treat the result as a single
policy, and transmit it to client machines which reconcile it with one or more
user-specified policies.

If we add preferences, the associative property may no longer hold (depending
on which voting scheme is chosen). With some voting schemes, the result of an
election with voters A, B and C cannot be calculated by merging A and B’s
preferences into a single hypothetical voter and then holding an election with
this voter and C. This has implications for the data structures we use to represent
the intermediate steps in the reconciliation of three or more policies: one possible
approach is keep track of the preferences in each of the component policies, and
hold a single election right at the end.



5 Basic requirements for reconciliation

In this section, we briefly summarise the informal requirements for policy recon-
ciliation.

– Component policies may specify multiple allowed actions for a packet based
on its headers. The reconciled policy may also specify multiple actions but,
before installing the policy into the IPsec implementation, one of them must
be selected as the unique allowed action.

– The allowed actions represent absolute requirements. When a packet is pro-
cessed by the reconciled policy, the result must conform to every one of the
component policies. If the component policies have conflicting requirements,
the reconciliation fails.

– In addition to absolute requirements, policies may also specify preferences or
priorities. These may be used to select the unique action if there are multiple
possibilities. Note that most existing policy-specification mechanisms cannot
express preferences.

6 Reconciliation theory

This section presents the theoretical justification for our policy reconciliation
algorithm. Theorem 26 is the main result of this paper as it proves the correctness
of a simple yet non-obvious algorithm. An impatient reader may want to take
first a look in the example in the appendix.

An IPsec policy maps IP packets to actions based on their headers. In this
section, the header and action spaces are treated as unstructured sets. The set
of all IP headers is denoted by H and the set of all actions by A. Our definition
of policy actions differs from existing IPsec implementations in that there can
be multiple allowed actions for each packet.

Definition 1 (policy). A policy entry is a pair 〈s, a〉 where s ⊆ H is a selector
and a ⊆ A is the set of actions. A policy is a sequence of policy entries p =
〈e1, e2, . . . , en〉 = 〈〈s1, a1〉, 〈s2, a2〉, . . . , 〈sn, an〉〉 where ∪n

i=1si = H. n is called
the length of p. �

In order to define the refinement and equivalence of policies, we need to define
how the policy maps IP packets, based on their headers, to actions. The allowed
actions for the packet are determined by the first policy entry that matches the
packet header.

Definition 2 (matching entry). A policy entry 〈s, a〉 matches a header h ∈
H iff h ∈ s. �

Definition 3 (catching entry). Let p = 〈e1, . . . , en〉 be a sequence of policy
entries. Let h ∈ H be a header. If h matches ei and it does not match any ej

with j < i, we say that the ith policy entry in p catches h. �



Definition 4 (allowed actions). Let p = 〈e1, . . . , en〉 be a sequence of policy
entries. If ei = 〈s, a〉 catches h ∈ H, we say that the allowed actions for h are
Allowed(p, h) = a. If there is no policy entry in p that catches h, then we denote
Allowed(p, h) =⊥. �

Note that, in order to accommodate fragments of policies, the above two
definitions refer to a sequence of policy entries rather than full policies.

Definition 5 (equivalence). Two policies p and p′ are equivalent iff
Allowed(p′, h) = Allowed(p, h) for all h ∈ H. �

Definition 6 (refinement). A policy p′ refines p iff
Allowed(p′, h) ⊆ Allowed(p, h) for all h ∈ H. �

Definition 7 (implementability). A policy is implementable iff
Allowed(p, h) 6= ∅ for all h ∈ H. �

The following lemma follows directly from the definitions of policy and catch-
ing entry.

Lemma 8. Given a policy and h ∈ H, there is a policy entry that catches h. �

Lemma 9. Let p = 〈e1, . . . , en〉 be a policy and let p′ = 〈e1, . . . , ei−1, ei+1, . . . , en〉
be a sequence of policy entries obtained from p by removing the ith entry. Let
h ∈ H. If ei does not catch or does not match h in p, then Allowed(p, h) =
Allowed(p′, h). �

Proof. Let p, p′ and h be as in the lemma and assume that ei does not catch h
in p. By lemma 8 there is some ej that catches h where j 6= i. In both p and
p′, ej is the first entry that matches h. One can see this by considering both
situations where j < i and j > i. If j < i, then it does not matter whether ei

matches h or not because it is not the first matching entry anyway. On the other
hand, if j > i, then ei cannot match h. In neither case is the first matching entry
changed by the removal of ei.

Lemma 10. Removing one or more policy entries that that do not catch any
headers produces an equivalent policy. �

Proof. A selector that does not catch any headers has no effect on the union of
selectors. Thus, the union remains equal to H when some such policy entries are
deleted. The equivalence follows directly from lemma 9.

RFC 4301 defines the concept of decorrelation. The idea is that if the selectors
in the policy are independent of each other, then the order of the policy entries
does not matter.



Definition 11 (decorrelation). Let p = 〈〈s1, a1〉, 〈s2, a2〉, . . . , 〈sn, an〉〉 be a
policy. p is decorrelated iff si ∩ sj = ∅ for all 1 ≤ i < j ≤ n. We denote by
Decor(p) the following function:

Decor(p) = 〈〈s∗i , ai〉 | s∗i = si \ ∪i−1
j=1sj and i = 1 . . . n〉

�

Decor(p) is the obvious way of converting policies to equivalent decorrelated
ones. This is verified by the following lemma.

Lemma 12. If p is a policy, Decor(p) is a decorrelated policy. �

Proof. Let p = 〈〈s1, a1〉, . . . , 〈sn, an〉〉 be a policy. We show first that Decor(p)
is a policy. ∪n

i=1s
∗
i = ∪n

i=1(si \ ∪i−1
j=1sj) = ∪n

i=1si. Since p is a policy this is equal
to H and, thus, Decor(p) is a policy.

Next, we show that Decor(p) is decorrelated. Consider any s∗i = si \ ∪i−1
j=1sj

and s∗l = sl\∪l−1
j=1sj with i < l. Then, s∗i ⊆ si ⊆ ∪l−1

j=1sj , which does not intersect
with s∗l .

If p is a decorrelated policy, then Decor(p) = p. We can also prove the
following two lemmas to show that the equivalence of policies is preserved by
decorrelation and by arbitrary reordering of the policy entries in the decorrelated
policy.

Theorem 13. Any policy p is equivalent to Decor(p). �

Proof. Let p be a policy and h a header. The actions in the ith entries of p and
Decor(p) are the same for any i. Thus, it suffices to show that the same (ith)
entry in both policies catches h. If the ith entry in p catches h, it means that
h ∈ si and h 6∈ sj for j = 1 . . . i− 1. This is equivalent to h ∈ si \ ∪i−1

j=1sj , which
is the selector of the ith entry in Decor(p). Since Decor(p) is decorrelated, this
can happen if and only if the ith entry in Decor(p) catches h.

We now define formally the main requirement for reconciliation algorithms,
i.e., the fact that the reconciled policy must not violate any of the component
policies.

Definition 14 (correct reconciliation). Let P be a set of policies and p a
policy. p is a correct reconciliation of P iff p refines every p′ ∈ P . �

The following lemma follows from the definitions of correct reconciliation,
refinement and equivalence.

Lemma 15. Let P = {p1, . . . , pm} and P ′ = {p′1, . . . , p′m} be sets of policies
such that p′k is equivalent to pk for k = 1 . . .m. If a policy p is a correct recon-
ciliation of P , it is also a correct reconciliation of P ′. �



Lemma 16. Let P be a set of policies and p a correct reconciliation of P . If a
policy p′ is equivalent to p, then p′ is also a correct reconciliation of P . �

Proof. The lemma, too, follows directly from the definitions of correct reconcil-
iation, refinement and equivalence.

Probably the most intuitive way of reconciling policies is to decorrelate them
first and then take a cross product of the component policies. The number of
entries in the reconciled policy is equal to the product of the number of entries
in the component policies. The selectors in the reconciled policy are computed
as intersections of the component selectors and the actions as intersections of
the component actions.

Definition 17 (crossproduct set). Let P = {p1, . . . pm} be a set of policies
where

pk = 〈ek
1 , . . . , ek

nk
〉 = 〈〈sk

1 , ak
1〉, . . . , 〈sk

nk
, ak

nk
〉〉

and nk is the length of pk for k = 1 . . .m. Furthermore, denote

s(i1,i2,...,im) = ∩m
k=1 sk

ik
,

a(i1,i2,...,im) = ∩m
k=1 ak

ik
, and

e(i1,i2,...,im) = 〈s(i1,i2,...,im), a(i1,i2,...,im)〉.

We call the set of policy entries E = {e(i1,i2,...,im) | 1 ≤ ik ≤ nk for k = 1 . . .m}
the crossproduct set of P . �

Definition 18 (policy crossproduct). Let P be a set of policies. Any policy
that is obtained by ordering the crossproduct set of P linearly is a crossproduct
of P . �

Lemma 19. Let P be a set of policies and E its crossproduct set. Any linear
ordering of E is a policy. �

Proof. Let P be a set of decorrelated policies and E its crossproduct set. Denote
the elements of P and E be as in definition 17. We observe that the following
reduction holds:

∪ {s(i1,i2,...,im) | 1 ≤ ik ≤ nk for k = 1 . . .m}
= ∪n1

i1=1 ∪
n2
i2=1 . . . ∪nm−1

im−1=1 ∪
nm
im=1(∩

m
k=1s

k
ik

)

= ∪n1
i1=1 ∪

n2
i2=1 . . . ∪nm−1

im−1=1 ∪
nm
im=1((∩

m−1
k=1 sk

ik
) ∩ sm

im
)

= ∪n1
i1=1 ∪

n2
i2=1 . . . ∪nm−1

im−1=1 ((∩m−1
k=1 sk

ik
) ∩ (∪nm

im=1s
m
im

))

= ∪n1
i1=1 ∪

n2
i2=1 . . . ∪nm−1

im−1=1 ((∩m−1
k=1 sk

ik
) ∩H)

= ∪n1
i1=1 ∪

n2
i2=1 . . . ∪nm−1

im−1=1 (∩m−1
k=1 sk

ik
) = . . . = H

The equivalence with H results from repeating the same reduction m times.



Lemma 20. Let P be a set of decorrelated policies and E its crossproduct set.
Any linear ordering of E is a decorrelated policy. �

Proof. Let P be a set of decorrelated policies and E its crossproduct set. Denote
the elements of P and E as in definition 17. By lemma 19, a linearization of E
is a policy. We need to show that a linearization of E is decorrelated. Assume
the contrary, i.e., that for some e(i1,i2,...,im) 6= e(j1,j2,...,jm) ∈ E, there exist an
h ∈ H such that h ∈ s(i1,i2,...,im) and h ∈ s(j1,j2,...,jm). From the definition of
s(i1,i2,...,im) it follows that h ∈ sk

ik
and h ∈ sk

jk
for all k = 1 . . .m. Since all pk

are decorrelated, it must be the case that ik = jk for all k = 1 . . .m. Thus,
e(i1,i2,...,im) = e(j1,j2,...,jm). This contradicts with our assumption, which proves
the claim.

Theorem 21. Let P be a set of decorrelated policies. Every crossproduct of P
is a correct reconciliation of P . �

Proof. Let P be a set of decorrelated policies and E its crossproduct set. Denote
the elements of P and E be as in definition 17. Let p be a sequence obtained
by ordering linearly the elements of E. From lemma 20, we know that p is a
decorrelated policy. It remains to show that p refines all policies in P . Consider
an arbitrary pl ∈ P and h ∈ H. There is a unique policy entry e(i1,i2,...,im) =
〈s(i1,i2,...,im), a(i1,i2,...,im)〉 in p that matches h. s(i1,i2,...,im) = ∩m

k=1s
k
ik
⊆ sl

il
where

il is the index of the unique policy entry in pl that matches h. The allowed actions
for h in pl are al

il
. The allowed actions for h in p are a(i1,i2,...,im) = ∩m

k=1a
k
ik
⊆ al

il
.

This shows that, for an arbitrary h, Allowed(p, h) ⊆ Allowed(pl, h). Thus, p
refines pl, which concludes the proof.

Theorem 22. The following algorithm computes a correct reconciliation of a
set of policies:

1. Decorrelate each input policy by computing Decor(p).
2. Compute a crossproduct of the non-repetitive, decorrelated policies.
3. Remove all policy entries that have empty selectors from the crossproduct.

�

Proof. By theorem 21, step 2 computes a correct reconciliation. By lemmas
15 and 16, we can replace policies with equivalent ones before and after the
reconciliation step. By theorem 13 and lemma 10, steps 1 and 3 replace policies
with equivalent ones. Thus, the algorithm produces a correct reconciliation.

Note that step 1, i.e., computing the decorrelated policy is non-trivial because
it involves set intersections and minus operations on sets. The resulting selectors
may produce selectors that are not simple ranges even if all the selectors in the
input were.

It is not surprising that the decorrelated policies can be reconciled by taking
the cross product of their entries. What is more surprising is that the decor-
relation step is, in fact, unnecessary. Instead, it suffices to retain some of the
order from the component policies. The advantage of this algorithm is that that
intersection is the only set operation required.



Definition 23 (crossproduct lattice order). Let P be a set of policies and
E its crossproduct set. Denote the elements of P and E as in definition 17.
The crossproduct lattice order on E is the partial order � on E such that
e(i1,i2,...,im) � e(j1,j2,...,jm) iff ik ≤ jk for all k = 1 . . .m. �

Definition 24 (ordered crossproduct). Let P be a set of policies. Any pol-
icy that is obtained by extending the crossproduct lattice order on E to a linear
order is an ordered crossproduct of P . �

An ordered crossproduct is clearly a crossproduct, only with more restrictions
on the order of items. Thus, lemma 19 is sufficient to show that an ordered
crossproduct is a policy.

It would be possible to further relax the requirements on the order policy
entries. The order of two entries is unimportant, for example, if the selectors
do not intersect or if the actions are equal. The above definition is, however,
sufficient to prove the correctness of the algorithms presented in this paper.
Further optimisations may be possible with a more relaxed definition of the
ordering.

Lemma 25. Let P be a set of policies, E its crossproduct set, and p an ordered
crossproduct of P . Denote the elements of P and E as in definition 17. Let
h ∈ H. If e(j1,j2,...,jm) catches h in p, then ek

jk
catches h in pk for all k = 1 . . .m.

�

Proof. Let P , E and p be as in the theorem, h ∈ H, and e(j1,j2,...,jm) the policy
entry that catches h in p. Denote by � the crossproduct lattice order on E.
h ∈ s(j1,j2,...,jm) = ∩m

l=1a
l
jl
⊆ ak

jk
for k = 1 . . .m. Thus, ek

jk
= 〈sk

jk
, ak

jk
〉 matches

h in pk for k = 1 . . .m.
We need to show that the jkth entry is the first entry that matches h in pk

for k = 1 . . .m. Assume the contrary, i.e., for some particular 1 ≤ l ≤ m, the
first entry in pl that matches h is el

il
and il < jl. Let ik = jk for k 6= l. Now,

the condition of definition 23 is fulfilled. Therefore, e(i1,i2,...,im) � e(j1,j2,...,jm).
Moreover, h ∈ sk

ik
for k = 1 . . .m, which implies h ∈ ∩m

l=1s
l
il

= s(i1,i2,...,im), i.e.,
that s(i1,i2,...,im) matches h. But if that is the case, then s(j1,j2,...,jm) is not the
first matching entry for h in p, which contradicts with the fact that e(j1,j2,...,jm)

catches h. Since our assumption lead to this contradiction, it must be false and
the jkth entry must be the first one that matches h in each pk for k = 1 . . .m.
This implies the lemma.

Theorem 26. Let P be a set of policies and p an ordered crossproduct of P . p
is a correct reconciliation of P . �

Proof. Let P be a set of policies, E its crossproduct set, and p an ordered
crossproduct of P . Denote the elements of P and E as in definition 17.

We need to show that p refines pk ∈ P for k = 1 . . .m. Consider arbitrary
1 ≤ k ≤ m and h ∈ H. By lemma 8, there is some e(j1,j2,...,jm) that catches
h in p. By lemma 25, ek

jk
catches h in pk. a(j1,j2,...,jm) = ∩m

l=1a
l
jl
⊆ ak

jk
, i.e.,



Allowed(p, h) ⊆ Allowed(pk, h). Since this is true for an arbitrary k and h, p
refines pk for all k = 1 . . .m, which implies that p is a correct reconciliation of
P .

A policy set may have correct reconciliations that are not an ordered crossprod-
ucts. They may be either more restrictive policies (e.g., a trivial policy that maps
all headers to an empty action set), or equivalent policies with different order or
granularity of entries. The following theorem proves that the ordered crossprod-
uct is, in this sense, the most general reconciliation.

Theorem 27. Let P be a set of policies and p an ordered crossproduct of P .
Every correct reconciliation of P refines p.

Proof. Let P be a set of policies, E its crossproduct set, and p an ordered
crossproduct of P . Denote the elements of P and E as in definition 17.

Consider any h ∈ H. By construction of p, Allowed(p, h) = ∩m
k=1a

k
ik

. This is
equal to ∩m

k=1Allowed(pk, h), by lemma 25, or, equivalently, ∩p′∈P Allowed(p′, h).
Now suppose some policy q is a correct reconciliation of P , that is, for all p′ ∈ P ,
Allowed(q, h) ⊆ Allowed(p′, h). Therefore, Allowed(q, h) ⊆ ∩p′∈P Allowed(p′, h) =
Allowed(p, h), as required.

Theorem 28. The following algorithm computes a correct reconciliation of a
set of policies:

1. Compute an ordered cross-product of the input policies.
2. Remove all policy entries that have empty selectors from the crossproduct.

�

Proof. By theorem 26, step 2 computes a correct reconciliation. By lemma 16,
we can replace the policy with an equivalent one after the reconciliation step.
By lemma 10, step 2 replaces policies with equivalent ones. Thus, the algorithm
produces a correct reconciliation.

7 Reconciliation algorithm

Theorem 22 gives an intuitive algorithm for reconciling a set of IPsec policies.
The policy entries are decorrelated before the reconciliation step. The problem
with this algorithm is that the selectors in most IPsec policies and implementa-
tions are simple multi-dimensional ranges (e.g. address ranges or port ranges or
both). Decorrelation, however, requires one to compute set union and minus op-
erations. (Figure 8 has pseudocode for decorrelation.) The decorrelated selectors
are no longer simple multi-dimensional ranges but complex areas in the selector
space. The reconciled policy will also contain such complex selectors. Since IPsec
implementations do not accept policies with such selectors, one would have to
divide each entry into simple subranges and create a separate policy entry for



Reconcile(in p1, in p2, out p)

OrderedCrossproduct(p1, p2, p);

RemoveEmpty(p);

OrderedCrossproduct(in p1, in p2, out p)

p = 〈〉;
for (e1 ∈ p1)

for (e2 ∈ p2)

p.append(〈 e1.selector ∩ e2.selector,

e1.action ∩ e2.action 〉);

RemoveEmpty(in/out p)

for (i = e1.length downto 1)

if (e1.entry(i).selector == ∅)
e1.delete(i);

Fig. 1. Pseudocode for reconciling two policies

each. This may increase substantially the number of policy entries in the final
reconciled policy.

The main result of this paper, theorem 28 shows that it is possible to avoid
the decorrelation step. Moreover, intersection is the only set operations that is
required to compute the reconciled policy. Figure 7 provides pseudocode for a
reconciliation algorithm that is based on theorem 28. For readability, the pseu-
docode takes as its input only two policies but it can be easily extended to an
arbitrary number of component policies.

Since the intersection of two simple ranges is a simple range, the policy
crossproduct will have only simple multi-dimensional ranges as selectors. This
means that the resulting policy will have at most as many lines as is the product
of the number of entries in the component policies, and that the reconciled
policy is directly usable in most IPsec implementations. The correctness of this
algorithm is not obvious, which is why we needed to develop the theory in the
previous section.

A key to understanding the pseudocode is that the the nested loops in the
function OrderedCrossproduct output the entries of the crossproduct in a lexi-
cographic order, which clearly is a linearization of the crossproduct lattice order
(def. def:orderedcrossproduct).

The final output Reconcile algorithm may still contain more than one al-
lowed action. The preferred action should be chosen based on some priority
scheme, as discussed in section 4. After that, the policy may be further pro-
cessed and its implementability may be checked with the algorithms presented
in the next section.



8 Shadowing and collecting

The result of the policy reconciliation in the previous section may still contain
redundant entries, that is, ones that can safely be removed without changing
the behaviour of the policy. Removing redundant entries reduces the size of the
policy and, usually, improves performance.

We discuss two specific types of redundancy, and how to eliminate them. We
say that a policy entry is shadowed if its selector is covered by the selectors
before it, and that it is collected if the later entries in the same policy map
headers caught it to the same allowed actions. In either case, the entry can be
removed. Again, the reader may want to take first a look at the example in the
appendix.

Definition 29 (shadowing). Let p = 〈〈s1, a1〉, . . . 〈sn, an〉〉 be a policy. 〈si, ai〉
is shadowed iff si ⊆ ∪i−1

j=1sj . �

Definition 30 (collecting). Let p = 〈e1, . . . , en〉 be a policy. ei = 〈s, a〉 is
collected iff for every h ∈ H that is caught by ei, Allowed(p, h) = Allowed(p′, h)
where p′ is the sequence of policy entries p′ = 〈ei+1, . . . , en〉. �

Lemma 31. A policy entry is shadowed iff it does not catch any headers. �

Proof. Let p = 〈〈s1, a1〉, . . . 〈sn, an〉〉 be a policy. Assume first that the policy
entry 〈si, ai〉 is shadowed, i.e., si ⊆ ∪i−1

j=1sj . Let h ∈ H. If 〈si, ai〉 matches h,
then h ∈ si ⊆ ∪i−1

j=1sj . This implies h ∈ sj , i.e., 〈sj , aj〉 matches h for some
j = 1 . . . (i− 1). Thus, the ith entry cannot not catch h.

On the other hand, assume that the policy entry 〈si, ai〉 does not catch any
headers. If si = ∅, the entry is shadowed by definition. Otherwise, consider an
arbitrary h ∈ si. Then, 〈si, ai〉 matches h. To prevent it from catching h, some
earlier entry must match h, i.e., h ∈ sj for some j = 1 . . . (i − 1). Thus, h ∈ si

implies h ∈ ∪i−1
j=1sj , which means that the ith entry is shadowed.

Lemma 32. A policy is implementable iff every policy entry 〈s, a〉 for which
a = ∅ is shadowed. �

Proof. By the definition of implementable, a policy p is implementable iff
Allowed(p, h) 6= ∅ for all h ∈ H. By the definition of allowed actions, this is
the case iff for each entry 〈s, a〉 in p, either a 6= ∅ or the entry does not catch
any headers. In the latter case, by lemma 31, the entry is shadowed.

The following lemma follows directly from lemmas 10 and 31.

Theorem 33. Removing one or more shadowed policy entries from a policy
produces an equivalent policy. �

While shadowed entries can be removed all at once, collected entries must
be deleted one by one. This is because deleting one collected entry may cause
another to be not collected.



Theorem 34. If a policy entry is collected, removing it from the policy produces
an equivalent policy. �

Proof. Let p = 〈e1, . . . , en〉 be a policy and let ei be collected.
Let p′ = 〈e1, . . . , ei−1, ei+1, . . . , en〉 be the same policy but with ei removed.
Denote el = 〈sl, al〉 for l = 1 . . . n.

We show both that p′ is a policy and that p and p′ are equivalent. Consider
an h ∈ H. By lemma 8, it is caught by some jth policy entry in p. If j 6= i,
then by lemma 9, Allowed(p, h) = Allowed(p′, h). On the other hand, if j = i,
then none of the entries before j matches h. The first matching entry in the
remaining part of the policy, i.e., p′ = 〈ei+1, . . . , en〉 catches h. By the definition
of collecting, the allowed actions at this catching entry are the same in p′ as
in p. This shows that, for an arbitrary h, Allowed(p, h) = Allowed(p′, h), which
implies the equivalence. Since Allowed(p′, h) is defined for all h, p′ must also be
a policy.

Theorem 35. The following algorithm computes a correct reconciliation of a
set of policies:

1. Compute an ordered cross-product of the input policies.
2. Remove all policy entries that have empty selectors from the crossproduct.
3. Remove all shadowed policy entries from the ordered crossproduct.
4. Remove collected policy entries, one by one, until none exist.

�

Proof. By theorem 26, step 2 computes a correct reconciliation. By lemma 16,
we can replace the policy with an equivalent one after the reconciliation step. By
lemma 10 and theorems 33 and 34, steps and 2-4 replace policies with equivalent
ones. Thus, the algorithm produces a correct reconciliation.

From the definitions it is easy to see that any policy entry with an empty
selector is shadowed and any shadowed entry is collected. It is, however, more
efficient to remove the empty and shadowed entries first because the algorithm
for removing collected entries is the slowest. The following theorem shows that
after removal of all shadowed and collected entries, a policy is completely free
of redundancy: any further removal of entries would not preserve equivalence.

Theorem 36. Let p = 〈e1, ..., en〉 be a policy, and let p′ be the sequence of policy
entries obtained from p by removing the ith entry ei, for some i = 1...n. If p and
p′ are equivalent then ei is shadowed or collected.

Proof. We prove that ei is collected. Let p′′ be the sequence of policy entries
〈ei+1, ..., en〉. Consider an any h ∈ H. The equivalence of p and p′ implies that,
if ei = 〈si, ai〉 catches h in p, there must be some ej = 〈sj , aj〉 with j > i and
ai = aj that catches h in p′. Therefore, Allowed(p, h) = Allowed(p′′, h), and
hence ei is collected.



9 Algorithm improvements

The algorithms in this section are computationally more expensive than the
crossproduct in the previous section because they require one to compute a
decorrelation of the reconciled policy. This does not, however, create any new
entries to the reconciled policy or increase the run-time overhead when the policy
is used in an IPsec implementation. Instead, the computation, including decor-
relation, is required only to find out which entries can be removed from the
un-decorrelated reconciled policy. This computation is all done once at the time
of policy configuration and not when individual IP packets are processed.

It is important to run the optimization algorithm after selecting the unique
allowed action for each policy entry. That way, more policy entries will be re-
moved. The invocation of SelectUniqueActions in the pseudocode represents
this step.

The algorithms for decorrelation and the removal of shadowed and collected
entries require set operations on selectors (union, intersection, difference) as
well as subset checking. These operations are expensive if selectors are naively
implemented as sets. Instead, the selectors could be represented as propositional
formulas and the set operations as boolean operations (disjunction, conjunction,
implication). These could then be efficiently implemented using (ordered) binary
decision diagrams (BDDs), as is discussed in [2, 3]. A similar approach is taken in
[6], where decision trees are used to identify and remove shadowing and collected
entries in firewall policies.

In is important to note, however, that the algorithms described in this paper
do not need to be implemented very efficiently because they are executed during
policy configuration and not when processing each IP packet. The selectors in the
final policy are still simple ranges if the selectors in the input policies are. Only
the intermediate computation requires handling of complex sets of selectors.

10 Conclusion

In this paper, we presented an algorithm for reconciling two or more IPsec poli-
cies. The algorithm produces short and efficient policies without decorrelating
the component policies first. Since the correctness of the algorithm is not ob-
vious, we gave a formal definition of correct reconciliation and proved that the
algorithm meets it. We also showed how to remove redundant entries from the
policy and proved that it remains a correct reconciliation.

The results can be used to implement composition of multiple IPsec and
firewall policies. We expect it to be much easier for the administrators and users
to specify independent component policies, which are automatically compiled
into one policy, than to manually configure one monolithic policy for each device.



Reconcile2(in p1, in p2, out p, out conflicts)

OrderedCrossproduct(p1, p2, p);

RemoveEmpty(p);

SelectUniqueActions(p); // Not defined here

Decorrelate(p, d);

CheckConflicts(p, conflicts);

RemoveShadowed(p, d);

RemoveCollected(p, d);

Decorrelate(in p, out d)

d = 〈〉;
union = ∅;
for (i = 1 to p.length)

e = p.entry(i);

d.append(〈 e.selector \ u, e.action 〉);
union = union ∪ e.selector;

CheckConflicts(in d, out conflicts)

conflicts = ∅;
for (e ∈ d)

if (e.action == ∅)
conflicts = conflicts ∪ e.selector;

RemoveShadowed(in/out p, in/out d)

for (i = p.length downto 1)

if (d.entry(i).selector == ∅)
p.delete(i);

d.delete(i);

RemoveCollected(in/out p, in/out d)

aset = ∅;
for (e ∈ p)

aset = aset ∪ { e.action };
for (a ∈ aset)

RemoveCollectedForAction(p, d, a)

RemoveCollectedForAction(in/out p, in/out d, in a)

for (i = p.length downto 1)

e = p.entry(i);

if (e.action == a)

if (d.entry(i).selector ⊆ c)

p.delete(i);

d.delete(i);

else

collect = collect ∪ e.selector;

else

collect = collect ∩ e.selector;

Fig. 2. Removing shadowed and collected entries



References

1. Kenneth J. Arrow. Social Choice and Individual Values. Yale University Press,
1970.

2. Joshua D. Guttman and Amy L. Herzog. Rigorous automated network security
management. International Journal of Information Security, 4(1–2), 2005.

3. Hazem H. Hamed, Ehab S. Al-Shaer, and Will Marrero. Modeling and verification
of IPSec and VPN security policies. In 13th IEEE International Conference on
Network Protocols (ICNP 2005), pages 259–278, 2005.

4. David B. Johnson, Charles Perkins, and Jari Arkko. Mobility support in IPv6. RFC
3775, IETF Mobile IP Working Group, June 2004.

5. Stephen Kent and Karen Seo. Security architecture for the Internet Protocol. RFC
4301, IETF, December 2005.

6. Alex X. Liu and Mohamed G. Gouda. Complete redundancy detection in firewalls.
In Proceedings of 19th Annual IFIP Conference on Data and Applications Security,
LNCS 3654, pages 196–209, Storrs, CT USA, August 2005. Springer.

A Policy reconciliation example

The following example shows two component policies A and B, their reconcili-
ation (where the grey line will be deleted as empty), and the optimized policy
after all shadowed and collected entries have been removed.

Policy A: general firewall

Policy Selector Allowed actions
Entry Local Remote Local Remote Protocol

IP IP port port
A1 * 10.1.*.* * * * bypass, ESP transport, discard
A2 * * * * TCP ESP transport, discard
A3 * * * * ICMP bypass
A4 * * * * * discard (default policy)

Policy B: Web server

Policy Selector Allowed actions
Entry Local Remote Local Remote Protocol

IP IP port port
B1 * * 80 * TCP bypass, ESP transport
B2 * * * * * discard (default policy)



Policy C: Reconciliation of A and B

Policy Selector Allowed actions
Entry Local Remote Local Remote Protocol

IP IP port port
C11 * 10.1.*.* 80 * TCP bypass, ESP transport
C12 * 10.1.*.* * * * discard collected
C21 * * 80 * TCP ESP transport
C22 * * * * TCP discard collected
C31 * * 80 * – empty
C32 * * * * ICMP discard collected
C41 * * 80 * TCP – shadowed
C42 * * * * * discard

Policy D: Shadowed and collected entries removed

Policy Selector Allowed actions
Entry Local Remote Local Remote Protocol

IP IP port port
D11 * 10.1.*.* 80 * * bypass, ESP transport
D21 * * 80 * TCP ESP transport
D42 * * * * * discard


