
Chattering Laptops

Tuomas Aura1, Janne Lindqvist2, Michael Roe1, Anish Mohammed3

1 Microsoft Research, Cambridge, UK
2 Helsinki University of Technology, Finland
3 Royal Holloway, University of London, UK

Abstract. Mobile computer users often have a false sense of anonymity
when they connect to the Internet at cafes, hotels, airports or other public
places. In this paper, we analyze information leaked by mobile computers
to the local access link when they are outside their home domain. While
most application data can be encrypted, there is no similar protection
for signaling messages in the lower layers of the protocol stack. We found
that all layers of the protocol stack leak various plaintext identifiers of
the user, the computer and their affiliations to the local link, which a
casual attacker can observe. This violates the user’s sense of privacy
and may make the user or computer vulnerable to further attacks. It is,
however, not possible to disable the offending protocols because many
of them are critical to the mobile user experience. We argue that the
most promising solutions to the information leaks are to filter outbound
data, in particular name resolution requests, and to disable unnecessary
service discovery depending on the network location. This is because
most information leaks result from failed attempts by roaming computers
to connect to services that are not available in the current access network.

Key words: Privacy, anonymity, mobile computing, wireless networks,
network location awareness

1 Introduction

When mobile computer users connect to the Internet at wireless hotspots, cafes,
hotel rooms, airport lounges and other public places, they tend to think that
nobody can recognize them. Some are aware that sophisticated techniques, such
as correlating the appearances of the network interface card’s MAC address or
other statistically unique information, could be used to trace them. Few know
that their computer is openly broadcasting information about them to the local
network, including usernames, computer names, and identifiers linkable to their
employer, school or home. In this paper we explore the identifiers leaked by
mobile computers to the access network.

Our attacker is a passive observer at the same local link, who has no resources
for making global observations or skills for sophisticated analysis of the data but
who is curious enough to capture network traffic and to see what other network
users explicitly tell about themselves. The attacker may be operating the local
network or access point, or he may be just another user in the same network.

The user’s own computer is not malicious but leaks information accidentally or
because of conflicting design goals. We focus on business users whose computers
are members of a managed domain.

There is no great drama in being identified in a public place. Most people,
however, prefer not to wear a name tag after leaving the office and enjoy the
privacy and protection afforded by the relative anonymity. Sometimes, announc-
ing a person’s name or affiliation could expose them to further attacks. This
vulnerability also applies to computers: a random computer at a cafe is not par-
ticularly interesting to a hacker but one belonging to a well-known organization
might invite attacks.

Computers perform many tasks automatically without the user’s knowing;
things just work. The automatic tasks often involve the discovery of network
services, which means sending packets to the network. These packets usually
identify the service and often also the user. It should be noted that the auto-
matic actions happen by design: most users would probably not want to see
any additional dialog windows asking for their permission to go ahead, and dis-
abling the automatic services would destroy the seamless mobility experience
that software vendors are hard trying to create.

In this paper, we are mainly interested in identifiers in signaling protocols,
packet headers and communication metadata, that is, data that cannot be easily
encrypted at the application level. It is often falsely assumed that end-to-end
encryption solves all privacy issues apart from traffic analysis. In real networks,
not all communication is end-to-end. There are many protocols that are executed
with the access network and with global network infrastructure. For example,
the DHCP and DNS protocols cannot be protected by encryption. Yet, these
protocols reveal all kinds of information about the mobile host. Much work has
been done on randomizing the most obvious permanent identifiers (MAC and
IP addresses), and, on the attack side, on fingerprinting mobile hosts based on
statistical characteristics. In this paper, we consider more explicit user, computer
and organization identifiers such as usernames. Clearly, randomized addresses
only help privacy if the higher-layer identifier leaks are also controlled, and the
statistical attacks matter only if there is no easier way to identify the target.

We use domain-joined Windows XP and Vista laptops as examples through-
out the paper because they are common in business use and perform many tasks
automatically. Domain members have more identifiers and credentials than typ-
ical standalone computers and they tend to access more services. Thus, there is
more information that could potentially be leaked.

This paper makes the following contributions: we identify network chatter by
mobile computers as a major threat to mobile user privacy, develop a tool for
detecting identifier leaks, and use it to examine network traces captured from
business laptops. We analyze the causes of the leaks and describe a solution based
on network-location awareness. The lessons of this paper could be summarized
by saying that using a laptop computer is akin to wearing a name badge that
reveals the person’s identity and affiliation, and that not telling everyone who
you are turns out to be surprisingly hard because there are so many name badges

in places that you never knew about. We argue that most of the leaks are caused
by unnecessary network chatter, mainly failed attempts at name resolution and
server connections, which could be avoided by designing software to be aware of
the network locations.

The rest of the paper is organized as follows. We overview related work in
Section 2. Section 3 introduces the analysis tools. Section 4 details the sources of
identifier leaks. In Section 5, we analyze the findings. Section 6 suggests solutions
to the problem and Section 7 concludes the paper.

2 Related work

Information leaks from mobile computers
Information leaks caused by unencrypted network traffic have been noted many
times in the literature. There are few systematic studies, however. Kowitz and
Cranor [KC05] study how user attitudes change when they are explicitly shown
plaintext strings from the network traffic. The strings are mostly application
data such as email, instant messages and web searches, but the paper also men-
tions NetBIOS as one source of information. We see the information leaks as a
technical problem rather than as a question of user awareness.

Saponas et al. [SLH07] bring attention to ubiquitous computing devices which
can be traced by their unique identifiers or reveal which content the user is
downloading. Akritidis et al. [ACL+07] mention RSS subscriptions, plaintext
instant messaging, web-browser cookies, and the hostname in the DHCP request
(see Section 4.3) as means for identifying mobile users. Pang et al. [PGM+07]
suggest confidential discovery of wireless access points.

DNS was originally designed for fixed networks but is increasingly used as a
reachability mechanism for roaming hosts. Guha and Francis [GF07] point out
that dynamic DNS can be used to query and map a mobile host’s location. Broido
et al. [BSF06] discuss unnecessary DNS updates for private address ranges, which
may also leak information about the host to the foreign access network. In this
paper, we discuss more basic operations of DNS and observe that most privacy-
compromising data is revealed unnecessarily.

Anonymity and routing
Anonymity in communications networks has many meanings. Traditionally, the
main goal has been end-to-end anonymity, i.e., to hide the client’s identity from
the servers or peers to which it connects over the Internet. Anonymous routing
systems, such as the mix networks introduced by Chaum [Cha81], hide the con-
nection between senders and recipients of messages also from third parties who
are assumed to monitor network traffic globally. Onion routing, as described
by Syverson et al. [SGR97] extends the idea to hidden servers, i.e., to hiding
the recipient from the sender. These mechanisms assume a very strong attacker
model and are expensive to implement, yet tend to be fragile against analysis
methods that take advantage of the non-ideal characteristics of the underlying
technologies. The most common applications for anonymous routing are in con-

tent distribution (e.g., Freenet by Clarke et al. [CSWH00]) and anonymous web
browsing and censorship resistance (e.g., Tor by Dingledine et al. [DMS04]),
where there is a strong incentive for hiding the identities of the communicating
parties. Application-specific anonymity systems include remailers and anonymiz-
ing web proxies (e.g., Mixmaster by Möller et al. [MCPS03] and Crowds by Reiter
and Rubin [RR98]). Simple HTTP proxies and native address translation (NAT)
also provide some privacy benefits. The same routing mechanisms can be used
for location privacy, i.e., to hide a mobile computer’s location from its peers. Mo-
bility protocols, like Mobile IPv6 [JP02], achieve some level of location privacy
by routing all packets to and from the mobile via a fixed proxy.

Despite the number and diversity of end-to-end anonymity mechanisms, they
share the common goal of hiding the mobile’s identity or location from peer nodes
over the Internet. Our work differs from this in that we want to protect against
observers at the mobile’s local link. Our attacker model is also different in the
sense that the attacker is assumed to be present only at the access network.

Randomized identifiers
Communications protocols use various kinds of identifiers and addresses that
can act as identifiers. For example, the MAC address of a network interface is a
globally unique identifier. IPv6 addresses often have the MAC address embedded
in their bits in order to guarantee uniqueness [TN98]. A common solution to the
issues caused by unique identifiers is to replace them with random, periodically
changing values. There is a standard way of generating IPv6 addresses with a
pseudo-random number generator [ND01]. Similar randomization has been sug-
gested for the MAC address by Gruteser and Grunwald [GG03b] and many
others. The identifier changes have to be carefully timed, with possible silent
periods, to maximize anonymity protection and to minimize disruption to com-
munications, which is also noted by Beresford and Stajano [BS03] and Jiang et
al. [JWH07]. Clearly, unencrypted higher-level identifiers such as IP addresses
have to be changed at the same time as the MAC address. Mobility protocols
can be used to guarantee continuity of end-to-end communications over the iden-
tifier changes, e.g., as suggested by Lindqvist and Takkinen [LT06]. Since the
issues with IP and MAC addresses have already been extensively covered in the
literature, we will focus on other identifiers.

The level of anonymity provided by such mechanisms can be measured as
the size of the anonymity set or as entropy (see Sweeney [Swe02], Serjantov and
Danezis [SD02] or Dı́az et al. [DSCP02]), both of which measure the level of
uncertainly about the identity of a node. Given the number of users and mobile
devices on the Internet, the hope is that the uncertainly will be very large. The
academic literature has concentrated on theoretically strong or at least mea-
surable guarantees of anonymity and location privacy. The work presented in
this paper differs from the literature in that we consider a rather more elemen-
tary goal: not explicitly telling everyone who you are, which turns out to be
surprisingly hard.

Host fingerprinting
Fingerprinting of mobile radios based on their non-ideal characteristics is an old
military intelligence technique which enables tracing the movements of individ-
ual stations. The same kind of analysis has been applied to wireless LAN cards,
e.g., by Gerdes et al. [GDMR06]. The analysis of radio signals requires sophis-
ticated hardware and skilled operators, however. A more practical approach is
to fingerprint hosts based on their higher-level characteristics such as the MAC-
layer capabilities and configuration, which can be combined with network-layer
traffic-analysis data for better accuracy (Franklin et al. [FMT06], Greenstein et
al. [GGP+07] and Pang et al. [PGG+07]). Some hardware characteristics, such
as clock skew and temperature variations (Kohno et al. [KBC05] and Murdoch
[Mur06]) can be used to fingerprint hardware remotely. The same techniques
could be used to identify devices on the local link. In effect, the hardware and
communications fingerprint becomes a unique identifier for the device and user.

Our work differs from the device fingerprinting in that we concentrate on
explicit identifiers instead of implicit ones. For example Kohno at al. use the set
of peer IP addresses as an implicit identifier that is treated as a set of numbers.
We, instead, record the DNS names to which the host connects and look for ones
that reveal the client identity or affiliation.

Information flow
One approach to preventing information leaks is to analyze information flow in
the system. In the terminology of multi-level security, the user identifiers are
high input data, from which information should not leak to the low output, i.e.,
messages sent to the network. By proving information-flow properties, such as
non-interference [GM82], we could be certain that the system does not leak the
high data. While such models remain theoretical, there has been progress, e.g.,
in the language-based proof techniques of Sabelfeld and Myers [SM03].

On the more practical side, we can trace the information flow dynamically
in a running system. Most such mechanisms aim to protect system integrity,
rather than confidentiality of data. In the Perl programming language, untrusted
inputs can be marked as tainted and the tainting is propagated to any values
derived from them. Chow et al. [CPG04] use data tainting in a simulated system
to analyze the lifetime of confidential data, such as passwords, in the system
memory while Zhao et al. [ZCYH05] show evidence that taint propagation can
be traced in real time in a production system. Yumerefendi et al. [YMC07]
suggest a clever way of detecting data leaks by executing a parallel copy of the
process with random bits replacing the confidential data; if the outputs differ,
some information is leaking. The same techniques could be used to flag identifiers
and other anonymity-compromising data and to detect whether they are being
sent to the network. We consider data tainting a potentially useful approach;
however, the solutions suggested in this paper are even more practical in nature.

Privacy policy and preferences
Another approach to privacy is not to discuss the technology but the poli-
cies. In addition to legal frameworks, there are several technical policy frame-

User’s computer

Identifier

Collector
Capture

Analyzer

Microsoft

Netmon 3

Microsoft

Netmon 3

Identifiers

Network

trace

Results

Fig. 1. Data flow between the analysis tool components

works for location privacy [Zug03][CJBMM04][GG03a][Pet02] and languages
for expressing preferences on the disclosure of personally identifiable information
[Cra02][AHK03]. We do not explicitly discuss privacy policies or user preferences
in this paper. In Section 6, however, we suggest an implicit privacy preference
mechanism that interprets any networking functionally explicitly enabled by the
user as a policy decision.

3 Tool for analyzing network chatter

We initially became concerned over information leaks to the access network when
looking at network traces. As we started to comb through them for previously
unknown issues, it soon became apparent that a more systematic approach was
needed. For this reason, we developed a tool for detecting leaked identifiers
in network traces. The tool is defensive in the sense that it can only be used
to analyze leaks from one’s own computer. This limitation allows us to find
offending user, machine and organization identifiers in places that have not been
previously catalogued. We have previously used a similar tool to detect user
identifiers in electronic documents [AKR06].

The general structure of the tool is shown in Figure 1. It consists of two mod-
ules: Identifier Collector and Capture Analyzer. The Netmon network monitor
is used for recording network traffic and for viewing the discovered information
leaks in their context.

3.1 Collecting personal identifiers

The Identifier Collector gathers the user’s personal identifiers, which will then
be used as search strings in the capture file analysis. It finds identifiers from the
local computer and from the active directory (AD), which is a directory service
for Windows computers. The identifiers include the username, machine name,
NetBIOS group, domain name, globally unique identifiers (GUIDs), names of
various domain-specific services, as well as less obvious identifiers such as postal
address and telephone number. An alternative would be to let the user type in
the sensitive identifiers but we wanted the tool to be as automatic as possible.
In addition to improving usability for non-expert users, automation makes the
results reproducible.

3.2 Capture-file analysis

The Capture Analyzer module searches for the identifiers in a network capture
file. We use two different search algorithms for this purpose. The main difficulties
were that the format of the captured packets is complex, variable and sometimes
unknown, and that we would like to detect information leaks in any protocol layer
or data field.

Data formats
One approach to the search would be to parse the packets in the same way as in
network monitoring software such as Ethereal, Wireshark or Netmon and then
search each data field separately, taking into account its data format, for the
offending identifiers. A limitation of this approach is that we might miss some
data fields that are not correctly identified by the parser. For this reason, we
decided to search through the raw packet data using algorithms that can handle
a large number of data and text encodings. We parse the packets and pinpoint
any suspicious protocol fields only after detecting identifiers in the raw packet
data. The tool offers two different tradeoffs between speed and completeness of
the search.

Simple string search
The Aho-Corasick algorithm [Aho75] performs a fast text search for multiple
search strings. We encode textual search strings, such as a username, with a
number of common string encodings: ASCII, Unicode UTF8, UTF16 in big- and
little-endian byte order, and UTF32. The search is case-insensitive and ignores
accents and common character variations. Thus, for example, the character val-
ues aàáâãä̊aAÀÁÂÃÄÅ are all considered matches for each other. Short strings
are also encoded as NetBIOS identifiers, which have their own peculiar format.
Additionally, we look for copies of the MAC address outside the Ethernet header
and for Windows GUIDs of the user, computer and domain. Binary identifiers
are treated as special cases based on their specific characteristics. The number of
encodings has been tuned to keep the tool speed acceptable for fast interactive
use.

Regular expression search
The second string search algorithm aims to perform a more complete search
than the simple string search above, which was optimized for speed and not
assurance. With a slower search algorithm we wanted to detect any identifiers
that may be missed by the simple string search. Regular expressions provide
flexibility to support multiple layers of data encoding. We start with a simple
tree-shaped expression constructed from the original search strings and expand
this by replacing each character in the expression with its different encodings.
This is done recursively for multiple layers of encodings: upper and cases; accents
and other character variations; URL, XML and C escapes and numeric repre-
sentations; and, finally, Unicode and other character encodings. The resulting
regular expression is large but represents an even larger number of multi-layer
encodings of the search strings. Figure 2 shows a simplified example of how the

original character: N

upper and lower case, accents: (n|ñ|N|Ñ)

various escape notations:
(n|(((\x?)|%|(&#?)| |-)0*((156)|(110)|(6e));?)|ñ|(((\x?)|%|(&#?)| |-)0*((361)|(241)|(f1));?)|N|(((\x?)|%|(&#?)| |-
)0*((116)|(78)|(4e));?)|Ñ|(((\x?)|%|(&#?)| |-)0*((321)|(209)|(d1));?))

ASCII, UTF-8, little and big-Endian UTF-16:
((00*6e)|((((00*78)?00*5c)|(00*25)|((00*23)?00*26)|(00*20)|(00*2d))(00*30)*((00*3100*3500*36)|(00*3100*3100*
30)|(00*3600*65))(00*3b)?)|(00*(3f|(c3b1)|f1))|((((00*78)?00*5c)|(00*25)|((00*23)?00*26)|(00*20)|(00*2d))(00*30)
*((00*3300*3600*31)|(00*3200*3400*31)|(00*6600*31))(00*3b)?)|(00*4e)|((((00*78)?00*5c)|(00*25)|((00*23)?00*
26)|(00*20)|(00*2d))(00*30)*((00*3100*3100*36)|(00*3700*38)|(00*3400*65))(00*3b)?)|(00*(3f|(c391)|d1))|((((00*
78)?00*5c)|(00*25)|((00*23)?00*26)|(00*20)|(00*2d))(00*30)*((00*3300*3200*31)|(00*3200*3000*39)|(00*6400*31))
(00*3b)?))

Fig. 2. Regular expressions for encodings of ‘N’

regular expression for one character of a search string is constructed. Because
of the expression size, the search is done with a non-deterministic automaton,
which means it consumes a lot of memory. We tuned the number of encoding
layers and their complexity to keep the memory consumption for even a large
set of identifiers below 1GB. The aim was to keep the search time under an hour
for large datasets.

3.3 Integration with Netmon 3

The Capture Analyzer works together with the Microsoft Netmon 3 network-
monitoring software. It takes as input a network capture file and a list of identi-
fiers and produces a Netmon filter that lists the matching packets. This is loaded
into Netmon for detailed manual analysis of the information leaks in the capture.
Currently, the tool can only be used for offline analysis.

3.4 Discussion of completeness

It is rather difficult to assess the completeness of the search. We have enhanced
the tool to detect all classes of identifier leaks that we initially knew about,
suspected, or found by manual methods. The tool has some specific limitations,
however. It cannot find intentionally obfuscated information, which falls outside
our attacker model, and it cannot search encrypted data. Currently, we do not
search through compressed data or other encodings that do not respect byte
boundaries (e.g., Base64 and uuencode). Fortunately, such encodings are rarely
used in signaling messages below the application layer.

Since we look at the capture files as raw bytes and do not parse the packets,
we cannot detect data that spans across multiple packets. The most likely reason
for this to occur is when an identifier has been split into two TCP segments
and, thus, is non-contiguous in the packet capture data. In the future, we may
enhance the tool to support TCP segmentation. Fragmented IP datagrams could
pose a similar problem. We initially planned to implement defragmentation at
the IP layer but failed to do this because the sample data did not contain any
fragmented packets.

Some false positives are produced by the case- and accent-insensitive search,
which means that 3- or 4-character names have some accidental matches in
binary files (e.g., “ẗIÑ̊a” would match “Tina”. The number of false positives
was acceptably small for the purposes of research. If the same algorithm is used
for routine monitoring, it would be easy filter recurring false positives. Another
class of false positives arises if the user is affiliated with an organization whose
name occurs frequently in network traffic (e.g., Google) or is a common word
(e.g., Time).

Active attacks are entirely beyond the scope of this paper. They are, however,
not as difficult to implement as one might first believe. In fact, it may be easier
for the attacker to induce the mobile computer into executing a specific protocol,
such as IKE or DHCP, than to sit passively on the network and wait for events
to occur spontaneously. We plan to continue this work in the direction of active-
attack analysis.

4 Information leaks to local link

This section reports findings from the analysis of network traces collected at
various locations using domain-joined computers running Windows XP and Vista
and a range of client software that is commonly found on business laptops. The
analysis was done with the search tools described in the previous section.

4.1 DNS

The domain name system (DNS) is a directory service that resolves human-
readable host names into IP addresses. The literature (see Section 2) already
considers the privacy issues created by dynamic updates to the DNS. We look
at a more basic operation: name resolution.

DNS queries
Connecting to online services may reveal information about the client. We will
discuss examples of such services in the following sections. However, before con-
necting to almost any service, the client will resolve the DNS name of the server
using the local DNS in the access network. Consequently, the easiest way to
track the activities of a mobile computer is to record its DNS requests. For
example, if the computer connects to a VPN gateway of its organization (e.g.,
vpn-gw.contoso.com), a look at a DNS log is sufficient to identify the company.
The user may not be aware that many such queries happen automatically, with-
out an explicit user action.

Resolving private names
Many organizations use a private IP address range (e.g., 10.0.0.0/8) for their
internal network and a private DNS zone (e.g., *.private.contoso.com or *.con-
toso.local) to name the computers on the private network. The private names
can only be resolved by the local DNS server at the intranet and are not visible
from outside. DNS resolvers on client computers do not, however, know when

they are in the intranet. Thus, a mobile computer may try to resolve a private
name when it is roaming outside the private network. The name resolution will
fail but the DNS request reveals the name of a server and organization.

Default suffixes
Since human users prefer to type short computer names (e.g., hobbit) rather
than fully qualified domain names (FQDN) (e.g., hobbit.sales. contoso.com.), the
resolver automatically appends default suffixes to the name. For example, when
resolving hobbit, the computer typically queries for hobbit.sales.contoso.com and
hobbit.contoso.com, in that order. Originally, there was a security reason for
trying the longer name and, thus, the more local name space first: it prevented
users from accidentally entering their password to a prompt presented by a more
remote host than the one they intended to access.

The default DNS suffix for stationary computers used to be configured ei-
ther manually or by DHCP. Mobile computers may have two possible suffixes:
a primary suffix from their home domain and a connection-specific suffix ob-
tained from DHCP at the access network. We are concerned about the primary
suffix because it reveals the mobile host’s affiliation. When the computer tries
to resolve any DNS name, such as google.com, it will start by querying for
google.com.sales.contoso.com. This means that any DNS query will leak the mo-
bile’s default domain suffix to the access link and to the local DNS server.

4.2 Other name resolution protocols

NetBIOS over TCP (NBT) provides another name service, which is mainly used
in closed Windows domains (or workgroups) at workplaces and homes. Comput-
ers broadcast name queries to the local network and answer them directly or via
WINS proxy.

NetBIOS lookup
Similar to DNS, NetBIOS name lookups reveal to the access network the names
of the services to which the user or computer is connecting. The names are
broadcast to the local link and, thus, can be heard by any computer on the same
access link, even on a switched wire network. Unlike the hierarchical DNS names,
NetBIOS names are not globally unique. For this reason, the protocol is rarely
needed when roaming outside the user’s workplace or home, yet it is typically
enabled everywhere.

WINS registration
When a computer connects to a network, it may also try to register its NetBIOS
name and group in the WINS server. Since it does not know whether a server
exists in this network, the registration is attempted regardless of the location.
The registration attempt reveals the computer name (e.g., hobbit), which is
typically the same as the first part of the FQDN, and the computer’s Windows
domain or workgroup (e.g., sales or contoso). Again, this information is broadcast
to the access link.

LLMNR
The link-local multicast name resolution (LLMNR) protocol is also intended for
the local link. Unlike NetBIOS, it also works over IPv6. The queries are sent as
link-scope multicast. Although we have not observed this protocol in actual use,
Windows Vista laptops sometimes send spontaneous LLMNR requests for their
own name in order to detect possible name conflicts.

4.3 DHCP

The dynamic host configuration protocol (DHCP) is used to configure a host with
network-specific parameters such as an IP address and the local DNS suffix. It
is often the first protocol executed when a computer attaches to a network. A
typical execution consists of two request-response pairs: the client broadcasts a
DISCOVER message and receives one or more OFFERs from servers. It then
sends a REQUEST for one of the offers and the chosen server responds with an
ACK. The main purpose of the protocol is to transfer configuration information
from the server to the client, i.e., to the mobile host. Thus, the client does not
necessarily need to reveal anything about itself. In practice, however, clients do
tell quite a lot.

Host identification
The DHCP protocol allows the client to identify itself by sending its hostname
in the DISCOVER message. This enables the network to select host-specific pa-
rameters such as a permanently assigned IP address. Hostnames are unique only
to a specific domain and, thus, have little significance to a DHCP server at a
foreign network. In principle, the identifier could be simply left out while roam-
ing. Unfortunately, when the client sends the DISCOVER message, it may not
yet know whether it is connected to the domain network or roaming elsewhere.

DNS registration
The DHCP client may want to register its new address in the DNS. The client
itself can connect to the a dynamic DNS server at its home organization to up-
date the forward record, i.e., the mapping from name to IP address. The DHCP
server, on the other hand, is responsible for updating the backward record from
the newly allocated IP address to the DNS name. Within a Windows domain, the
DHCP server may also update the forward record on the client’s behalf. Either
way, the DHCP server needs to know the client DNS name. For this reason, a
Windows client sends its FQDN to the DHCP server in the REQUEST message.
It does this regardless of the network location and, thus, reveals the host name
and domain suffix to the access network.

4.4 Domain controller

The domain controller (DC) is the authentication and directory server for a
particular Windows domain. It implements a version of the LDAP directory-
access protocol. When a client is configured to be a member of a domain, it always

tries to find the domain controller of the network. It performs a DNS query for a
service resource to find the domain controller, e.g., LDAP. TCP.dc. msdcs.sales.
contoso.com. If the DC is found, the client knows it is on the intranet and starts
sending LDAP queries to the controller. On the other hand, if the DC is not
found, the client (Netlogon service) may try to use a cached IP address to send
the queries. For stationary computers and ones that move in the intranet, this
improves reliability in case of DNS failures. For roaming computers, however,
the attempts to connect to the DC will fail anyway.

Both the domain name and the cached IP address will reveal the mobile’s af-
filiation. The IP address will be cached only for 15 minutes. We found, however,
that if the computer was put into a sleep-saving mode at the intranet and re-
sumed later in a foreign network, the cached addresses were still used for several
minutes.

4.5 File shares and printers

Operating systems such as Windows try to improve the user’s roaming expe-
rience by discovering previously used network services and setting them up for
quick access. This can, however, result in unnecessary network chatter and failed
connection attempts.

Mounted network drives
The user in Windows can assign a drive letter to a network share so that it
appears as a local disk (e.g., map \\contoso-srv-2\alice\ as the Z: drive). These
shares are automatically mounted when the user logs in or connects to a network.
In order to find out whether the share is available, the client needs to probe the
server. The attempt to resolve the server’s DNS or NetBIOS name can be seen
by anyone observing network traffic at the access link. Although we tested only
Windows shares, automounted NFS volumes would presumably cause similar
privacy issues.

Shortcuts to network shares
Shortcuts to network file shares on other machines may cause similar attempts
at name resolution. These are usually accessed only after a user action but it
is not always obvious to the user which actions trigger the network access. For
example, right-clicking a shortcut may cause an attempt to connect to the server.

Printers
Windows saves information on all printers that have ever been configured for
use, unless they are explicitly deleted. A roaming user may sometimes use a
local network printer at the access network. These printers accumulate into the
printer list on the client computer, which many users never clean. When the
user views the list of printers, the computer automatically tries to connect to
the printers and shows which ones are online. These connection attempts may
reveal not only the user’s organization but where the user has been roaming.
For example, one of our test laptops readily revealed to the network that it had
been printing in three cities on different continents.

4.6 IKE and Kerberos

IKE with GSSAPI authentication
One of the most surprising sources of information leaks is the Internet key ex-
change (IKE) protocol. IKE is designed to protect the participants’ identities
against sniffing (in the main mode, which is implemented by Windows). This
protection is achieved by first performing an unauthenticated Diffie-Hellman
key exchange and by encrypting the following authentication with the session
key. The identity protection is considered one of the main security features of
IKE.

The standard IKE authentication methods are based on shared keys and
public-key certificates. Windows extends this with Kerberos authentication using
the GSSAPI [PS01]. The client requests Kerberos authentication in the first
message it sends to the server. The client then obtains a Kerberos ticket from
the authentication center (AC) and uses this ticket for authentication in IKE.

The most obvious information leak happens because the GSSAPI authenti-
cation method sends the client computer name and domain to the server in the
first IKE message (in the SA payload). This may not appear to be a privacy issue
because Kerberos authentication is used only in the intranet and, thus, the data
should never be sent when the computer is roaming in a foreign access network.
In reality, the leak does sometimes occur when the client has just moved from
the intranet to a foreign access network (usually via sleep mode) and applica-
tions still attempt connections to intranet servers based on previously resolved
IP addresses.

Kerberos ticket request and ticket
Windows clients also sometimes attempt to connect the Kerberos server while
roaming. The ticket request contains the client computer name in plaintext.
Since this is a rare occurrence, we were not able to establish the exact cause of
the request. Since the Kerberos server is usually not reachable from outside the
intranet, the client will not receive a ticket. If it did, the ticket would further
reveal the name of the server for which the ticket is intended.

4.7 TLS/SSL

Plaintext certificates
The TLS handshake protocol sends the certificates unencrypted over the net-
work. Usually, only the server is authenticated and only the server certificate is
sent. This means that if the client connects to a secure web server of its own
organization, the name of the organization will appear on the wire. Sometimes,
TLS is used also for client authentication. This may happen, for example, when
the client application is not a web browser but a web-service client, an email
client or a TLS-VPN client. In that case, the plaintext client certificate and
name are seen on the network, which allows easy and reliable identification of
the client.

EAP-TLS
Secure 802.11 wireless LANs do not leak much information to those who are not
authorized to join the network. However, wireless networks in managed domains
may use certificates and the EAP-TLS protocol for client authentication. The
TLS handshake in EAP-TLS reveals the client identity to anyone listening, even
to those who themselves are not authorized to access the network. This problem
has been addressed by a recent privacy enhancement to the EAP-TLS protocol
[SAH08].

4.8 Application metadata

It is clear that plaintext access to email, web pages, search engines and other
online services leaks confidential data. For example, we found unencrypted in-
stant messaging (IM) clients sending not only the messages themselves but also
the username, real name, gender, birth date, post code, buddy list and block list
over the network. Unencrypted SIP signaling for IM or VoIP also reveals the user
name and possibly who his contacts are. All this information could, however, be
protected from sniffing by encrypting the messages between the client and the
server.

A particularly interesting case is the iTunes music-player software, which
discovers other iTunes users nearby. It does this by broadcasting advertisements
to the local link, which contain the username and computer name. (The protocol
is Apple Bonjour, which is based a proposal for multicast DNS [CK06]). This
allows the users to listen and purchase the same music. There is no obvious way
to encrypt this communication as the aim is to communicate with new people
without configuring a security association.

5 Discussion of the leaks

In the information leaks discovered above, essentially the same data is revealed
again and again:

– user identifiers (username, GUID, email address, real name),
– computer name, and
– user affiliation (DNS suffix, domain or workgroup, servers accessed).

One way to understand the consequences of such data leaks is to compare carry-
ing a mobile computer to wearing a name badge or an RFID tag that broadcasts
the name and affiliation of the person carrying it. Although the user’s real name
is not sent to the network as frequently as other identifiers, an email address or
username and domain are usually sufficient to discover the user’s personal web
page or other information about the user. Although being identified is not very
dangerous in itself, it may expose the user to unwanted attention from other
people, and it may put the computer to a higher risk of attacks by hackers on
the same access link.

Broadcast links, such as wireless access points, are the most opportune places
for the casual observer. Most public-access wireless links are unencrypted or use
the same shared key between all stations. On a switched wire Ethernet, a ca-
sual observer can only see broadcast packets. These comprise mainly DHCP
DISCOVER and REQUEST messages and NetBIOS name lookups and regis-
trations. Together, these packets may reveal the computer name and the user’s
organization but usually not the username. A typical situation where one can
see many such broadcast packets is a wire network at a hotel or airport lounge.

Few public wireless access points currently use link-layer encryption. Those
that do will block out unauthorized users but only for the purpose of charging.
They will still let in mutually distrusting users who have paid paid for the access.
Most access points now support per-client encryption keys between the AP and
the client. The resulting level of privacy is similar to switched wire Ethernet.

It may seem that preventing a computer from sending a name or an identifier
to the network is a simple task. If it were a question of one identifier sent by
one piece of software, this would indeed be the case. What makes the problem
difficult is that there so many protocols, at all layers of the network stack, and
so many applications are sending so many different identifiers at different times.
Naturally, all these protocols serve some purpose and cannot be simply disabled
without causing inconvenience to the user.

The current practice in software engineering is to build the protocols, appli-
cations and services to be independent of each other and let each one perform
its own discovery procedure. As a result, there is no single product or manufac-
turer in control of all the data that is sent to the network by a mobile computer.
In this sense, Internet-enabled appliances are in a more reasonable position to
protect the user privacy while it is almost impossible to know or control what
data is sent to the network from a fully-fledged computer.

Most of the information leaks occur because of failed service discovery at-
tempts. That is, the roaming computer is trying to find and access network
services that are not accessible on the foreign network or it is trying to execute
protocols that are only used between computers that belong to the same domain.
The computer does this because it doesn’t know which network it is on or which
services are available there. In most cases, the client receives a “non-existent
domain” response to the DNS requests, no response to the NetBIOS lookups,
or finds that the server IP address is unreachable. These failed queries and con-
nection attempts constitute unnecessary network chatter. If the client had some
way of knowing whether the service can be accessed from the current location,
it would not need to send out any of those packets. That is the reasoning behind
the solution we introduce in Section 6.

Some of the identifier leaks are caused by public Internet services such as
instant messaging, VoIP and various toolbars. The obvious solution is to encrypt
the data between the client and server in a way that protects the client identity;
for example, authenticate the client inside an TLS/SSL tunnel or deploy IPsec
in identity-protecting mode. The technology exists and its deployment is simply
a business issue.

A slightly more subtle problem is created by services that are operated by the
mobile computer’s home organization and are accessible from the Internet. These
include email servers, web-mail interfaces, and VPN gateways. Encryption hides
the identity of the user and computer but cannot mask their affiliation with the
server. The identity of the organization could be obscured a little by hard-wiring
the server IP addresses to the client or by using nondescript DNS names. A more
robust solution is an anonymous routing mechanism such as Tor (see Section 2)
at the cost of relatively poor real-time performance.

6 Preventing unnecessary chatter

In this section, we describe a strategy for preventing the unnecessary network
chatter. The basic idea is to identify the access networks and to attempt con-
nection to a service only on the networks where the service exists.

Some laptops (e.g., those with Mac OS X) have for some time allowed the
user to configure network profiles and select them manually. Windows Vista
implements a network-location-awareness (NLA) service that identifies the access
network automatically, without user interaction. Since this mechanism is not yet
widely known, we explain it in some detail. NLA creates a fingerprint of the
access network, which is a set of parameters associated with the network. NLA
then computes a network identifier as a cryptographic hash of the fingerprint.
Applications and operating-system components can query NLA for the network
identifier and use it as a database key to store and retrieve any information
related to networks. On the first visit to the network, the network identifier is
just a random-looking number. On the following visits, it can be used to recognize
the network. Windows Vista currently uses NLA to remember the choice of a
firewall profile for each access network, so that the user is asked only once at
each network (and not asked at all for the intranet).

The choice of parameters in the NLA fingerprint varies by network type;
for the purposes of this paper, it suffices to think of the security profile for
authenticated networks and the gateway MAC address for others. Although the
gateway MAC address can be spoofed, the casual attackers considered in this
paper would not know the address value. For this purpose, we have proposed an
enhancement to the NLA mechanism would authenticate the DHCP server on the
network and use the server public key as the network fingerprint [ARM07]. This
kind of authentication would enable us to authenticate any previously visited
network without a PKI, which is exactly what is needed for the chatter-limiting
mechanisms explained below.

Given the NLA mechanism, the next step is to disable and enable service
discovery protocols depending on the network location. For this purpose, we
propose the following policy: When client software stores information about an
online service for the purpose of connecting to it later, it must also store the NLA
network identifiers of the access links where the service is known to be accessible.
Automatic connection attempts to the service are only allowed on those networks.

In a sense, when the user or administrator decides to access a service on a
network, he is making a policy decision to enable the same service always on
the same network. The rule applies both to applications and operating-system
components that act as service clients. Some default policies should also apply:

– The active directory and Kerberos server should only be accessed on the
intranet.

– NetBIOS should disabled by default and enabled separately for each network
if needed.

– The default DNS suffix should be disabled outside the domain network.
– Network file shares may be accessed automatically and printers probed for

availability only in the network where they were originally configured, or if
the user explicitly request connection on another network.

– IKE with GSSAPI authentication should only take place in the intranet.

As a result, there should be no failed attempts at name resolution or failed
connections to servers when the computer is on the wrong access network. While
we believe this is the right approach in the long term, it requires changes to all
the different service clients and applications that send data to the network. It
can be argued that this requires a culture change to the way network client
software is designed, which we see as necessary.

Another way to control network chatter is to filter outbound traffic from
the computer at a host firewall. This would enable us to implement immediately
some of the policies mentioned above, such as disabling specific DNS or NetBIOS
queries. Packet filtering is a temporary emergency measure, however, because
it is typically done at very coarse granularity, such as disabling access to all
files shares instead of access to specific ones. The practicality of deep packet
inspection for this purpose remains to be tested as there are potential issues with
the firewall performance. Another problem with using firewalls is that dropping
packets may cause unpredictable failure of applications.

Finally, some of the information leaks described in section 4 are transitory in
the sense that they occur only when the mobile computer has just moved from
the intranet or home to a public access point. This happens because software
caches state data, such as IP addresses, and uses them even after moving to
a new network. These problems can be solved by detecting when the mobile
computer has disconnected from a network and by discarding any state data
that may be stale after the event. The same should be done after the computer
has been in a sleep mode and possibly moved to a new location.

7 Conclusion

In this paper, we analyzed identifier leaks from mobile computers to the access
link. We discovered that the username, computer name and organizational iden-
tifiers such as the domain suffix are sent unencrypted to the network by a large
number of different protocols and applications. This is a breach of privacy and
may expose users and their computers to unnecessary risks or embarrassment.

The privacy concerns could discourage people from using new communications
technology to its full potential. We suggest a solution based on network location
awareness (NLA). Client software should remember the networks on which it
has been configured to access each service. It should not try to automatically
discover the service at other locations. This solution requires changes both to
application clients and to many parts of the network stack; in effect, we are
proposing a change of culture in the way service discovery in network network-
enabled software is implemented.

References

[ACL+07] P. Akritidis, W.Y. Chin, V.T. Lam, S. Sidiroglou, and K.G. Anagnostakis.
Proximity breeds danger: Emerging threats in metro-area wireless networks. In
Proceedings of 16th USENIX Security Symposium, Boston, MA, USA, August 2007.
USENIX Association.

[Aho75] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: an aid to
bibliographic search. Communications of the ACM, 18(6):333–340, June 1975.

[AHK03] Paul Ashley, Satoshi Hada, Günter Karjoth, Calvin Powers, and Matthias
Schunter. Enterprise privacy authorization language (EPAL 1.2). Research Report
RZ 3485, IBM, March 2003.

[AKR06] Tuomas Aura, Thomas A. Kuhn, and Michael Roe. Scanning electronic docu-
ments for personally identifiable information. In Proceedings of 5th ACM Workshop
on Privacy in the Electronic Society (WPES’06), Alexandria, VA, USA, October
2006. ACM.

[ARM07] Tuomas Aura, Michael Roe, and Steven J. Murdoch. Securing network loca-
tion awareness with authenticated DHCP. In Proceedings of 3rd International Con-
ference on Security and Privacy in Communication Networks (SecureComm 2007),
Nice, France, September 2007. IEEE Press.

[BS03] Alastair R. Beresford and Frank Stajano. Location privacy in pervasive com-
puting. IEEE Pervasive Computing, 2(1):46–55, January–March 2003.

[BSF06] Andre Broido, Hao Shang, Marina Fomenkov, Young Hyun, and KC Claffy.
The Windows of private DNS updates. Computer Communication Review (ACM
SIGCOMM), 36(3):93–98, July 2006.

[Cha81] David L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–88, February 1981.

[CK06] Stuart Cheshire and Marc Krochmal. Multicast DNS. Internet-Draft draft-
cheshire-dnsext-multicastdns-06, IETF, August 2006. Expired.

[CPG04] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel Rosen-
blum. Understanding data lifetime via whole system simulation. In Proceedings
of 13th Usenix Security Symposium, pages 321–336, San Diego, CA, USA, August
2004. USENIX.

[CSWH00] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong.
Freenet: A distributed anonymous information storage and retrieval system. In Pro-
ceedings of Designing Privacy Enhancing Technologies: Workshop on Design Issues
in Anonymity and Unobservability, volume 2009 of LNCS, pages 46–66, Berkeley,
CA, USA, July 2000. Springer.

[Cra02] Lorrie Faith Cranor. Web Privacy with P3P. O’Reilly, September 2002.
[CJBMM04] Jorge R. Cuellar, Jr. John B. Morris, Deirdre K. Mulligan, Jon Peterson,

and James M. Polk. Geopriv requirements. RFC 3693, IETF, February 2004.

[DSCP02] Claudia Dı́az, Stefaan Seys, Joris Claessens, and Bart Preneel. Towards
measuring anonymity. In Proceedings of Privacy Enhancing Technologies Workshop
(PET 2002), volume 2482 of LNCS, San Francisco, CA, USA, April 2003. Springer.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th USENIX Security Symposium,
San Diego, CA, USA, August 2004. USENIX Association.

[FMT06] Jason Franklin, Damon McCoy, Parisa Tabriz, Vicentiu Neagoe, Jamie Van
Randwyk, and Douglas Sicker. Passive data link layer 802.11 wireless device driver
fingerprinting. In 15th Proceedings of USENIX Security Symposium, pages 167–178,
Vancouver, B.C., Canada, July 2006. USENIX Association.

[GDMR06] Ryan Gerdes, Thomas Daniels, Mani Mina, and Steve Russell. Device iden-
tification via analog signal fingerprinting: A matched filter approach. In Proceedings
of 13th Annual Network and Distributed System Security Symposium (NDSS 2006),
San Diego, CA, USA, February 2006. Internet Society.

[GM82] Joseph A. Goguen and Jose Meseguer. Security policies and security models.
In Proceedings of IEEE Symposium on Research in Security and Privacy, pages
11–20, Los Alamitos, CA, USA, April 1982. IEEE Computer Society Press.

[GG03a] Marco Gruteser and Dirk Grunwald. Anonymous usage of location-based
services through spatial and temporal cloaking. In Proceedings of MobiSys 2003:
The First International Conference on Mobile Systems, Applications, and Services,
pages 31–42, San Francisco, CA, USA, May 2003. USENIX Association.

[GG03b] Marco Gruteser and Dirk Grunwald. Enhancing location privacy in wireless
LAN through disposable interface identifiers: a quantitative analysis. In Proceedings
of 1st ACM International Workshop on Wireless Mobile Applications and Services
on WLAN Hotspots (WMASH), pages 46–55, 2003.

[GF07] Saikat Guha and Paul Francis. Identity trail: Covert surveillance using DNS.
In Proceedings of 7th International Symposium on Privacy Enhancing Technologies
(PET 2007), volume 4776 of LNCS, Ottawa, Canada, June 2007. Springer.

[GGP+07] Ben Greenstein, Ramakrishna Gummadi, Jeffrey Pang, Mike Y. Chen, Ta-
dayoshi Kohno, Srinivasan Seshan, and David Wetherall. Can Ferris Bueller still
have his day off? Protecting privacy in the wireless era. In Proceedings of 11th
Workshop on Hot Topics in Operating Systems (HotOS XI), San Diego, CA, USA,
May 2007. USENIX Association.

[JWH07] Tao Jiang, Helen J. Wang, and Yih-Chun Hu. Preserving location privacy in
wireless LANs. In Proceedings of 5th International Conference on Mobile Systems,
Applications, and Services (MobiSys 2007), pages 246–257, San Juan, Puerto Rico,
USA, June 2007. ACM Press.

[JP02] David B. Johnson and Charles Perkins. Mobility support in IPv6. RFC 3775,
IETF, June 2004.

[KBC05] Tadayoshi Kohno, Andre Broido, and KC Claffy. Remote physical device fin-
gerprinting. In Proceedings of IEEE Symposium on Security and Privacy, Oakland,
CA, USA, May 2005. IEEE Computer Society.

[KC05] Braden Kowitz and Lorrie Cranor. Peripheral privacy notifications for wireless
networks. In Proceedings of Workshop on Privacy in Electronic Society (WPES’05),
pages 90–96, Alexandria, VA, USA, November 2005. ACM Press.

[Law03] George Lawton. Instant messaging puts on a business suit. Computer,
36(3):14–16, March 2003.

[LT06] Janne Lindqvist and Laura Takkinen. Privacy management for secure mobility.
In Proceedings of Workshop on Privacy in Electronic Society (WPES’06), pages 63–
66, Alexandria, VA, USA, October 2006. ACM Press.

[MCPS03] Ulf Möller, Lance Cottrell, Peter Palfrader, and Len Sassaman. Mixmas-
ter Protocol — Version 2. Internet-Draft draft-moeller-v2-01, IETF, July 2003.
Expired.

[Mur06] Steven J. Murdoch. Hot or not: Revealing hidden services by their clock
skew. In Proceedings of ACM Conference on Computer and Communications Secu-
rity (CCS’06), pages 27–36, Alexandria, VA USA, November 2006. ACM Press.

[ND01] Thomas Narten and Richard Draves. Privacy extensions for stateless address
autoconfiguration in IPv6. RFC 3041, IETF, January 2001.

[PGM+07] Jeffrey Pang, Ben Greenstein, Damon McCoy, Srinivasan Seshan, and
David Wetherall. Tryst: The case for confidential service discovery. In Proceed-
ings of the 6th Workshop on Hot Topics in Networks (HotNets-VI), Atlanta, CA,
USA, November 2007. ACM Press.

[PGG+07] Jeffrey Pang, Ben Greenstein, Ramakrishna Gummadi, Srinivasan Seshan,
and David Wetherall. 802.11 user fingerprinting. In Proceedings of 13th Annual
International Conference on Mobile Computing and Networking (MobiCom ’07),
Montreal, QC, Canada, September 2007. ACM Press.

[Pet02] Jon Peterson. A privacy mechanism for the session initiation protocol (SIP).
RFC 3323, IETF, November 2002.

[PS01] Derrell Piper and Brian Swander. A GSS-API authentication method for IKE.
Internet-Draft draft-ietf-ipsec-isakmp-gss-auth-07, IETF, July 2001. Expired.

[RR98] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for web transac-
tions. ACM Transactions on Information and System Security, 1(1):66–92, 1998.

[SM03] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow se-
curity. IEEE Journal on Selected Areas in Communications, 21(1):5–19, January
2003.

[SLH07] T. Scott Saponas, Jonathan Lester, Carl Hartung, Sameer Agarwal, and Ta-
dayoshi Kohno. Devices that tell on you: Privacy trends in consumer ubiquitous
computing. In Proceedings of 16th USENIX Security Symposium, Boston, MA, USA,
August 2007. USENIX Association.

[SD02] Andrei Serjantov and George Danezis. Towards an information theoretic metric
for anonymity. In Proceedings of Privacy Enhancing Technologies Workshop (PET
2002), volume 2482 of LNCS, San Francisco, CA, USA, April 2002. Springer.

[SAH08] Dan Simon, Bernard Aboba, and Ryan Hurst. The EAP-TLS authentication
protocol. RFC 5216, IETF, March 2008.

[SGR97] Paul F. Syverson, David M. Goldschlag, and Michael G. Reed. Anonymous
connections and onion routing. In Proc. 1997 IEEE Symposium on Security and
Privacy, pages 44–54, Oakland, CA USA, May 1997. IEEE Computer Society Press.

[Swe02] Latanya Sweeney. k-Anonymity: a model for protecting privacy. International
Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10(5):557–570,
2002.

[TN98] Susan Thomson and Thomas Narten. IPv6 stateless address autoconfiguration.
RFC 2462, IETF, December 1998.

[YMC07] Aydan R. Yumerefendi, Benjamin Mickle, and Landon P. Cox. TightLip:
Keeping applications from spilling the beans. In Proceedings of 4th USENIX Sympo-
sium on Networked Systems Design & Implementation, pages 159–172, Cambridge,
MA, USA, April 2007. USENIX Association.

[ZCYH05] Qin Zhao, Winnie W. Cheng, Bei Yu, and Scott Hiroshige. DOG: Efficient
information flow tracing and program monitoring with dynamic binary rewriting.
Technical report, MIT, 2005.

[Zug03] Alf Zugenmaier. Anonymity for Users of Mobile Devices through Location
Addressing. PhD thesis, University of Freiburg, Freiburg, Germany, 2003.

