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1 Rationale

An alarmingly large number of different cryptosystems have been proposed for
use with Internet Privacy Enhanced Mail [1]. These include the hash functions
MD-n (for various values of n) and a combinatorial explosion of new DES modes.

The criteria for choosing which algorithm is most suitable for a particu-
lar application include vulnerability to attacks, performance, and availability of
hardware implementations. There is already extensive literature on vulnerabil-
ities. The objective of this paper is to provide some concrete information on
performance, in order that an algorithm with a suitable combination of both
security and performance may be chosen.

2 Experimental Approach

For each class of algorithm (one-way hash functions; symmetric ciphers; and
asymmetric ciphers) a generic application program interface (API) was defined
that could be used to access any algorithm in that class. For each algorithm that
we tested, an implementation was written conforming to this API.

This met two objectives. Firstly, a common API allows different algorithms
to be substituted into real applications with a minimum of effort. Secondly, for
performance measurements, using a common API reduces the influence of the
API on perceived performance. Different APIs vary greatly in efficiency, and so
measurements of different algorithms with different APIs are hard to compare
in a fair manner.

For each class of algorithm, three generic programs were written; one to test
correctness, and two to measure performance. For each particular algorithm,
these generic programs were linked with a subroutine library containing the
specific algorithms, and then run.

The correctness test reads in from a file test cases taken from the algorithm
specification, and checks that the implementation under test gives the correct
results. (The published specifications of MD2, MD4, MD5, SHA and RIPE-MD
all contain test cases).

The first performance test for hash algorithms measures the time taken to
hash a message containing 6,400,000 zero octets. This is implemented by clearing
a 64 character buffer, calling the routine to initialise hashing, calling the routine
to hash a buffer 100 000 times, and then calling the routine to finish hashing.



The second performance test for hash algorithms measures the time taken
to hash a 64 character message. This is implemented by clearing a 64 character
buffer, and then 10,000 times calling the routines to start hashing, hash the
buffer and finish hashing.

In general, the time taken to hash a message is a constant (the time needed
to call the start and stop hashing routines) plus an amount proportional to the
length of the message. Thus, the time taken to hash a message of any particular
length can be estimated by interpolating from between the above two measure-
ments.

The first performance test for symmetric key algorithms measures the time
taken to encrypt a message of 6,400,000 octets with a fixed key. The second
performance test measures the time taken to encrypt a single data block under
10,000 different keys. The size of a block depends upon the particular algorithm,
but is typically 64 bits (8 octets).

The time taken to encrypt one or more message under a fixed key is ap-
proximately a constant (the time taken to expand the key into a key schedule of
subkeys) plus an amount proportional to the total number of data blocks to be
encrypted. Thus, the time taken to encrypt a message of any particular length
can be estimated by interpolating the results of the above two tests.

3 Apparatus

These measurements where carried out on Unix workstations from two different
manufacturers:

1. A DEC 3000/400 “Sandpiper”. This uses an Alpha CPU clocked at 133 MHz.
There is 2 times 8KB of primary cache memory and 512KB of secondary
cache.

2. A Sun SparcStation ELC. This uses a Sparc CPU clocked at 33 MHz.

Both CPUs are RISC processors with a large number of registers. On other
types of CPU, such as those with a small number of registers or where the
registers are only 8 bits wide, the relative speeds of these algorithms may be
significantly different.

For example, the SAFER-K64 algorithm uses only 8-bit operations, while
most of the other algorithms use 32 bit operations. It is likely that on an 8
bit processor SAFER-K64 will have a much greater speed advantage over the
other algorithms. The NIST Secure Hash Algorithm involves a large number of
temporary variables; it is likely that on machines with only a small number of
registers this algorithm will be at a greater disadvantage.

4 Hash Algorithms

The algorithms chosen were MD2 [4], MD4 [10], MD5 [11], SHA [9] and RIPE-
MD [3].



With the exception of MD2, all of these algorithms are variants of MD4.
The MD4 variants were implemented by writing a single subroutine which was
copied and edited to produce each of the variants. As a result, exactly the same
optimisations and speed-up techniques were used in all the variants. This makes
it easier to compare the results, as some optimisations can make a tremendous
difference to the performance of these hash functions.

The platforms chosen for measurement were a Sun IPC (Sparc architecture)
and a DEC 3000 (Alpha architecture).

Figure 1 shows the speed in Mbit/s when hashing a 6,400,000 octet message.

Algorithm Sparc Alpha
(Mbit/s) (Mbits/s)

MD2 0.212 0.755
MD4 15.36 78.77
MD5 10.97 60.02
SHA 6.707 41.51
RIPE-MD 9.143 48.00

Fig. 1. Hash Algorithms: Long messages

Figure 2 shows the number of 64 octet long messages that can be hashed per
second.

Algorithm Sparc Alpha
(hashes/s) (hashes/s)

MD2 876 2906
MD4 19934 63160
MD5 16043 50002
SHA 10381 35504
RIPE-MD 13575 45456

Fig. 2. Hash Algorithms: Short messages

5 Symmetric Ciphers

The ciphers examined were DEA-1 [7], GOST 28147 [12] and SAFER-K64 [5].
DEA-1 is the subject of a U.S. Federal Information Processing standard,

and is widely used in financial applications in many countries. GOST 28147 is
a Soviet standard, and is widely used within the countries of the former Soviet



Union. SAFER-K64 is a new algorithm developed by James Massey for Cylink
corporation. A full description of SAFER-K64 is given elsewhere in these pro-
ceedings.

Figure 3 shows the throughput of these algorithms when encrypting in Elec-
tronic Code Book (ECB) mode. For all these algorithms, the speed of decryption
is approximately the same as the speed of encryption.

Algorithm Sparc Alpha
(Mbit/s) (MBit/s)

DEA-1 0.487 1.855
GOST 28147 0.713 2.909
SAFER-K64 2.259 7.680

Fig. 3. Symmetric Ciphers: Long messages

Figure 4 shows the rate at which keys can be changed. The “ratio” column
gives the number of bits than can be encrypted (without changing the key) in
the same time that it takes to change the key. This ratio gives a measure of
the complexity of computing the key schedule for each algorithm. DEA-1 has
the most complex key schedule, involving permutations and rotations by varying
numbers of bits. GOST 28147 has an extremely simple key schedule. The use of
a complex key schedule can do much to increase the security of a cryptographic
algorithm. Furthermore, in many applications key changes are fairly infrequent,
and so increasing the complexity of the key schedule has little impact on overall
performance.

DEA-1, GOST 28147 and SAFER-K64 all have the property that the sub-
key used in each round is a linear function of the original key. Designers of
new encryption algorithm should consider using non-linear functions in the key
schedule, as this can increase security without affecting performance.

Algorithm Sparc Alpha Sparc Alpha
(changes/s) (changes/s) ratio ratio

DEA-1 896 4000 543 464
GOST 28147 8696 37501 82 78
SAFER-K64 6000 24000 377 320

Fig. 4. Symmetric Ciphers: Short messages

For encrypting bulk data, it is conventional to use a chaining mode such as
Cipher Block Chaining (CBC) [8] rather than ECB mode. For any block cipher,



CBC mode will be slightly slower than ECB mode, as an additional exclusive-or
operation is required for each block. However, the time taken to perform the
exclusive-or is very small compared to the total time taken to encrypt a block,
and so the speeds to the two modes are approximately the same. The following
table compares the throughput of ECB and CBC mode for DEA-1.

Mode Sparc Alpha
(Mbit/s) (MBit/s)

ECB 0.487 1.855
CBC 0.463 1.706

Fig. 5. DEA-1: Chaining modes

The key size of DEA-1 is sometimes considered to be too small to provide
sufficient security for some applications. To increase the effective key space,
a new mode called EDE (Encrypt-Decrypt-Encrypt) was invented [6]. In this
mode, the data is first encrypted with key 1, then decrypted with key 2, and
finally encrypted with key 1 again. This provides the same functionality as ECB
mode, but doubles the size of the keys. (And so, it is hoped, greatly increases
the security).

DEA-1 in EDE mode is somewhat faster than a third of the speed of ECB
mode, because in a optimised implementation some of the internal permutations
can be combined. This optimisation depends upon the internal structure of DEA-
1, and is not necessarily possible with other cipher algorithms used in EDE mode.

Two new modes, EDE-CBC and CBC-EDE, deserve some explanation. Both
of these modes use three independent DES keys, in order to guard against known
plaintext attacks using very large parallel machines. They are also both chaining
modes, in order that messages longer than 64 bits may be encrypted.

EDE-CBC mode takes EDE mode as a building block and uses it in CBC
mode. CBC-EDE mode (invented by Carl Ellison) is CBC mode applied three
times with different keys. EDE-CBC mode is generally considered to be more
resistant to cryptanalytic attacks [2].

Figure 6 shows the speed of the different triple encryption modes when en-
crypting a 64,000,000 octet message under a fixed key. EDE-CBC mode is only
slightly slower than EDE mode, as the time taken to perform an additional
exclusive-or operation is very small. CBC-EDE mode is significantly slower, as
it has a chaining exclusive-or operation in between the internal permutations.
This means that it is not so easy to speed up the algorithm by combining these
permutations. It is theoretically possible to do an equivalent optimisation for
CBC-EDE mode, using the fact that the exclusive-or operation commutes with
permutations. This was not considered to be worth implementing, as CBC-EDE
mode had been discredited on security grounds [2].



Mode Sparc Alpha
(Mbit/s) (MBit/s)

ECB 0.487 1.855
CBC 0.463 1.706
EDE 0.274 1.200
EDE-CBC 0.269 1.122
CBC-EDE 0.151 0.557

Fig. 6. DEA-1: Triple encryption modes

6 Conclusions

Conventional algorithms (such as DEA-1) are surprisingly fast when run on the
current generation of fast processors. For many applications, they have more
than adequate performance.

Perhaps we should be concentrating on more secure algorithms (with the
same performance) rather than faster, but less secure algorithms? The following
techniques can be effective:

– Improving the key schedule
GOST 28147, DEA-1 and SAFER-K64 all have the property that the subkey
for each round is a linear function of the original key. Using a non-linear
transformation can improve security, and has little effect on performance.

– Larger lookup tables
GOST 28147, DEA-1 and SAFER-K64 all use lookup tables to make each
round non-linear. Increasing the size of these tables can improve security.
Provided that the tables still fit within the CPU’s cache memory, there is
essentially no performance penalty in making the tables bigger.
GOST 28147 uses 4-bit wide tables, which are probably too small to provide
adequate protection against attacks such as differential cryptanalysis. DEA-
1 uses 6-bit wide tables; this was probably an optimal compromise between
security and memory requirements when DEA-1 was designed (in the 1970s).
SAFER-K64 uses 8-bit wide tables. This is certainly large enough, but the
function used to generate the tables (45xmod257) is not as non-linear as
it could be; 45(x+y) = 45x.45y As the contents of the tables has no effect
on performance, a function less helpful to the cryptanalyst could have been
chosen.

– Triple encryption
Triple encryption is a good way of taking an algorithm which has withstood
attack for many years (such as DEA-1) and increasing its key size to protect
against exhaustive search. If a chaining mode is desired, it is better to apply
the chaining around three applications of the block cipher than to apply the
chaining mode three times.
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