
Secure Sessions from Weak Secrets

Michael Roe1

Bruce Christianson2

David Wheeler3

1 Centre for Communications Systems Research, University of Cambridge
2 Computer Science Department, University of Hertfordshire, Hatfield

3 Computer Laboratory, University of Cambridge

Abstract. Sometimes two parties who share a weak secret k such as a
password wish to share a strong secret s such as a session key without
revealing information about k to an active attacker. We assume that
both parties can generate strong random numbers and forget secrets,
and present three protocols for secure strong secret sharing, based on
RSA, Diffie-Hellman, and El-Gamal. As well as being simpler and quicker
than their predecessors, our protocols also have slightly stronger security
properties: in particular, they make no cryptographic use of s and so
impose no subtle restrictions upon the use which is made of s by other
protocols.

1 Introduction

Sometimes there is a requirement to establish a secure session between two par-
ties who initially share only a weak long-term secret. “Secure” includes the re-
quirement that the parties can be sure that they are talking to each other, as well
as properties of integrity and secrecy. By “weak secret” we mean a secret that is
chosen from a moderately small set, so that an attacker could search through all
possible values. Passwords are often weak secrets, as the total number of words
in a dictionary is searchable.

A weak secret cannot be used directly as a cryptographic key to secure the
session, as this is vulnerable to a known plaintext attack. If the attacker knows
(or can guess with high probability of being right) the message plaintext m
corresponding to a known encrypted text Ek(m) then they can search through
all possible values of the password until they find the value for k which decrypts
the ciphertext to m. This reveals the password, which can then be used to
decipher the session.

Suppose that the parties who wish to communicate have good random num-
ber generators. This means that they can generate secrets which are strong
(chosen from a set which is too large to search) but not shared. We would like
to have a protocol which starts with a weak shared secret and a pair of strong
non-shared secrets and which ends up with a secret which is both strong and
shared. We refer to such a protocol as a Strong Secret Sharing Password (S3P)
Protocol.

Previous attempts at solving this problem include Bellovin and Merritt’s En-
crypted Key Exchange [2], Jablon’s SPEKE [6], and Lucks’ Open Key Exchange
[9]. A related, but slightly different approach is taken by Gong et al in [4]. In
this paper, we present three new protocols for solving this problem, based on
RSA, Diffie-Hellman and El Gamal respectively. As well as possessing slightly
stronger security properties, our protocols have the advantage of being simpler
and quicker than their predecessors.

2 Assumptions

In accord with tradition, we assume that the two parties trying to operate the
S3P protocol are unambiguously known to each other as A and B.

We assume that neither party can reliably maintain the integrity of a strong
secret s from one protocol run to another: in other words if A tries to use a strong
secret from one run in another run, then there is a good chance that s either leaks,
or is forgotten, or changes (or is changed) without A noticing that it has. This
assumption may correspond to the fact that the parties move frequently from
one piece of hardware to another, or may be because the hardware is initialized
in some way between protocol runs to erase secret information. We discuss this
issue further in section 6.

We assume that both parties can reliably maintain the integrity of public,
slowly varying data such as software and public keys: other protocols are avail-
able to assist with this [8].

2

The protocols which we consider include the operations “generate a random
bit pattern n” and “forget the bit pattern m”. We assume that both ends have
good irreproducible random bit generators and can forget secrets. By the first
assumption we mean that our threat model does not consider the possibility of
an attacker determining n by examining other bit patterns produced (previously
or subsequently) by the same or other generators. By the second we mean that
our threat model does not consider the possibility of an attacker subsequently
determining m from from an examination of the hardware which has been in-
structed to forget it. Note that the hardware which must forget includes the
random generator. This assumption is probably the most difficult requirement
to realize in practice.

We turn now to describing the features which we desire the S3P protocol to
have. At the start of the protocol A and B share a weak secret k. Following a
run of the protocol which A believes to have ended correctly, it should be the
case that B really did participate in that run of the protocol, and that the two
of them do now share a fresh strong secret. The corresponding statement should
also be true for a run which B believes to have ended correctly. The protocol
should not reveal information about the weak secret k in any case.

The protocol should be secure against active attacks in which the attacker
creates or modifies messages. Leakage or cryptographic compromise of a strong
secret s shared using a protocol run should not reveal information about the
password k. If several strong secrets si are shared by different runs using the
same password k then obtaining one such si should not help an attacker to
obtain sj with j 6= i.

An attacker should not be able to obtain any information about whether
a guessed value of the password is correct without making an active attack:
effectively the attacker should be forced to masquerade as one of the partici-
pants to the other. An active attack should be detectable by at least one of the
genuine participants, unless the guessed value is correct, and each such failed
attack should eliminate no more than one possible value of the password (ie
the unsuccessful guess) from the attacker’s list of possible password values. Ap-
proaches such as [1] do not satisfy this requirement. Finally, if the password is
compromised (by whatever means) this should not assist the attacker to obtain
strong secrets agreed using the protocol with that password prior to the point of
compromise, or to obtain subsequently agreed strong secrets by passive attack.

We wish to make no assumptions about what the strong shared secret will
be used for. The S3P protocol run used to agree the strong shared secret s ends
as soon as both parties can be sure that s has been appropriately shared. In the
light of known chosen protocol attacks [7] we wish to impose no restrictions upon
the nature of the cryptographic protocols or algorithms to which s is handed off
for subsequent use, or upon the length of s itself. It may be intended to reveal
s (for example s may be used as a one-time pad) or it may be that s is not
intended to be used as a key at all, but as a salt or initial value. In particular,
the S3P protocol should not assume that s is strong: it may be feasible for an
attacker to search for s in the time available between steps of the protocol. This

3

may be because s is required to be weak (less than 40 bits, suppose) or because
the protocol is running very slowly (the messages may be carried by a diskette
sent through the post, for example.)

In the protocol descriptions that follow, we omit from each message the
header information identifying which protocol is being used, which parties it
purports to operate between, which run of the protocol the message relates to,
and the sequence number of the message within that protocol run. Nor do we
specify explicitly what conditions cause a participant to treat a particular run
as having failed (e.g. receiving an incorrect bit pattern or timing out.) We shall
consider these points further in section 6.

3 RSA based Protocol

A generates an RSA modulus N = pq with p, q prime and so that (p−1)/2, (q−
1)/2 each contains a large prime factor.

We assume that there is a publicly known function e which converts a pass-
word k into a large prime number e(k) suitable for use as an RSA exponent. By
large we mean that e(k) always lies strictly between max(p, q) and N−p− q+1.
The function e could be implemented by some suitable algorithm (e.g. search
through ascending values of i until a prime of the form a + k(b + ic) is found,
where a, b, c are published constants guaranteed to exceed max(p, q).)

The protocol runs as follows:

A→ B : N (1)
B → A : ze(k) mod N (2)
A→ B : na (3)
B → A : nb (4)

Here z = c|s|na|nb where s is the session key, c is a strong random number called
a confounder, and na, nb are random numbers called nonces. The vertical bar |
denotes concatenation, with the high order bits on the left. The presence of c
prevents an attacker using a compromised session key and a copy of message (2)
to search for k.

It is vital that there be no redundancy in the plaintext z = c|s|na|nb which
is encrypted in message (2). If there were, then an attacker masquerading as
A could use this to search for k in time to generate message (3) correctly and
complete the protocol run. Note that consequently z must be a random number
in the range 1 . . .N . The statistical distribution of the high order bits of c is
thus skewed, because N is not a power of 2. However, the low order bits of c
and all bits of s will not contain enough skew to be useful to an enemy after
any achievable number of protocol runs. It must be infeasible for an attacker to
search over the low-order bits of c. Otherwise after s is revealed for a completed
run, passive search would reveal k by a match on message (2).

The purpose of messages (3) and (4) is to convince A and B that they are not
experiencing an active attack. Instead of using the nonces na and nb in messages

4

(3) and (4), we could use cryptographic hashes of them instead. But nothing
is gained by doing this, and it requires us to exhibit a cryptographic algorithm
with suitable subtle properties, a commitment which we prefer to avoid. A more
dangerous alternative is to allow the contents of messages (3) and (4) to depend
on s or c, for example by encrypting na or nb under s. This is undesirable:
cryptographic use of s in the S3P protocol may place subtle restrictions upon
the cryptographic or other uses to which smay subsequently be put [7]. Similarly,
we could derive s as a cryptographic hash of z, with similar objections. Worse
still is to place encryptions with s of texts containing redundancy or known bit
patterns in messages (3) and (4). This allows interactive breaking of the protocol
between steps (3) and (4) by an attacker masquerading as B, who finds s in time
to send message (4). Effectively, if s is not sufficiently strong then the attacker
gets an undetected guess at k.

Factorization of N by an attacker gives the attacker k and, worse, allows the
attacker to obtain old values of s. The public key N must therefore be many
times longer than s, consequently a large number of bits is available for na, nb
and c.

Note that a fresh key N is required for each run of the protocol, but the
function e(k) can remain constant. Only A need verify the strength of the public
key N . A must forget d(k), the decryption key corresponding to e(k), as well
as p and q. Both A and B must forget c. B must forget the whole of z if the
protocol fails at step (3).

In the RSA protocol, the key s and all nonces are chosen by B. Although s
need not be strong, it must contain no redundancy and must not be predictable.
Prior knowledge of the value of s which B will choose allows an attacker mas-
querading as A to determine k. Also note that s must appear random and so
can’t be a public key. Although the confounder c must be strong, the nonces
na and nb need not be strong, although they should be significantly harder to
predict than k.

It is tempting to try and shorten the protocol run to three messages by
combining the texts of messages (2) and (4) into a single message. This doesn’t
work, because there must be no redundancy in message (2).

We conclude this section with some remarks illustrating the constraints on
the function e(k). Suppose that e is a large fixed prime, and consider a broken
variation of the RSA protocol where message (2) contains ze+k mod N in place
of ze(k). An attacker masquerading as A chooses N = pq where p is a prime
of the form r.e + 1. Then the Euler totient φ(N) = re(q − 1) so for almost all
values of z we have (ze)r(q−1) = 1 (mod N). Exhaustive search following a
single foiled active attack now reveals k.

A similar argument applied to the original RSA protocol shows that if values
of e(k) contain prime factors much less than

√
N , then an attacker masquerading

as A can eliminate several candidate values of k in a single run. Suppose pi are
small odd primes and the attacker would like to know which pi divide e(k).
Define p = 1 + 2

∏
i even pi, q = 1 + 2

∏
i odd pi and arrange the indexing of pi so

that p and q are prime. Setting N = pq we have (almost certainly) that pi|e(k)

5

iff (ze(k))P/pi = 1 (mod N) where P = 4
∏

all i pi. Other number-theoretic
attacks are considered by Patel [10].

To block attacks of this form it suffices to ensure that all e(k) are primes
with a one somewhere in the high order bits. This still allows an attacker to
eliminate two values of k per active attack, but no more. We also need to ensure
that the mapping from k to e(k) is, as nearly as possible, one-to-one. Successive
primes below N are almost always less than

√
N integers apart.

If the function e(k) where defined to be the first prime after a + b.k, then
the protocol would be vulnerable to an attack which has a greater chance of
success than attempting to guess the password. The density of prime numbers
implies that e(k) = a + b.k + i for small i. The attacker pretends to be A,
and chooses N = b.j + 1 for some small j. The attacker can guess e(k) mod b
because i is small and can guess e(k) mod j because j is small. By applying the
Chinese Remainder Theorem, the attacker can guess e(k) mod b.j. Furthermore,
the attacker can have chosen j so that N is easy to factor, enabling them to
recover z from message (2) with greater probablity of success than guessing k.

4 Diffie-Hellman based Protocol

Let q be a publicly known large prime, and let g be a residue modulo q. To
prevent various subtle attacks [2, 6, 10] we assume that p = (q − 1)/2 is a prime
and g is a generator modulo q, so that gn has period 2p. Note that in case
p mod 4 = 1 we can take g = 2 [5, Theorem 95].

A and B select strong random numbers x, y respectively. By strong we mean
that exhaustive search is infeasible. The protocol runs as follows:

A→ B : gx + V (k) mod q (1)
B → A : gy mod q | nb (2)
A→ B : na (3)

where we write g2xy mod q = z = c|s|na|nb with semantics as in the RSA pro-
tocol, and V is a code which can correct all two bit errors.

Whereas the RSA-based protocol required four messages, the Diffie-Hellman
variant can be done in three, effectively by combining both texts uttered by B
in the same message. Consequently, in marked contrast to the RSA case, the
second message in the DH protocol contains verifiable redundancy in the form
of nb. The reason an attacker cannot use this to break the protocol is that the
redundancy is only detectable by an entity who knows x or y. These are not
searchable by hypothesis, and the value of x is not deducible from message (1)
even with a guessed value for k. Both A and B should check to ensure that
z 6= 0 and z 6= 1. If z = 0 or z = 1 then the run fails, otherwise an active
attacker could masquerade as B by using these values in message (2). B should
also check the redundancy in V (k), and terminate the run if an error is detected.
The confounder c is required to prevent quadratic residue attacks from revealing
bits of information about s.

6

As with RSA, eventual cracking of the chosen public key will give the attacker
k and, worse, allow the attacker to obtain old values of s. For this reason the
public parameter q must be many times longer than s, and so a large number of
bits is again available for na, nb and c. The nonces na, nb and the confounder c
need not be strong, although they should be significantly harder to predict than
k. We require that x, y strong and large relative to log2 q.

A must forget x and gx, while B must forget y. Both A and B must forget
c. A must forget the whole of z if the protocol run fails at message (2). The DH
protocol ensures that s appears random, but does not allow it to be chosen or
predicted by A or B.

The purpose of the error-correcting code V is to prevent the attacker testing
multiple values of k in a single run. If g = 2, the attacker knows the discrete
logarithms of small powers of 2, and can use this fact to simultaneously test a
set of candidates for V (k), each of which differs in only one bit from some value
v0. If V can correct all two bit errors, then this attack is defeated.

We conclude this section with some remarks concerning the choice of q and
g. To avoid narrowing attacks, we require that q be a prime of the form 2p+ 1
for some prime p, and that g be a primitive root modulo q. Such parameters are
relatively expensive to generate, and in the DH protocol both A and B must
check that q, g are suitable values, since using poor values can reveal k. In the
RSA case only A need check. However, while the RSA protocol needs a new key
N for each run, the DH protocol can use same parameters g and q many times.
Consequently the parameters g and q could be relatively long-term and chosen
by A and B jointly prior to the first run of the protocol, or else chosen, certified
and published by some party trusted for this purpose by both A and B.

Alternatively, A could choose the public parameters and send them to B
in the first message. B must carry out a deterministic test to verify that the
parameters are of the correct form. A deterministic test should be used, since
many non-deterministic tests assume random rather than malicious choice of
candidate primes. To enable B to carry out such a test efficiently A can send a
witness along with the parameters. However, we still need q to be many times
longer than s. If A chooses q, g each run then it may be more efficient to find
a prime q of the more general form q = rp + 1 where p is a large prime and r
is relatively small, although it is then more difficult to find a generator g. The
previous case corresponds to r = 2, whereas for this case r = 2n for a small
n might be better. To avoid narrowing attacks when q is of this more general
form, take grxy mod q = z = h|s|na|nb to force z into the large subgroup, and
check z 6= 1 and z 6= 0. Another option is to replace gy mod q by gy + k mod q
in message (2).

5 El Gamal based Protocol.

This variation of the DH protocol allows B to pick the session key and nonces,
as was the case in the RSA protocol. The protocol runs as follows:

7

A→ B : gx + k mod q (1)
B → A : gy mod q | z · g2xy mod q | nb (2)
A→ B : na (3)

where z = h|s|na|nb as for the DH protocol, except that instead of the confounder
c, h contains a known, fixed bit pattern which is chosen so that it is not invariant
under shifts or subtraction from q. As in the Diffie-Hellman case, A and B should
check that g2xy 6∈ {0, 1}. B should also check that z contains the expected value
for h.

This variant shares some features with the RSA case and some with the DH
case. As with DH, it is a three-message protocol and the middle message must
contain redundancy. However, while both the three and four message versions
of DH work correctly, a four message version of EG formed by sending nb in
message (4) instead of in message (2) does not work: an attacker masquerading
as B could choose y, w at random, send gy|w and then for each candidate value
of gx form a candidate w/g2xy for z and check for a match on the third message
to get k, s and nb. It is interesting to note that the three message version of
RSA does not work for similar reasons.

In the RSA protocol the value of s is chosen by B but s must contain no
redundancy discernible to the attacker: otherwise k is in danger. The DH protocol
ensures that s appears random, but does not allow it to be chosen or predicted
by the participants. The EG protocol allows B to choose s, and for s to contain
redundancy in any form desired. Indeed for the EG protocol even prior knowledge
of s by the attacker does not assist in an active attack against k. Also, in the
EG protocol na and nb may contain redundancy or known text. As with the
other protocols, the nonces na and nb need not be strong, although they should
be significantly harder to predict than k. However in the EG protocol h is not
a confounder at all. Instead, it contains redundancy to prevent a person in the
middle modifying messages (2) and (3) in such a way that the protocol completes
with A and B disagreeing on s.

The EG protocol, like the DH protocol, can use the same parameters g and
q many times. As in the DH protocol, both A and B must check that q, g are
suitable values, since using poor values will reveal k. As with RSA and DH,
eventual cracking of the chosen public key will give the attacker k and, worse,
allow the attacker to obtain old values of s. For this reason the public key must
be many times longer than s, and so a large number of bits is available for
na, nb, c.

A must forget x and gx, while B must forget y. A must forget the calculated
value of g2xy and z if the protocol run fails at message (2). Apart from this, h
need not be kept secret. The EG protocol allows s as well as na, nb and even h
to be chosen by B so as to contain redundancy or known text.

An alternative approach (which we do not recommend) is obtain na, nb from
g2xy as in the DH protocol, rather than from z.

8

6 System Considerations

An important feature of all the S3P protocols we consider is that it is not ac-
ceptable to ignore an active attack. If active attacks are ignored, the attacker
can make one active attack for each possible k, and will eventually succeed. If
suitable emergency action is taken in the event of an active attack being de-
tected (e.g. switching to a more expensive but physically secure channel, or to
another, previously agreed, password, after a certain number of failed runs), then
the attacker never gets enough information to improve his chances of guessing
correctly by more than some previously agreed security parameter.

In an extreme case we can confine the attacker to two guesses, one with each
of A and B. In a less extreme case, with (say) a million equally likely values
for k, we could choose to allow the attacker 32 guesses with each of A and B.
The attacker has less than a one in ten thousand chance of obtaining the true
value of k. Of course, this strategy requires some assumptions about the physical
locations of A and B, and their ability to remember the number of active attacks
detected over an appropriate time scale such as the expected life of the long term
password k. We also need to specify, in any particular system context, how these
numbers are stored and whether they are secret.

In particular, if the protocol is used by many pairs of participants, then an
attacker can make a small number of attacks against each of a very large number
of passwords, and will almost certainly succeed against one. The effects of this
form of penetration, and the countermeasures for containing it, depend upon
the interactions between the system-level protocols for which the strong shared
secrets are used.

An attractive alternative to using a deterministic counter and a threshold
is to invoke emergency action with a certain constant probability after each
detected attack. For example, if we set this probability at 2% then the alarm
will almost certainly be raised after 70 detected attacks, regardless of who detects
them. Since we assume that all parties who use the S3P protocols are able to
generate good random numbers, this stochastic technique imposes no new system
constraints.

The primary system context which we consider for the S3P protocol is one
of paranoia rather than hostility. In other words, we assume that the world
is full of very clever and hardworking attackers, but at the same time we are
confident that things will go right most of the time. In effect, we assume that the
S3P protocol is nested inside another protocol which works nearly all the time
except when there really is an active attack by an extraordinarily malicious and
ingenious entity. The S3P protocol is intended both as a trip-wire to indicate
whether the outer ramparts have been deliberately breached, and as a last-ditch
defence.

One possible system context is where we wish to ensure that the right person
is using a particular box. The box may be designed to be used by several different
people (e.g. a workstation in a shared area) or by only one person (e.g. a hand-
held device). The box may be stateful (e.g. able to retain session keys) or stateless
(all mutable information is deliberately erased between uses). However a box may

9

be stolen or tampered with. We wish to ensure that the box can only be used
by a person who knows the correct password.

To deploy the S3P protocol we assume that the box is tamper-evident, and
unviable to forge. We assume that the user checks the tamper-evident seal before
entering the password at the start of each run. We assume that the box forgets
the password once the S3P protocol run ends or fails, and that while the run
is in progress the box is tamper-proof, in the weak sense that that the box
will irrevocably destroy (forget) secrets rather than allow them to be read. This
property might require that the box is used in a different environment from the
one in which it is stored between runs.

Under these assumptions, the S3P protocol suffices to ensure that the box
cannot be used by a person who does not know the password. In the case where
the box may be used by more than one person, each person may have a separate
password. Note that tamper-proofing is not required except while the protocol is
running. Tamper-evidence suffices the rest of the time even in the stateful case.
State which persists between runs can therefore be used to support the outer
“wrapping” protocol, so long as the state of the box between runs can reveal no
information about the password.

The outer protocol must ensure that the inner S3P protocol is under no
accidental illusions about whether an offered bit pattern represents an attempt
to engage in the S3P protocol, and if so in which run, at what stage, and as
whom. The S3P run must fail if any such presented bit pattern is incorrect,
otherwise the enemy gets a free guess.

We also assume that “eventually” a run of the protocol which does not pro-
ceed will be regarded as having failed by at least one of the participants. However
this timeout may be very long. One reason for this is that we do not wish to
have too many false alarms, but there is another reason. We wish also to allow a
system context in which a run of the S3P protocol is transported by a slow non-
cryptographic outer protocol such as fax, snail-mail, or sneakernet. This gives
rise to two further considerations: re-entrancy and interactive breaking.

If an S3P protocol run can take a long elapsed time, then the S3P protocol
must be re-entrant. The total number of active runs (plus the number of pre-
viously detected failures) must be less than the threshold value for the number
of active attacks which we are prepared to tolerate. This ensures that all runs
which terminate successfully are safe. In particular, runs can be pipelined or
used back-to-back between the same two parties on tamper-proof hardware such
as smart cards which are kept locked up when not in use.

The possibility of a long elapsed time also provides one motivation for our
consideration of the possibility that a value of s could be broken between steps
of the S3P run, if it was used to encrypt a known plain text as part of the S3P
protocol for example.

We conclude this section with a brief consideration of how to block a reflection
attack. Suppose that A attempts to run the protocol with B. The attacker takes
each message from A and replays it as if it came from B as part of a different
protocol run. If A is not careful, she will end up sharing a fresh strong secret

10

with herself, rather than with B, in violation of our requirement that the other
intended participant must actually be involved in an apparently successful run.
Of course, this attack cannot actually succeed against the protocols as we have
described them here, since A always sends the odd-numbered messages and B the
even. But suppose we wish to allow either party to initiate the protocol, possibly
re-entrantly, so that A may legitimately use k to speak the lines attributed to
B in the script.

We can block the reflection attack by associating the nonces firmly with
principals. In respect of each password, one party is (by mutual agreement) the
a−end and the other is the b−end. Suppose that Carol is the a−end and that
Ted is the b−end. Then whenever Carol has to place a nonce in a message she
always uses na, regardless of whether she is playing the part of A or of B.

7 Conclusion

Although the primary purpose of the S3P protocol is to share strong secrets,
the design of the protocol does not assume that s is strong. The S3P protocol
can also be used simply to allow a remote authentication service to authenticate
a user to a “stateless” host which is local to the user. In this case s may be
an authenticator for the audit trail. In our design we make no restrictions upon
what the shared secret s is used for once the S3P protocol run has ended: s may
be revealed, used as a one-time pad, a cryptographic key, as a salt or an initial
value.

Our S3P protocols make no use of hash functions or symmetric cryptography.
However our protocols rely completely for their properties upon the security of
the public key systems used. Consequently it is necessary for the moduli to be
uncrackable for at least the lifetime of all secrets (weak or strong) used or agreed
with that modulus. This provides a sufficient number of bits to provide a strong
secret and a strong confounder, together with two nonces. In contrast with the
confounder, the nonces can be searchable, so long as the most likely nonce is less
likely than some system threshold parameter.

Our protocols also rely upon the ability to generate random bit patterns,
and to delete information irrecoverably. These are both interesting technical
challenges. In particular the task of finding a suitable source of randomization,
upon which (in the context of a particular system) it would be impractical to
eavesdrop is one which would repay further study.

8 Acknowledgments

We would like to thank David Wagner, David Jablon and everyone else who
provided comments on earlier versions of this paper.

January 1998; revised July 1998.

Contact: Michael.Roe@ccsr.cam.ac.uk

11

References

1. Anderson, R., Lomas, M., 1994, Fortifying Key negotiation Schemes with Poorly
Chosen Passwords, Electronics Letters, 30(13) 1040–1041.

2. Bellovin, S.M., Merritt, M., 1992, Encrypted Key Exchange: Password-Based
Protocols Secure Against Dictionary Attacks, Proc IEEE Computer Society Sym-
posium on Research in Security and Privacy, Oakland 92, 72–84.

3. Gong, L., 1995, Optimal Authentication Protocols Resistant to Password Guess-
ing Attacks, Proc 8th IEEE Computer Security Foundations Workshop, 24–29.

4. Gong, L., Lomas, M., Needham, R., Salzer, J., 1993, Protecting Poorly Chosen
Secrets from Guessing Attacks, IEEE Journal on Selected Areas in Communica-
tions, 11(5) 648–656.

5. Hardy, G.H., Wright, E.M., 1978, An Introduction to the Theory of Numbers,
5th edition, Oxford University Press

6. Jablon, D.P., 1996, Strong Password-Only Authenticated Key Exchange, Com-
puter Communications Review, 26(5) 5–26.

7. Kelsey, J., Schneier, B., Wagner, D., 1998, Protocol Interactions and the Chosen
Protocol Attack, Security Protocols 5, Springer LNCS 1361, 91–104.

8. Lomas, M., Christianson, B., 1995, To Whom am I Speaking? Remote Booting
in a Hostile World, IEEE Computer, 28(1) 50–54.

9. Lucks, S., 1998, Open Key Exchange: How to Defeat Dictionary Attacks Without
Encrypting Public Keys, Security Protocols 5, Springer LNCS 1361, 79–90.

10. Patel, S., 1997, Number Theoretic Attacks on Secure Password Schemes, Proc
IEEE Computer Society Symposium on Research in Security and Privacy, Oak-
land 97, 236–247.

11. Steiner, M., Tsudik, G., Waidner, M., 1994, Refinement and Extension of En-
crypted Key Exchange, Operating Systems Review, 29(3) 22–30.

12

