
The Security of Ciphertext Stealing

Phillip Rogaway1, Mark Wooding2, and Haibin Zhang1

1 Dept. of Computer Science, University of California, Davis, USA
2 Thales e-Security Ltd, UK

Abstract. We prove the security of CBC encryption with ciphertext stealing. Our results cover
all versions of ciphertext stealing recently recommended by NIST. The complexity assumption is
that the underlying blockcipher is a good PRP, and the security notion achieved is the strongest
one commonly considered for chosen-plaintext attacks, indistinguishability from random bits (ind$-
security). We go on to generalize these results to show that, when intermediate outputs are slightly
delayed, one achieves ind$-security in the sense of an online encryption scheme, a notion we formalize
that focuses on what is delivered across an online API, generalizing prior notions of blockwise-
adaptive attacks. Finally, we pair our positive results with the observation that the version of
ciphertext stealing described in Meyer and Matyas’s well-known book (1982) is not secure.

Keywords: blockwise-adaptive attacks, CBC, ciphertext stealing, cryptographic standards, modes
of operation, provable security.

1 Introduction

Ciphertext stealing. Many blockcipher modes require the input be a sequence of complete
blocks, each having a number of bits that is the blockcipher’s blocksize. One approach for dealing
with inputs not of this form is ciphertext stealing. The classical combination is CBC encryption
and ciphertext stealing, a mode going back to at least 1982 [14].

In 2010, NIST put out an addendum [8] to Special Publication 800-38A [7], the document
that had defined blockcipher modes ECB, CBC, CFB, OFB, and CTR. The addendum defines
three ways to enrich CBC with ciphertext stealing. The modes are named CBC-CS1, CBC-CS2,
and CBC-CS3. See Fig. 1 for the definition of these modes, which differ only in the ordering of
ciphertext bits.

Despite the classicism of ciphertext-stealing, its adoption in standards, and the strong pref-
erences, these days, for proven-secure modes, there has, until now, been no proof offered for
CBC with ciphertext stealing. This paper fills in this gap.

Our contributions. We begin by looking at the NIST ciphertext-stealing modes, which we
collectively call CBC-CS. Assuming a random IV, we show that the CBC-CS schemes achieve
the strongest conventional form of chosen-plaintext-attack (CPA) security: what we call ind$,
indistinguishability from random bits under an adaptive chosen-plaintext attack. The definition,
easily shown to imply all conventional formulations of CPA-style semantic security, formalizes
that a ciphertext C is indistinguishable from as many random bits.

Next we show that delayed versions of CBC-CS achieve an analogous IND$ notion that we
define for online security. The idea of delayed CBC is from Fouque, Martinet, and Poupard [11].
Our formulation for online security generalizes their and subsequent work (further history and
credits coming shortly). In particular, prior definitional approaches were specific to blockcipher-
based schemes of a specified form—restrictions not in keeping with identifying a general notion
of security. We levy no such restrictions, but do imagine that the encryption scheme is written
to an incremental API (application programming interface). Each time a user presents a piece
of plaintext to encrypt she will get back a corresponding chunk of ciphertext. The length of
both is arbitrary. One can understand our definition of online security as establishing that a

2 Phillip Rogaway, Mark Wooding, and Haibin Zhang

C3

P3

EK EK

C4C3
∗ ∗∗

∗

P4P2

EK

C2

P1

EK

C1

IV

0
∗

d b-d

d b-d

10 algorithm CBC-CS IV

K (P)
11 n← ⌈|P |/b⌉
12 P1 · · ·Pn−1P

∗
n ← P where |P1| = · · · = |Pn−1| = b

13 Pn ← P ∗
n 0b−d where d← |P ∗

n |
14 C0 ← IV ;
15 C1 · · ·Cn ← CBC IV

K (P1 · · ·Pn) where |C1| = · · · = |Cn| = b
16 C∗

n−1 ← MSBd(Cn−1)
17-1 return C1 · · ·Cn−2C

∗
n−1Cn ⇐ for CS1

17-2 if d=b return C1· · ·Cn−2C
∗
n−1Cn else return C1· · ·Cn−2CnC

∗
n−1 ⇐ for CS2

17-3 return C1 · · ·Cn−2CnC
∗
n−1 ⇐ for CS3

20 algorithm CBC IV

K (P1 · · ·Pn) where |P1| = · · · = |Pn| = b
21 C0 ← IV

22 for i← 1 to n do Ci ← EK(Ci−1⊕Pi)
23 return C1 · · ·Cn

Fig. 1. Encryption under NIST modes CBC-CS1, CBC-CS2, and CBC-CS3. The schemes differ only
in which version of line 17 is used. The schemes depend on a blockcipher E: K×{0, 1}b → {0, 1}b that determines
the key space K, the IV space IV, and the message space P = {0, 1}≥b. We insist that K ∈ K, IV ∈ IV, and
P ∈ P.

specified incremental API introduces no new security vulnerabilities. Technically, we reconcep-
tualize an encryption scheme as the incremental interface. We regard a general definition for
online security—a definition motivated by cryptographic APIs and not the characteristics of any
particular encryption mode—as an important and independent contribution of this paper.

The workings of delayed CBC—the naturalness of this scheme and how much one must
delay—are clarified by freeing the definition of online security from a demand on a scheme
being blockcipher-based. Now it is the security analysis, not the syntax, that surfaces by just
how much one must delay—an amount that is, in fact, slightly different for the CS1/CS2 and
the CS3 versions of the scheme. Absent a careful treatment of such matters the author of an
incremental API could well get these things wrong, buffering more than what is necessary or
less than what is needed.

Finally, we point out that a 30-year-old version of ciphertext stealing described in the book
of Meyer and Matyas [14] is essentially wrong: it will not achieve any desirable security notion
we know. The apparently unnoticed observation highlights the importance of having proofs in
this domain, and underscores NIST’s wisdom in selecting the versions of ciphertext stealing that
it did.

Additional history. The provable-security treatment of CBC, and of other blockcipher-based
encryption modes, begins with Bellare, Desai, Jokipii, and Rogaway [3]. The stronger ind$-
definition that we adopt here is from Rogaway, Bellare, Black, and Krovetz [16]. For online
security, the delayed-CBC scheme that we embellish with NIST’s versions of ciphertext stealing
is due to Fouque, Martinet, and Poupard [11].

The Security of Ciphertext Stealing 3

Our definition of online security springs from the line of work on blockwise-adaptive attacks
that starts with Bellare, Kohno, and Namprempre [4] and Joux, Martinet, and Valette [13]
and continues with Fouque, Martinet, and Poupard [11], Fouque, Joux, and Poupard [10], and
Bard [2]. As explained, our own security definitions take a different turn by divorcing the notion
of online security from its former association with blockcipher-based schemes. We instead assume
an arbitrary symmetric encryption scheme that is presented to the user by way of an incremental
API. The user provides the plaintext as a sequence of chunks and the encryption algorithm,
buffering what it needs, returns corresponding ciphertext chunks. The approach echos Gennaro
and Rohatgi [12], which likewise transplants a primitive (digital signatures) from a setting that
sees messages as atomic to one that sees messages as something produced and consumed across
an expanse of time.

Discussion. A possible reaction to any discussion of ciphertext stealing is to say: forget it, use
CTR mode instead. We are sympathetic to this point of view, knowing no convincing reason to
favor CBC encryption over CTR mode, which natively handles plaintexts of arbitrary length.
But the fact remains that CBC encryption is widely used, and that ciphertext stealing is a
classical, standardized, and elegant way to extend it. This makes it worth attending to.

In justifying the use of ciphertext stealing in a mode that employed it, Matt Ball writes that
“[d]espite lacking a formal security proof, ciphertext stealing still has general approval in the
cryptographic community” [1, p. 5]. Probably this statement is at some level true, but “general
approval” is hard to gauge and far removed from being a proof.

We think that security notions that attend to the vulnerabilities introduced by the specifics of
an envisioned API comprise an interesting direction in narrowing the gap between conventional
abstractions of cryptographic primitives and what cryptographic practice actually exports. It is
not just that protocols may segment conceptually atomic messages (the original motivation for
dealing with blockwise adaptivity); rather, it is that the segmentation is actually surfaced to
users, and therefore desirable to directly model.

We do not discuss the security of CBC-CS when the IV fails to be unpredictable; it would
seem that no interesting or desirable security notion is achieved in this case. NIST SP800-38A
appropriately demands an unpredictable IV for CBC [7, Appendix C].

The CBC-CS schemes predate NIST’s addendum [8]: CBC-CS2 goes back to at least 1996
[17], while older versions of ciphertext stealing go back to at least 1982 [14]. Looking at these
schemes from a modern vantage is long overdue.

2 Preliminaries

Notation. Strings are assumed to be binary, elements of {0, 1}∗. Both A ‖ B and A B denote
the concatenation of strings A and B. If X is a string then |X| is its length. The empty string
is denoted ε. Throughout this paper we fix an integer b ≥ 1 called the blocksize. For a string X
and a number d ≤ |X| let MSBd(X) and LSBd(X) be the leftmost and rightmost d bits of X.

Blockciphers. A blockcipher is a map E: K×{0, 1}b → {0, 1}b where K ⊆ {0, 1}∗ is finite and
EK(·) = E(K, ·) is a permutation for each K ∈ K. Let Perm(b) be the set of all permutations
on b bits. This may be regarded as a blockcipher with a (2b!)-size key space. Let Adv

prp
E (A) =

Pr[AEK(·)⇒ 1] − Pr[Aπ(·)⇒ 1] with K
$

←K and π
$

← Perm(b). Similarly define Adv
prf
E (A) =

Pr[AEK(·)⇒ 1]−Pr[Aρ(·)⇒ 1] with K
$

←K and ρ
$

← Func(b) for Func(b) the set of all functions
from b bits to b bits. Here EK(·) need not be a permutation.

Encryption schemes. It has become traditional to regard blockciphers as fixed functions but
encryption schemes as tuples, as in Π = (K, E ,D). To simplify and unify matters we formalize
an encryption scheme more like a blockcipher: an (IV-based, symmetric) encryption scheme is a

4 Phillip Rogaway, Mark Wooding, and Haibin Zhang

function E : K×IV ×P → P. We call K, IV , and P the key space, IV space, and message space.
For simplicity we assume that K is finite and IV is the set of all strings of some one particular
length. We write E IVK (P) instead of E(K, IV , P). To keep things simple we require that E IVK (·) be
a length-preserving permutation for all K ∈ K and IV ∈ IV . The condition implies that E has
a unique inverse, the map D where DIV

K (C) = P when E IVK (P) = C. Because there is no formal
need to specify the decryption direction D of an encryption scheme E , we never do so. Of course
it is important in practice that E and D have efficient realizations, it is simply that this doesn’t
show up in the statement of definitions or security results.

Let E : K × IV × P → P be an IV-based encryption scheme and let A be an adversary
(algorithm) with one of two types of oracles. A real encryption oracle Real(·) chooses a random
K

$

←K and then, on input P ∈ P, returns C ← IV ‖ E IVK (P) for a random IV
$

←IV . A fake

encryption oracle Fake(·) takes an input P ∈ P and returns C
$

←{0, 1}c where c = |IV |+ |P | (for
IV ∈ IV). Define Advind$

E (A) = Pr[AReal(·)⇒ 1]−Pr[AFake(·)⇒ 1]. This “indistinguishability-
from-random-bits” definition is easily shown to imply all conventional (CPA) formulations of
indistinguishability and semantic security [3]; that we have selected a different syntax makes no
difference in the proofs.

Note that even though the encryption function is formalized as taking, besides the key, an
IV and a plaintext, the security definition does not allow the adversary to specify the IV; the
adversary asks P and the IV is randomly generated, used, and and returned. Our security notion
thus formalizes security for random IVs, not, for example, security for nonce IVs.

3 Conventional Security of the CBC-CS Schemes

We begin with a simple proposition about the security of conventional CBC encryption (no
ciphertext stealing) with a random IV. The result is needed insofar as we deduce the security of
CBC-CS from it. Recall that the mode was defined in Fig. 1 and was proven secure by Bellare
et al. [3]. That proof, however, is for a somewhat weaker definition than the one we use here.
The proof below is a simple application of the game-playing technique [5, 18].

Lemma 1. SupposeA asks queries totaling at most σ blocks. Then we haveAdvind$
CBC[Perm(b)](A) ≤

σ2/2b.

Proof. The difference between Advind$
CBC[Perm(b)](A) and r = Advind$

CBC[Func(b)](A) is at most

0.5σ2/2b; this is a standard application of PRP/PRF switching [5]. It thus suffices to bound r by
r ≤ 0.5σ2/2b. To that end, consider the games of Fig. 2. Observe that, with E = CBC[Func(b)],
Pr[AReal(·) ⇒ 1] = Pr[AG1(·) ⇒ 1], while Pr[AFake(·) ⇒ 1] = Pr[AG0(·) ⇒ 1]. As a consequence,
we have that r = Pr[AG1(·)⇒ 1] − Pr[AG0(·)⇒ 1] and, the two games being identical-until-bad,
we know that r ≤ Pr[AG0 sets bad]. Because in game G0 all of the Ci values are uniform and
independent of Pi, so too all of the Xi values are uniform and independent of one another,
so the probability that bad gets set—the probability some two of the Xi’s collide—is at most
(1 + 2 + · · · (σ − 1))/2b ≤ 0.5σ2/2b. This completes the proof.

Turning now to the CBC-CS modes, we claim that these inherit CBC’s security with no quanti-
tative degradation. The needed observation is that CBC-CS1IVK (P) is just CBCIV

K (P 0∗) (minimal
padding to the next multiple of b bits) with some bits excised and some bits reordered. Which
bits are excised and how bits are rearranged depends only on |P |. Thus if CBCIV

K (·) looks ran-
dom, so too will look CBC-CS1IVK (·). The same comments hold for CBC-CS2 and CBC-CS3;
these are just different rearrangements of the bits of CBCIV

K (P 0∗). The observation and proof
are formalized by the proposition below.

The Security of Ciphertext Stealing 5

100 algorithm Enc(P) Game G0

101 P1 · · ·Pn ← P where |P1| = · · · = |Pn| = b Game G1

102 C0, . . . , Cn
$

←{0, 1}b

103 for i← 1 to n do

104 Xi ← Pi⊕Ci−1

105 if ρ(Xi) then bad ← true, Ci ← ρ(Xi)
106 ρ(Xi)← Ci

107 return C0 C1 · · ·Cn

Fig. 2. Proof of the ind$-security of CBC encryption with a random IV. This application of game-playing
is probably simple and well-known enough to be considered folklore. Game G1 includes the boxed statement
following the setting of bad; game G0 omits it. Variable bad is initialized to false and ρ is initialized to everywhere
undefined, a value treated as false if used as a boolean.

Theorem 1. Let E be any of CBC-CS1[Perm(b)], CBC-CS2[Perm(b)], or CBC-CS3[Perm(b)]
and suppose adversary A asks queries totaling at most σ blocks. Then Advind$

E (A) ≤ σ2/2b.

Proof. Suppose that A, asking σ total blocks of queries, gets advantage δ at distinguishing oracles
E = CBC-CS1(·) and $(·). The first of these oracles chooses a random permutation π

$

← Perm(n)
and then, when asked a query P ∈ {0, 1}≥b, returns IV ‖ CBC-CS1IVπ (P) for a random
IV

$

←{0, 1}b; the second oracle, when asked a query P , returns a random string of length b+ |P |.
We construct from A an adversary B that, also asking σ blocks worth of queries, also gets ad-
vantage δ, but now at distinguishing between CBC(·) and $(·). The first of these oracle chooses
a random permutation π

$

← Perm(n) and then, when asked a query P ∈ ({0, 1}b)+, returns
IV ‖ CBC IV

π (P) for a random IV
$

←{0, 1}b. Adversary B now works as follows: it runs A and
when A generates a query of P ∈ {0, 1}≥b adversary B queries its own oracle on P ′ = P 0∗,
meaning P padded on the right with the minimal number of zero-bits so that P ′ is a multiple
of b bits. Suppose this returns a ciphertext C = C0C1 · · ·Cn where |Ci| = n. Then B returns
to A the string C∗ = C0C1 · · ·C

∗
n−1Cn where C∗

n−1 = MSBd(Cn−1) and d = b − (|P | mod b).

We observe that Pr[BCBC-CS1(·)⇒ 1] = Pr[ACBC(·)⇒ 1] (we have reordered bits exactly as re-
quired by CBC-CS1) and that Pr[B$(·) ⇒ 1] = Pr[A$(·) ⇒ 1] (reordered and pruned uniform
random bits are still uniform), and so δ = Advind$

CBC-CS1[Perm(b)](A) = Advind$
CBC[Perm(b)](B). By

Proposition 1 we thus have δ ≤ 0.5σ2/2b. This establishes the first of the three results. The
analogous results for CBC-CS2 and CBC-CS3 are obtained simply by modifying the string C∗

returned to A: for CBC-CS2 return C∗ = C0C1 · · ·Cn−2C
∗
n−1Cn when |P | is a multiple of b and

C∗ = C0C1 · · ·Cn−2CnC
∗
n−1 otherwise; for CBC-CS3 always return C∗ = C0C1 · · ·Cn−2CnC

∗
n−1.

This completes the theorem.

The proof’s simplicity stems from having unidentified a clean abstraction boundary: directly
modifying the proof of Lemma 1 to attend to the ciphertext stealing would be much more
complex.

Finally, one can pass from the information-theoretic result to its complexity-theoretic analog
in the standard way, trading the family of random permutations for a conventional blockcipher.
Stating the result for completeness, we have the following.

Corollary 1. Let E: K× {0, 1}b → {0, 1}b be a blockcipher and let E be any of the encryption
schemes CBC-CS1[E], CBC-CS2[E], or CBC-CS3[E]. Suppose A asks queries that total σ blocks,
runs in time t, and achieves advantage δ = Advind$

E (A). Then there is an adversary B, explicitly
known and constructed from A in a blackbox manner, that asks at most σ queries, runs in time
at most t+λbσ, and achieves advantage Adv

prp
E (B) ≥ δ−σ2/2b. Here λ is an absolute constant

depending only on details of the model of computation.

6 Phillip Rogaway, Mark Wooding, and Haibin Zhang

4 Defining Online Security

Syntax. We adjust the syntax of an encryption scheme to accommodate the staged presentation
of plaintexts and ciphertexts. Rather than messages being atomic objects that get encrypted
all at once, messages may be arbitrarily partitioned into chunks, each of which gets fed into
a stateful encryption engine. Breaking with former treatments, we do not assume that chunks
are single blocks, nor multiples of blocks, where the length of a block is the blocksize of some
underlying blockcipher. Instead, we provide a general definition where one assumes nothing
about the structure of the underlying encryption scheme (in particular, there is no assumption
that it is blockcipher-based). As each installment of plaintext is provided to the encryption
interface, it is up to the algorithm to decide how much ciphertext to spit out. The algorithm
will thus return not only a ciphertext chunk, but also an updated state.

Realizing the idea above, we choose to define an online encryption scheme as a function
E : K × V × {0, 1} × {0, 1}∗ → {0, 1}∗ × V. We write EV, δK (P) for E(K,V, δ, P). We call K and V
the key space and state space, respectively. The key space is finite and the state space is a finite
set of strings. The third argument to E , a bit, is the end-of-message indicator. The final argument
to E is the next chunk of message. An online encryption scheme E must have an associated IV

space IV ⊆ V and message space P ⊆ {0, 1}∗. The former contains strings of some one fixed
length. Formally, an online encryption scheme is the tuple (E , IV ,P), but we will usually use
the first component as shorthand for the whole.

We also impose a number of “syntactic” requirements on an online encryption scheme (E , IV ,P).
First we define some additional notation. We write (C1, . . . , Cn) ← E

IV

K (P1, . . . , Pn) for the se-
quence:

V0 ← IV
for i← 1 to n− 1 do (Ci, Vi)← E

Vi−1, 0
K (Pi)

(Cn, Vn)← E
Vn−1, 1
K (Pn)

return (C1, . . . , Cn).
Alternatively, we can think of E IVK (P1, . . . , Pn) as returning a single string, setting E

IV

K (P1, . . . , Pn)
to C = C1 · · ·Cn where (C1, . . . , Cn)← E

IV

K (P1, . . . , Pn).
Now fix an online encryption scheme (E , IV ,P).

The consistency requirement says that you get the same ciphertext regardless of how you
split up the plaintext. More formally, if P1 ‖ · · · ‖ Pn = P ′

1 ‖ · · · ‖ P
′
n′ = P ∈ P then

E IVK (P1, . . . , Pn) = E
IV

K (P ′
1, . . . , P

′
n′). We can therefore write this as E IVK (P) without ambi-

guity.

The invertibility requirement is that E IVK (·) is injective on P (for all K ∈ K and IV ∈ IV).

The length requirement is that the length of the first and second components of EV, δK (P)
depend only on |V |, |P |, and δ. This ensures that, when (C1, · · · , Cm)← E IVK (P1, · · · , Pm),
the lengths of C1, C2, . . . , Cm reveal nothing about P = P1 · · ·Pm beyond how it was
partitioned up.

Indistinguishability.We define a very strong form of indistinguishability for an online encryp-
tion scheme: indistinguishability from random bits. Fix an online encryption scheme (E , IV ,P)
and consider the following two E-dependent oracles.

• Real(i,M, δ): At the beginning, set K
$

←K and Vi
$

←IV for all i ∈ N. Then, on query

(i, P, δ) ∈ N× {0, 1}∗ × {0, 1}, compute (C, Vi)
$

←EVi,δ
K (P) and return C.

• Fake(i, P, δ): At the beginning, set K
$

←K and Vi
$

←IV for all i ∈ N. Then, on query

(i, P, δ) ∈ N× {0, 1}∗ × {0, 1}, compute (C, Vi)
$

←EVi,δ
K (P) and return |C| random bits.

We define AdvIND$
E (A) = Pr[AReal⇒1]−Pr[AFake⇒1]. Informally, an online encryption scheme

is IND$-secure if an adversary can’t distinguish the ciphertexts it is receiving from random bits.

The Security of Ciphertext Stealing 7

Discussion. Some of our high-level definitional choices differ for conventional and online en-
cryption schemes. A conventional encryption scheme does not spit out its IV, while an online
scheme does. The former is needed to match NIST’s definitions for the CBC-CS schemes, but
it works less well in the online setting, as here it is important that the algorithm can decide if
and when to release the IV. Typically, the IV does get discharged, and as the first part of the
ciphertext, so we say that an online encryption scheme (E , IV ,P) is IV-prefixed if C = E IVK (P) is
always IV followed by some |P | additional bits (assuming K ∈ K and IV ∈ IV). An IV-prefixed
online encryption scheme (E , IV ,P) determines a conventional encryption scheme Ê in the nat-
ural way, setting Ê IVK (P) to be E IVK (P) stripped of its initial |IV | bits. Conversely, a conventional

encryption scheme Ê : K× IV × P → P is realized by an IV-prefixed online encryptions scheme
(E , IV ,P) if the latter determines the former in the manner just defined. In this way one can
speak of an encryption scheme E : K × IV × P → P as being online; the statement means that
it has a secure online realization (the notion of security soon to be defined).

While our notions make sense regardless of whether or not V is finite, its being finite is
the essence of what it means to be online: that one can encrypt (and decrypt) streaming mes-
sages without having to buffer more than a constant number of bits. Equivalently, that one
can implement an incremental API with a fixed-size context. Our notions allow one to con-
sider things in a more quantitative manner, using |V| as a measure of worth. We say that
E : K × V × {0, 1} × {0, 1}∗ → {0, 1}∗ × V uses v-bits of state if v is the smallest number such
that V ⊆ {0, 1}≤v.

Since we concern ourselves only with chosen-plaintext security, we do not formalize syntax
or security for the decryption direction of an online encryption scheme. Still, we comment that
if an incremental encryption scheme is online then it has an online (that is, finite state-space)
decryption.

We regard the initialization vector IV as the initial value of the saved state V . The embed-
ding of the IV space into the state space doesn’t prevent a scheme from performing “special”
initialization; one can always distinguish the first chunk of a message from subsequent chunks
of message by arranging that point in IV are never returned as a modified state.

An online encryption function has control over if and when the IV is revealed. This can be
essential for security: in particular, the Delayed CBC scheme we will soon describe is insecure if
the IV is revealed too soon.

Note that the IND$-definition allows interleaved querying of multiple streams; this is the
purpose of the index i. Fouque, Martinet, and Poupard earlier observed that, with respect to
their definitions for online indistinguishability, this made for a stronger security notion [11]. The
same is true for us; it is easy to see that if the adversary were restricted to asking a sequence of
messages with nondecreasing indexes, a restriction that amounts to forbidding the interleaving
of encryptions, the resulting security notion would be properly weaker.

We do not find it necessary to demand that, once an oracle query (i, ·, 1) is made, there are
no subsequent queries (i, ·, ·). Nonetheless, this is the expected behavior, as the setting of δ = 1
is meant to indicate that the message is complete.

5 Online Security of the CBC-CS Schemes

Delayed CBC. We now present an online version of CBC mode. For the moment, assume all
messages have a multiple of b bits. The most obvious approach for defining an online version
of CBC is to just spit out ciphertext blocks as they are formed. But this does not work: if
an adversary knows Ci−1 it can choose Pi such that Ci−1 ⊕ Pi = Pj ⊕Cj−1 for some j < i,
whence Ci will be Cj if the adversary has a “real” encryption oracle, while this is unlikely if the
adversary has a “fake” encryption oracle. We can defend against this attack and, more broadly,

8 Phillip Rogaway, Mark Wooding, and Haibin Zhang

30 algorithm DCBC V, δ
K (P)

31 if |V | < b then return error

32 C0 P0 ← V where |C0| = b
33 P ← P0 P ; n← ⌊ |P |/b ⌋
34 P1 · · · Pn P ∗ ← P where |P1| = · · · = |Pn| = b
35 if δ = 1 and P ∗ 6= ε then return error

36 for i← 1 to n do Ci ← EK(Pi⊕Ci−1)
37 if δ = 0 then (C, V ′)← (C0 · · ·Cn−1, CnP

∗)
38 if δ = 1 then (C, V ′)← (C0 · · ·Cn, ε)
39 return (C, V ′)

Fig. 3. Mode DCBC. An online encryption scheme, encryption now depends on the saved state V ∈ {0, 1}∗.
The first b bits of V comprise the pending ciphertext, C0, while the remaining 0 to b − 1 bits are unprocessed

plaintext, P0. Bit δ signals if the plaintext is over.

300 algorithm Enc(j, P, δ) Game G0

301 if |Vj | < b then return error Game G1

302 C0 P0 ← Vj where |C0| = b
303 P ← P0 P ; n← ⌊ |P |/b ⌋
304 P1 · · · Pn P ∗ ← P where |P1| = · · · = |Pn| = b
305 if δ = 1 and P ∗ 6= ε then return error

306 for i← 1 to n do

307 Xi ← Pi⊕Ci−1

308 Ci
$

←{0, 1}b

309 if ρ(Xi) 6= undefined then bad ← true, Ci ← ρ(Xi)
310 else ρ(Xi)← Ci

311 if δ = 0 then (C, V ′
j)← (C0 · · ·Cn−1, CnP

∗)
312 if δ = 1 then (C, V ′

j)← (C0 · · ·Cn, ε)
313 return C

Fig. 4. Proof of the IND$-security of Delayed CBC. Game G1 includes the boxed statement following the
setting of bad; game G0 omits it. The variable bad is initialized to false, Vj is initialized to a random b-bit string
chosen uniformly at random for each j ∈ N, and ρ is initialized to everywhere undefined.

get online-secure scheme, simply by delaying the last ciphertext block from each plaintext chunk,
holding onto it until the relevant blockcipher has already been made. The idea is due to Fouque,
Martinet, and Poupard [11]. The contents of this section are a strengthening and extension
of that work, adding ciphertext stealing, employing less restrictive syntax, and establishing a
stronger notion of security.

The algorithm, detailed in Fig. 3, is called delayed CBC, or DCBC. The state consists of
two parts: a pending ciphertext block, which initially contains a randomly generated IV, and
unprocessed plaintext, a partial block, possibly empty, carried over from the previous message
chunk. If the blockcipher acts on b bits then the state will be at most v = 2b − 1 bits. In the
pseudocode of Fig. 3, regard Ci · · ·Cj as the empty string if i > j.

Informally, the algorithm of Fig. 3 proceeds as follows. The algorithm receives a key K, a
state V , an end-of-message indicator δ, and a plaintext chunk P . It parses the state into a b-bit
delayed ciphertext block C0, and a partial plaintext block P0 with 0 ≤ |P0| < b. The algorithm
then adjusts the incoming plaintext chunk P by prefixing it with P0. Next it splits P into b-bit
blocks P1, . . . , Pn, leaving a leftover and possibly empty partial block P ∗. Since DCBC can only
cope with messages that are an integral number of blocks long, the algorithm fails (it reports an
error) if P ∗ 6= ε when δ = 1. The algorithm next performs the CBC encryption: for 1 ≤ i ≤ n,
set Ci = EK(Pi⊕Ci−1). Finally, if δ = 1 the algorithm outputs all of C = C0 · · ·Cn, and clears
the state. If δ = 0 then it outputs C = C0 · · ·Cn−1, holding V ′ = Cn ‖ P

∗ in the revised state.

Online security of DCBC. We now show that Delayed CBC achieves IND$ security.

The Security of Ciphertext Stealing 9

Theorem 2. Suppose that adversary A asks queries totaling at most σ blocks (each query P
contributes ⌈ |P |/b ⌉ blocks). Then AdvIND$

DCBC[Perm(b)](A) ≤ σ2/2b.

Proof. Let r = AdvIND$
DCBC[Func(b)](A). As in the proof of Lemma 1, the PRF/PRP switching gives

us that
∣

∣AdvIND$
DCBC[Perm(b)](A) − r

∣

∣ ≤ σ2/2b+1. It remains to show that r ≤ σ2/2b+1, for which
we use the games in Fig. 4.

The games are constructed so that, with E = DCBC[Func(b)], we have Pr[AReal(·,·,·)⇒ 1] =
Pr[AG1(·,·,·) ⇒ 1] and Pr[AFake(·,·,·) ⇒ 1] = Pr[AG0(·,·,·) ⇒ 1]. Furthermore, games G0 and G1

are identical-until-bad, and hence we get r =
∣

∣Adv[AG1(·,·,·) ⇒ 1] − Adv[AG0(·,·,·) ⇒ 1]
∣

∣ =
Pr[AG0 sets bad].

In game G0, all of the Ci values are uniform and independent: all except C0 in the initial
call are generated explicitly by the oracle—and that C0 is the initial state Vj , chosen uniformly
as part of the initialization.

Since the Pi are determined solely by the adversary’s inputs, we can think of them as being
selected directly by the adversary. We claim that the adversary must choose each Pi before
receiving any information about Ci−1. For i > 1 this is clear, since Ci−1 is chosen uniformly
at random after Pi has been determined. It remains to show that C0 is uniformly distributed
and independent of the adversary’s view until P1 is determined. (Ensuring this property is
the reason for delaying the ciphertext block.) We do this inductively, and separately for each
index j ∈ N. The base case is the first encryption query with index j: then C0 = Vj is the
randomly selected initialization vector. Here the adversary can’t know anything about its value
at this stage since it hasn’t been used in any computations at all. The state is empty and we
return an immediate error if the previous call’s end-of-message indicator was set, so there is no
C0 to concern ourselves with. In the remaining case, the value of C0 is equal to the value of Cn

from the previous encryption query with the same index; the inductive step, therefore, is to show
that Cn is uniform and independent of the adversary’s view if C0 is also and δ = 0. But nothing
dependent on Cn is part of the oracle’s output if δ = 0, and Cn is either freshly generated (if
n > 0), or equal to C0 and therefore uniform and independent of the adversary by the induction
hypothesis (if n = 0).

It immediately follows that each Pi is independent of Ci−1, and therefore all of the Xi values
are uniform and independent of one another. Hence the probability that two Xi collide—and
bad is set—is at most σ2/2b+1, completing the proof.

As usual, it is easy to pass from the information-theoretic setting to complexity-theoretic one.

Delayed CBC with ciphertext stealing. The algorithms DCBC-CS1, DCBC-CS2, and
DCBC-CS3 are defined in Fig. 5. Implicitly, the modes are all parameterized by a blockcipher
E: K×{0, 1}b → {0, 1}b. The state V once again maintains two portions: the pending ciphertext

and the unprocessed plaintext. The pending ciphertext is a single block—or possibly two blocks
in the cases of DCBC-CS3—that the algorithm retains until it is “safe” to spit this out. This is
followed by 0 to b− 1 bits of unprocessed plaintext. The dividing line between the two portions
is always clear from the length of the string V . Note that for DCBC-CS3, the state has grown
from 2b − 1 bits to 2b bits while, for DCBC-CS1 and DCBC-CS2 the state remains at 2b − 1
bits.

The IND$ security of the DCBC-CS schemes can be inferred from the IND$ security of the
DCBC schemes. This is done in the proof below.

Theorem 3. Let E be any ofDCBC-CS1[Perm(b)],DCBC-CS2[Perm(b)], orDCBC-CS3[Perm(b)],
and suppose A asks queries totaling at most σ blocks. Then AdvIND$

E (A) ≤ σ2/2b.

10 Phillip Rogaway, Mark Wooding, and Haibin Zhang

40 algorithm DCBC-CS V, δ
K (P)

41 if |V | < b then return error

42 C−1 C0 P0 ← V where |C−1| ∈ {0, b}, |C0| = b, |P0| < b
43 P ← P0 P
44 if δ = 0 then P1 · · ·Pn P ∗ ← P where n← ⌊|P |/b⌋, |P1| = · · · = |Pn| = b

45 else P1 · · ·Pn←P 0b−d where n←⌈|P |/b⌉, d←b+|P |−nb, |P1|= · · ·= |Pn|=b
46 for i← 1 to n do Ci ← EK(Pi⊕Ci−1)
47 if δ = 0 then

48-1 (C, V ′)← (C0 · · ·Cn−1, CnP
∗) ⇐= for CS1

48-2 (C, V ′)← (C0 · · ·Cn−1, CnP
∗) ⇐= for CS2

48-3 (C, V ′)← (P ∗=ε)? (C−1C0 · · ·Cn−2, Cn−1Cn) : ⇐= for CS3
(C−1C0 · · ·Cn−1, Cn P ∗)

49 if δ = 1 then

50 if n > 0 then Cn−1 ← MSBd(Cn−1)
51-1 (C, V ′)← (C0 · · ·Cn−2Cn−1Cn, ε) ⇐= for CS1
51-2 (C, V ′)← (d = b)? (C0 · · ·Cn−2Cn−1Cn, ε) : ⇐= for CS2

(C0 · · ·Cn−2CnCn−1, ε)
51-3 (C, V ′)← (C−1C0 · · ·Cn−2CnCn−1, ε) ⇐= for CS3
52 return (C, V ′)

Fig. 5. Delayed CBC with ciphertext stealing: DCBC-CS. Each online scheme depends on E: K×{0, 1}b →
{0, 1}b. String C−1C0 is pending ciphertext (with C−1 used only for DCBC-CS3). String P0 is unprocessed
plaintext from the prior call.

400 algorithm DCBC-CSV, δ
K (P)

401 if |V | ≤ b then (W,C−1, ℓ)← (V, ε, 0) else [W,C−1, ℓ]← V
402 m← ℓ+ |P |, d← m− b⌊ (m− 1)/b ⌋

403 if δ = 1 then P ← P 0b−d

404 (C,W ′)← DCBCW, δ
K (P)

405 C0 · · · Cn ← C where n← |C|/b− 1 and |C0| = · · · = |Cn| = b
406 if δ = 0 then

407-1 (C′, C′
−1)← (C0 · · ·Cn, ε) ⇐= for CS1

407-2 (C′, C′
−1)← (C0 · · ·Cn, ε) ⇐= for CS2

407-3 (C′, C′
−1)← (d = b)? (C0 · · ·Cn−1, Cn) : (C0 · · ·Cn, ε) ⇐= for CS3

408 ℓ′ ← (d = b)? 0 : d
409 if δ = 1 then

410 if n > 0 then Cn−1 ← MSBd(Cn−1)
411-1 C′ ← C0 · · ·Cn−2Cn−1Cn ⇐= for CS1
411-2 C′ ← (d = b)? C0 · · ·Cn−2Cn−1Cn : C0 · · ·Cn−2CnCn−1 ⇐= for CS2
411-3 C′ ← C0 · · ·Cn−2CnCn−1 ⇐= for CS3
412 ℓ′ ← 0, C′

−1 ← ε
413 return (C, [W ′, C′

−1, ℓ
′])

Fig. 6. Defining DCBC-CS in terms of DCBC. The notation [x1, . . . , xn] denotes an unambiguous non-
compressing encoding of the items x1, . . . , xn; used on the left-hand side of an assignment, it implies a decoding
operation.

Proof. We use a different description of DCBC-CS, shown in Fig. 6, now writing the algorithm
in terms of DCBC. The state vector consists of three components: a state W for DCBC, which is
not interpreted; an additional delayed ciphertext block C−1, which corresponds to C−1 in Fig. 5;
and a length 0 ≤ ℓ < b, which keeps track of the amount of unprocessed plaintext maintained
in W , so that ℓ = |P0|.

The theorem will follow from three observations about this new description of DCBC. First,
DCBC-CS is functionally identical to DCBC-CS. Second, if the call to function DCBC at line 404
were to instead call a function that returned a random strings of the appropriate length, then
so too would DCBC-CS. This observation is immediate, since the strings returned DCBC-CS′

are derived from those returned by DCBCV, δ
K by discarding and reordering particular fixed bits.

The Security of Ciphertext Stealing 11

Third, DCBC-CS can be implemented using only oracle access to the DCBC function: it doesn’t
need to inspect or interpret the DCBC state vector W , nor examine the key K, and it uses the
state only in the “single-threaded” way permitted by the online IND$ oracle.

Consequently, for any adversary A attacking DCBC-CS, we can construct an adversary B
attacking DCBC: B will run A against a simulated oracle built from B’s (real or fake) DCBC
oracle using DCBC-CS and, in the end, output A’s guess as its own. We have

AdvIND$
DCBC-CS(A) = Pr[AReal⇒ 1]− Pr[AFake⇒ 1]

= Pr[ADCBC-CS[Real]⇒ 1]− Pr[ADCBC-CS[Fake]⇒ 1]

= Pr[BReal⇒ 1]− Pr[BFake⇒ 1]

= AdvIND$
E (B) ≤ σ2/2b

appealing to Theorem 2 for the final inequality.

As before, one can immediately conclude the corresponding complexity-theoretic statement,
which would read as follows.

Corollary 2. Let E: K× {0, 1}b → {0, 1}b be a blockcipher and let E be any of the encryption
schemes DCBC-CS1[E], DCBC-CS2[E], or DCBC-CS3[E]. Suppose A asks queries that total σ
blocks, runs in time t, and achieves advantage δ = AdvIND$

E (A). Then there is an adversary B,
explicitly known and constructed from A in a blackbox manner, that asks at most σ queries,
runs in time t + λbσ, and achieves advantage Adv

prp
E (B) ≥ δ − σ2/2b. Here λ is an absolute

constant depending only on details of the model of computation.

6 Insecurity of the Meyer-Matyas CBC-CS

The CBC ciphertext-stealing construction by Meyer and Matyas, what we will call CBC-CSX,
is defined in Fig. 7. This well-known scheme—it has been used since the early 1980’s under the
IBM CUSP architecture—is susceptible to a simple chosen-plaintext attack, a fact that appears
not to have been pointed out before. Thus NIST did well in choosing not to standardize this
form of ciphertext stealing, but the alternative, “correct” variant.

Here is an attack on the ind$-security of CBC-CSX. The adversary makes two encryption
queries: M = 1b0b−1 and M ′ = 1b0b−1. As the IV is randomized, asking the same plaintext twice
is not without purpose. The oracle returns C = C0C1C2 and C ′ = C ′

0C
′
1C

′
2 where C0 and C ′

0 are
randomly chosen IV s and |C1| = |C

′
1| = b− 1. If C2 = C ′

2 the adversary returns 1; otherwise, it
returns 0. Now if the adversary is given a CBC-CSX oracle, the probability that C2 = C ′

2 is at
least 1/2; otherwise, it’s about 1/2b. Thus we have a trivial but effective ind$-attack.

We remark that, not surprisingly, CBC-CSX is not secure under conventional, weaker notions
of security, like left-or-right indistinguishability [3]; a similar attack can easily be described. It is
not that the definition is too strong; from a modern point of view, the scheme is simply wrong.

Acknowledgments

Authors Rogaway and Zhang received support for this project under NSF grant CNS 0904380.
Many thanks to the NSF for their support.

References

1. M. Ball. Follow-up to NIST’s consideration of XTS-AES as standardized by IEEE Std 1619-2007.
http://tinyurl.com/nist-ball-xts, Public comments to NIST, 2008.

12 Phillip Rogaway, Mark Wooding, and Haibin Zhang

C3

P3

 EK EK

C4C3
∗ ∗∗

∗

P4P2

 EK

C2

P1

 EK

C1

IV

∗

d b-d

db-d

C3
∗∗

90 algorithm CBC-CSX IV

K (P)
91 n← ⌈|P |/b⌉
92 P1 · · ·Pn−1P

∗
n ← P where |P1| = · · · = |Pn−1| = b and |P ∗

n | = d
94 C0 ← IV

95 for i← 1 to n− 1 do Ci ← EK(Pi ⊕ Ci−1)
96 Cn ← EK((LSBb−d(Cn−1) ‖ P

∗
n)

97 C∗
n−1 ← MSBd(Cn−1)

98 return C0 C1 · · · Cn−2 C
∗
n−1 Cn

Fig. 7. Mode CBC-CSX. The mode is insecure and should not be used. This version of ciphertext stealing is
from Meyer and Matyas [14]. The mode depends on a blockcipher E: K × {0, 1}b → {0, 1}b. That can be ideal,
and the IV random, and still the mode will fail to achieve standard (CPA) privacy definitions.

2. G. Bard. Blockwise-adaptive chosen-plaintext attack and online modes of encryption. Cryptography and

Coding 2007, LNCS 4887, Springer, pp. 129–151, 2007.
3. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryption:

analysis of the DES modes of operation. FOCS 97, IEEE Press, pp. 394–403, 1997.
4. M. Bellare, T. Kohno and C. Namprempre. Breaking and provably repairing the SSH authenticated encryp-

tion scheme: a case study of the encode-then-encrypt-and-MAC paradigm. ACM Transactions on Information

and System Security (TISSEC), 7:2, pp. 206–241, 2004. Earlier version from CCS 2002.
5. M. Bellare and P. Rogaway. Code-based game-playing proofs and the security of triple encryption. EURO-

CRYPT 2006, LNCS vol. 4004, Springer, pp. 409–426, 2006.
6. A. Boldyreva and N. Taesombut. Online encryption schemes: new security notions and constructions. CT-

RSA 2004, LNCS vol. 2964, Springer, pp. 1–14, 2004.
7. M. Dworkin. Recommendation for block cipher modes of operation: method and techniques. NIST Special

Publication 800-38A, 2001 Edition. December 2001.
8. M. Dworkin. Recommendation for block cipher modes of operation: three variants of ciphertext stealing for

CBC mode. Addendum to NIST Special Publication 800–38A. October 2010.
9. P. Fouque, A. Joux, G. Martinet, and F. Valette. Authenticated on-line encryption. SAC 2003, LNCS

vol. 3006, Springer, pp. 145–159, 2003.
10. P. Fouque, A. Joux and G. Poupard. Blockwise adversarial model for on-line ciphers and symmetric encryption

schemes. SAC 2004, LNCS vol. 3357, Springer, pp. 212–226, 2004.
11. P. Fouque, G. Martinet, G. Poupard. Practical symmetric on-line encryption. FSE 2003, LNCS vol. 2887,

Springer, pp. 362–375, 2003.
12. R. Gennaro and P. Rohatgi. How to sign digital streams. CRYPTO 97, LNCS vol. 1294, Springer, pp. 180–197,

1997.
13. A. Joux, G. Martinet, and F. Valette. Blockwise-adaptive attackers: revisiting the (in)security of some prov-

ably secure encryption models: CBC, GEM, IACBC. CRYPTO 2002, LNCS vol. 2442, Springer, pp. 17–30,
2002.

14. C. Meyer and M. Matyas. Cryptography: a new dimension in data security. John Wiley & Sons, New York,
1982.

15. NIST. Proposal to extend CBC mode by “ciphertext stealing.” Anonymous draft, May 6, 2007. Available
from NIST’s website.

16. P. Rogaway, M. Bellare, and J. Black. OCB: A block-cipher mode of operation for efficient authenticated
encryption. In ACMTransactions on Information and System Security, 6:3, pp. 365–403, 2003. Earlier version,
with T. Krovetz, in ACM CCS 01.

The Security of Ciphertext Stealing 13

17. B. Schneier. Applied Cryptography, Second Edition: Protocols, Algorithms, and Source Code in C. New
York, Wiley, 1996.

18. V. Shoup. Sequences of games: a tool for taming complexity. ePrint archive 2004/332. Revised 2006.
19. S. Vaudenay. Security flaws induced by CBC padding — applications to SSL, IPSEC, WTLS EURO-

CRYPT 2002, LNCS vol. 2332, Springer, pp. 534–545, 2002.

