1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
//! Re-exports of the tokio runtime for use with arti.
//!
//! This crate helps define a slim API around our async runtime so that we
//! can easily swap it out.

/// Types used for networking (tokio implementation)
pub(crate) mod net {
    use crate::traits;
    use async_trait::async_trait;

    pub(crate) use tokio_crate::net::{
        TcpListener as TokioTcpListener, TcpStream as TokioTcpStream, UdpSocket as TokioUdpSocket,
    };

    use futures::io::{AsyncRead, AsyncWrite};
    use tokio_util::compat::{Compat, TokioAsyncReadCompatExt as _};

    use std::io::Result as IoResult;
    use std::net::SocketAddr;
    use std::pin::Pin;
    use std::task::{Context, Poll};

    /// Wrapper for Tokio's TcpStream that implements the standard
    /// AsyncRead and AsyncWrite.
    pub struct TcpStream {
        /// Underlying tokio_util::compat::Compat wrapper.
        s: Compat<TokioTcpStream>,
    }
    impl From<TokioTcpStream> for TcpStream {
        fn from(s: TokioTcpStream) -> TcpStream {
            let s = s.compat();
            TcpStream { s }
        }
    }
    impl AsyncRead for TcpStream {
        fn poll_read(
            mut self: Pin<&mut Self>,
            cx: &mut Context<'_>,
            buf: &mut [u8],
        ) -> Poll<IoResult<usize>> {
            Pin::new(&mut self.s).poll_read(cx, buf)
        }
    }
    impl AsyncWrite for TcpStream {
        fn poll_write(
            mut self: Pin<&mut Self>,
            cx: &mut Context<'_>,
            buf: &[u8],
        ) -> Poll<IoResult<usize>> {
            Pin::new(&mut self.s).poll_write(cx, buf)
        }
        fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<IoResult<()>> {
            Pin::new(&mut self.s).poll_flush(cx)
        }
        fn poll_close(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<IoResult<()>> {
            Pin::new(&mut self.s).poll_close(cx)
        }
    }

    /// Wrap a Tokio TcpListener to behave as a futures::io::TcpListener.
    pub struct TcpListener {
        /// The underlying listener.
        pub(super) lis: TokioTcpListener,
    }

    /// Asynchronous stream that yields incoming connections from a
    /// TcpListener.
    ///
    /// This is analogous to async_std::net::Incoming.
    pub struct IncomingTcpStreams {
        /// Reference to the underlying listener.
        pub(super) lis: TokioTcpListener,
    }

    impl futures::stream::Stream for IncomingTcpStreams {
        type Item = IoResult<(TcpStream, SocketAddr)>;

        fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
            match self.lis.poll_accept(cx) {
                Poll::Ready(Ok((s, a))) => Poll::Ready(Some(Ok((s.into(), a)))),
                Poll::Ready(Err(e)) => Poll::Ready(Some(Err(e))),
                Poll::Pending => Poll::Pending,
            }
        }
    }
    #[async_trait]
    impl traits::TcpListener for TcpListener {
        type TcpStream = TcpStream;
        type Incoming = IncomingTcpStreams;
        async fn accept(&self) -> IoResult<(Self::TcpStream, SocketAddr)> {
            let (stream, addr) = self.lis.accept().await?;
            Ok((stream.into(), addr))
        }
        fn incoming(self) -> Self::Incoming {
            IncomingTcpStreams { lis: self.lis }
        }
        fn local_addr(&self) -> IoResult<SocketAddr> {
            self.lis.local_addr()
        }
    }

    /// Wrap a Tokio UdpSocket
    pub struct UdpSocket {
        /// The underelying UdpSocket
        socket: TokioUdpSocket,
    }

    impl UdpSocket {
        /// Bind a UdpSocket
        pub async fn bind(addr: SocketAddr) -> IoResult<Self> {
            TokioUdpSocket::bind(addr)
                .await
                .map(|socket| UdpSocket { socket })
        }
    }

    #[async_trait]
    impl traits::UdpSocket for UdpSocket {
        async fn recv(&self, buf: &mut [u8]) -> IoResult<(usize, SocketAddr)> {
            self.socket.recv_from(buf).await
        }

        async fn send(&self, buf: &[u8], target: &SocketAddr) -> IoResult<usize> {
            self.socket.send_to(buf, target).await
        }

        fn local_addr(&self) -> IoResult<SocketAddr> {
            self.socket.local_addr()
        }
    }
}

// ==============================

use crate::traits::*;
use async_trait::async_trait;
use futures::Future;
use std::io::Result as IoResult;
use std::time::Duration;

impl SleepProvider for TokioRuntimeHandle {
    type SleepFuture = tokio_crate::time::Sleep;
    fn sleep(&self, duration: Duration) -> Self::SleepFuture {
        tokio_crate::time::sleep(duration)
    }
}

#[async_trait]
impl crate::traits::TcpProvider for TokioRuntimeHandle {
    type TcpStream = net::TcpStream;
    type TcpListener = net::TcpListener;

    async fn connect(&self, addr: &std::net::SocketAddr) -> IoResult<Self::TcpStream> {
        let s = net::TokioTcpStream::connect(addr).await?;
        Ok(s.into())
    }
    async fn listen(&self, addr: &std::net::SocketAddr) -> IoResult<Self::TcpListener> {
        let lis = net::TokioTcpListener::bind(*addr).await?;
        Ok(net::TcpListener { lis })
    }
}

#[async_trait]
impl crate::traits::UdpProvider for TokioRuntimeHandle {
    type UdpSocket = net::UdpSocket;

    async fn bind(&self, addr: &std::net::SocketAddr) -> IoResult<Self::UdpSocket> {
        net::UdpSocket::bind(*addr).await
    }
}

/// Create and return a new Tokio multithreaded runtime.
pub(crate) fn create_runtime() -> IoResult<TokioRuntimeHandle> {
    let mut builder = async_executors::TokioTpBuilder::new();
    builder.tokio_builder().enable_all();
    let owned = builder.build()?;
    Ok(owned.into())
}

/// Wrapper around a Handle to a tokio runtime.
///
/// Ideally, this type would go away, and we would just use
/// `tokio::runtime::Handle` directly.  Unfortunately, we can't implement
/// `futures::Spawn` on it ourselves because of Rust's orphan rules, so we need
/// to define a new type here.
///
/// # Limitations
///
/// Note that Arti requires that the runtime should have working implementations
/// for Tokio's time, net, and io facilities, but we have no good way to check
/// that when creating this object.
#[derive(Clone, Debug)]
pub struct TokioRuntimeHandle {
    /// If present, the tokio executor that we've created (and which we own).
    ///
    /// We never access this directly; only through `handle`.  We keep it here
    /// so that our Runtime types can be agnostic about whether they own the
    /// executor.
    owned: Option<async_executors::TokioTp>,
    /// The underlying Handle.
    handle: tokio_crate::runtime::Handle,
}

impl TokioRuntimeHandle {
    /// Wrap a tokio runtime handle into a format that Arti can use.
    ///
    /// # Limitations
    ///
    /// Note that Arti requires that the runtime should have working
    /// implementations for Tokio's time, net, and io facilities, but we have
    /// no good way to check that when creating this object.
    pub(crate) fn new(handle: tokio_crate::runtime::Handle) -> Self {
        handle.into()
    }

    /// Return true if this handle owns the executor that it points to.
    pub fn is_owned(&self) -> bool {
        self.owned.is_some()
    }
}

impl From<tokio_crate::runtime::Handle> for TokioRuntimeHandle {
    fn from(handle: tokio_crate::runtime::Handle) -> Self {
        Self {
            owned: None,
            handle,
        }
    }
}

impl From<async_executors::TokioTp> for TokioRuntimeHandle {
    fn from(owner: async_executors::TokioTp) -> TokioRuntimeHandle {
        let handle = owner.block_on(async { tokio_crate::runtime::Handle::current() });
        Self {
            owned: Some(owner),
            handle,
        }
    }
}

impl BlockOn for TokioRuntimeHandle {
    fn block_on<F: Future>(&self, f: F) -> F::Output {
        self.handle.block_on(f)
    }
}

impl futures::task::Spawn for TokioRuntimeHandle {
    fn spawn_obj(
        &self,
        future: futures::task::FutureObj<'static, ()>,
    ) -> Result<(), futures::task::SpawnError> {
        let join_handle = self.handle.spawn(future);
        drop(join_handle); // this makes the task detached.
        Ok(())
    }
}