1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
//! Declare DataStream, a type that wraps RawCellStream so as to be useful
//! for byte-oriented communication.

use crate::{Error, Result};
use tor_cell::relaycell::msg::EndReason;

use futures::io::{AsyncRead, AsyncWrite};
use futures::task::{Context, Poll};
use futures::Future;

#[cfg(feature = "tokio")]
use tokio_crate::io::ReadBuf;
#[cfg(feature = "tokio")]
use tokio_crate::io::{AsyncRead as TokioAsyncRead, AsyncWrite as TokioAsyncWrite};
#[cfg(feature = "tokio")]
use tokio_util::compat::{FuturesAsyncReadCompatExt, FuturesAsyncWriteCompatExt};

use std::fmt::Debug;
use std::io::Result as IoResult;
use std::pin::Pin;

use educe::Educe;

use crate::circuit::StreamTarget;
use crate::stream::StreamReader;
use tor_basic_utils::skip_fmt;
use tor_cell::relaycell::msg::{Data, RelayMsg};
use tor_error::internal;

/// An anonymized stream over the Tor network.
///
/// For most purposes, you can think of this type as an anonymized
/// TCP stream: it can read and write data, and get closed when it's done.
///
/// [`DataStream`] implements [`futures::io::AsyncRead`] and
/// [`futures::io::AsyncWrite`], so you can use it anywhere that those
/// traits are expected.
///
/// # Examples
///
/// Connecting to an HTTP server and sending a request, using
/// [`AsyncWriteExt::write_all`](futures::io::AsyncWriteExt::write_all):
///
/// ```ignore
/// let mut stream = tor_client.connect(("icanhazip.com", 80), None).await?;
///
/// use futures::io::AsyncWriteExt;
///
/// stream
///     .write_all(b"GET / HTTP/1.1\r\nHost: icanhazip.com\r\nConnection: close\r\n\r\n")
///     .await?;
///
/// // Flushing the stream is important; see below!
/// stream.flush().await?;
/// ```
///
/// Reading the result, using [`AsyncReadExt::read_to_end`](futures::io::AsyncReadExt::read_to_end):
///
/// ```ignore
/// use futures::io::AsyncReadExt;
///
/// let mut buf = Vec::new();
/// stream.read_to_end(&mut buf).await?;
///
/// println!("{}", String::from_utf8_lossy(&buf));
/// ```
///
/// # Usage with Tokio
///
/// If the `tokio` crate feature is enabled, this type also implements
/// [`tokio::io::AsyncRead`](tokio_crate::io::AsyncRead) and
/// [`tokio::io::AsyncWrite`](tokio_crate::io::AsyncWrite) for easier integration
/// with code that expects those traits.
///
/// # Remember to call `flush`!
///
/// DataStream buffers data internally, in order to write as few cells
/// as possible onto the network.  In order to make sure that your
/// data has actually been sent, you need to make sure that
/// [`AsyncWrite::poll_flush`] runs to completion: probably via
/// [`AsyncWriteExt::flush`](futures::io::AsyncWriteExt::flush).
///
/// # Splitting the type
///
/// This type is internally composed of a [`DataReader`] and a [`DataWriter`]; the
/// `DataStream::split` method can be used to split it into those two parts, for more
/// convenient usage with e.g. stream combinators.
// # Semver note
//
// Note that this type is re-exported as a part of the public API of
// the `arti-client` crate.  Any changes to its API here in
// `tor-proto` need to be reflected above.
#[derive(Debug)]
pub struct DataStream {
    /// Underlying writer for this stream
    w: DataWriter,
    /// Underlying reader for this stream
    r: DataReader,
}

/// The write half of a [`DataStream`], implementing [`futures::io::AsyncWrite`].
///
/// See the [`DataStream`] docs for more information. In particular, note
/// that this writer requires `poll_flush` to complete in order to guarantee that
/// all data has been written.
///
/// # Usage with Tokio
///
/// If the `tokio` crate feature is enabled, this type also implements
/// [`tokio::io::AsyncWrite`](tokio_crate::io::AsyncWrite) for easier integration
/// with code that expects that trait.
// # Semver note
//
// Note that this type is re-exported as a part of the public API of
// the `arti-client` crate.  Any changes to its API here in
// `tor-proto` need to be reflected above.
#[derive(Debug)]
pub struct DataWriter {
    /// Internal state for this writer
    ///
    /// This is stored in an Option so that we can mutate it in the
    /// AsyncWrite functions.  It might be possible to do better here,
    /// and we should refactor if so.
    state: Option<DataWriterState>,
}

/// The read half of a [`DataStream`], implementing [`futures::io::AsyncRead`].
///
/// See the [`DataStream`] docs for more information.
///
/// # Usage with Tokio
///
/// If the `tokio` crate feature is enabled, this type also implements
/// [`tokio::io::AsyncRead`](tokio_crate::io::AsyncRead) for easier integration
/// with code that expects that trait.
//
// # Semver note
//
// Note that this type is re-exported as a part of the public API of
// the `arti-client` crate.  Any changes to its API here in
// `tor-proto` need to be reflected above.
#[derive(Debug)]
pub struct DataReader {
    /// Internal state for this reader.
    ///
    /// This is stored in an Option so that we can mutate it in
    /// poll_read().  It might be possible to do better here, and we
    /// should refactor if so.
    state: Option<DataReaderState>,
}

impl DataStream {
    /// Wrap raw stream reader and target parts as a DataStream.
    ///
    /// For non-optimistic stream, function `wait_for_connection`
    /// must be called after to make sure CONNECTED is received.
    pub(crate) fn new(reader: StreamReader, target: StreamTarget) -> Self {
        let r = DataReader {
            state: Some(DataReaderState::Ready(DataReaderImpl {
                s: reader,
                pending: Vec::new(),
                offset: 0,
                connected: false,
            })),
        };
        let w = DataWriter {
            state: Some(DataWriterState::Ready(DataWriterImpl {
                s: target,
                buf: Box::new([0; Data::MAXLEN]),
                n_pending: 0,
            })),
        };
        DataStream { w, r }
    }

    /// Divide this DataStream into its constituent parts.
    pub fn split(self) -> (DataReader, DataWriter) {
        (self.r, self.w)
    }

    /// Wait until a CONNECTED cell is received, or some other cell
    /// is received to indicate an error.
    ///
    /// Does nothing if this stream is already connected.
    pub(crate) async fn wait_for_connection(&mut self) -> Result<()> {
        // We must put state back before returning
        let state = self.r.state.take().expect("Missing state in DataReader");

        if let DataReaderState::Ready(imp) = state {
            let (imp, result) = if imp.connected {
                (imp, Ok(()))
            } else {
                // This succeeds if the cell is CONNECTED, and fails otherwise.
                imp.read_cell().await
            };
            self.r.state = Some(match result {
                Err(_) => DataReaderState::Closed,
                Ok(_) => DataReaderState::Ready(imp),
            });
            result
        } else {
            Err(Error::from(internal!(
                "Expected ready state, got {:?}",
                state
            )))
        }
    }
}

impl AsyncRead for DataStream {
    fn poll_read(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut [u8],
    ) -> Poll<IoResult<usize>> {
        AsyncRead::poll_read(Pin::new(&mut self.r), cx, buf)
    }
}

#[cfg(feature = "tokio")]
impl TokioAsyncRead for DataStream {
    fn poll_read(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut ReadBuf<'_>,
    ) -> Poll<IoResult<()>> {
        TokioAsyncRead::poll_read(Pin::new(&mut self.compat()), cx, buf)
    }
}

impl AsyncWrite for DataStream {
    fn poll_write(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8],
    ) -> Poll<IoResult<usize>> {
        AsyncWrite::poll_write(Pin::new(&mut self.w), cx, buf)
    }
    fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<IoResult<()>> {
        AsyncWrite::poll_flush(Pin::new(&mut self.w), cx)
    }
    fn poll_close(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<IoResult<()>> {
        AsyncWrite::poll_close(Pin::new(&mut self.w), cx)
    }
}

#[cfg(feature = "tokio")]
impl TokioAsyncWrite for DataStream {
    fn poll_write(self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &[u8]) -> Poll<IoResult<usize>> {
        TokioAsyncWrite::poll_write(Pin::new(&mut self.compat()), cx, buf)
    }

    fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<IoResult<()>> {
        TokioAsyncWrite::poll_flush(Pin::new(&mut self.compat()), cx)
    }

    fn poll_shutdown(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<IoResult<()>> {
        TokioAsyncWrite::poll_shutdown(Pin::new(&mut self.compat()), cx)
    }
}

/// An enumeration for the state of a DataWriter.
///
/// We have to use an enum here because, for as long as we're waiting
/// for a flush operation to complete, the future returned by
/// `flush_cell()` owns the DataWriterImpl.
#[derive(Educe)]
#[educe(Debug)]
enum DataWriterState {
    /// The writer has closed or gotten an error: nothing more to do.
    Closed,
    /// The writer is not currently flushing; more data can get queued
    /// immediately.
    Ready(DataWriterImpl),
    /// The writer is flushing a cell.
    Flushing(
        #[educe(Debug(method = "skip_fmt"))]
        Pin<Box<dyn Future<Output = (DataWriterImpl, Result<()>)> + Send>>,
    ),
}

/// Internal: the write part of a DataStream
#[derive(Educe)]
#[educe(Debug)]
struct DataWriterImpl {
    /// The underlying StreamTarget object.
    s: StreamTarget,

    /// Buffered data to send over the connection.
    // TODO: this buffer is probably smaller than we want, but it's good
    // enough for now.  If we _do_ make it bigger, we'll have to change
    // our use of Data::split_from to handle the case where we can't fit
    // all the data.
    #[educe(Debug(method = "skip_fmt"))]
    buf: Box<[u8; Data::MAXLEN]>,

    /// Number of unflushed bytes in buf.
    n_pending: usize,
}

impl DataWriter {
    /// Helper for poll_flush() and poll_close(): Performs a flush, then
    /// closes the stream if should_close is true.
    fn poll_flush_impl(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        should_close: bool,
    ) -> Poll<IoResult<()>> {
        let state = self.state.take().expect("Missing state in DataWriter");

        // TODO: this whole function is a bit copy-pasted.

        let mut future = match state {
            DataWriterState::Ready(imp) => {
                if imp.n_pending == 0 {
                    // Nothing to flush!
                    self.state = Some(DataWriterState::Ready(imp));
                    return Poll::Ready(Ok(()));
                }

                Box::pin(imp.flush_buf())
            }
            DataWriterState::Flushing(fut) => fut,
            DataWriterState::Closed => {
                self.state = Some(DataWriterState::Closed);
                return Poll::Ready(Err(Error::NotConnected.into()));
            }
        };

        match future.as_mut().poll(cx) {
            Poll::Ready((_imp, Err(e))) => {
                self.state = Some(DataWriterState::Closed);
                Poll::Ready(Err(e.into()))
            }
            Poll::Ready((imp, Ok(()))) => {
                if should_close {
                    self.state = Some(DataWriterState::Closed);
                } else {
                    self.state = Some(DataWriterState::Ready(imp));
                }
                Poll::Ready(Ok(()))
            }
            Poll::Pending => {
                self.state = Some(DataWriterState::Flushing(future));
                Poll::Pending
            }
        }
    }
}

impl AsyncWrite for DataWriter {
    fn poll_write(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8],
    ) -> Poll<IoResult<usize>> {
        if buf.is_empty() {
            return Poll::Ready(Ok(0));
        }

        let state = self.state.take().expect("Missing state in DataWriter");

        let mut future = match state {
            DataWriterState::Ready(mut imp) => {
                let n_queued = imp.queue_bytes(buf);
                if n_queued != 0 {
                    self.state = Some(DataWriterState::Ready(imp));
                    return Poll::Ready(Ok(n_queued));
                }
                // we couldn't queue anything, so the current cell must be full.
                Box::pin(imp.flush_buf())
            }
            DataWriterState::Flushing(fut) => fut,
            DataWriterState::Closed => {
                self.state = Some(DataWriterState::Closed);
                return Poll::Ready(Err(Error::NotConnected.into()));
            }
        };

        match future.as_mut().poll(cx) {
            Poll::Ready((_imp, Err(e))) => {
                self.state = Some(DataWriterState::Closed);
                Poll::Ready(Err(e.into()))
            }
            Poll::Ready((mut imp, Ok(()))) => {
                // Great!  We're done flushing.  Queue as much as we can of this
                // cell.
                let n_queued = imp.queue_bytes(buf);
                self.state = Some(DataWriterState::Ready(imp));
                Poll::Ready(Ok(n_queued))
            }
            Poll::Pending => {
                self.state = Some(DataWriterState::Flushing(future));
                Poll::Pending
            }
        }
    }

    fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<IoResult<()>> {
        self.poll_flush_impl(cx, false)
    }

    fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<IoResult<()>> {
        self.poll_flush_impl(cx, true)
    }
}

#[cfg(feature = "tokio")]
impl TokioAsyncWrite for DataWriter {
    fn poll_write(self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &[u8]) -> Poll<IoResult<usize>> {
        TokioAsyncWrite::poll_write(Pin::new(&mut self.compat_write()), cx, buf)
    }

    fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<IoResult<()>> {
        TokioAsyncWrite::poll_flush(Pin::new(&mut self.compat_write()), cx)
    }

    fn poll_shutdown(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<IoResult<()>> {
        TokioAsyncWrite::poll_shutdown(Pin::new(&mut self.compat_write()), cx)
    }
}

impl DataWriterImpl {
    /// Try to flush the current buffer contents as a data cell.
    async fn flush_buf(mut self) -> (Self, Result<()>) {
        let result = if self.n_pending != 0 {
            let (cell, remainder) = Data::split_from(&self.buf[..self.n_pending]);
            // TODO: Eventually we may want a larger buffer; if we do,
            // this invariant will become false.
            assert!(remainder.is_empty());
            self.n_pending = 0;
            self.s.send(cell.into()).await
        } else {
            Ok(())
        };

        (self, result)
    }

    /// Add as many bytes as possible from `b` to our internal buffer;
    /// return the number we were able to add.
    fn queue_bytes(&mut self, b: &[u8]) -> usize {
        let empty_space = &mut self.buf[self.n_pending..];
        if empty_space.is_empty() {
            // that is, len == 0
            return 0;
        }

        let n_to_copy = std::cmp::min(b.len(), empty_space.len());
        empty_space[..n_to_copy].copy_from_slice(&b[..n_to_copy]);
        self.n_pending += n_to_copy;
        n_to_copy
    }
}

/// An enumeration for the state of a DataReader.
///
/// We have to use an enum here because, when we're waiting for
/// ReadingCell to complete, the future returned by `read_cell()` owns the
/// DataCellImpl.  If we wanted to store the future and the cell at the
/// same time, we'd need to make a self-referential structure, which isn't
/// possible in safe Rust AIUI.
#[derive(Educe)]
#[educe(Debug)]
enum DataReaderState {
    /// In this state we have received an end cell or an error.
    Closed,
    /// In this state the reader is not currently fetching a cell; it
    /// either has data or not.
    Ready(DataReaderImpl),
    /// The reader is currently fetching a cell: this future is the
    /// progress it is making.
    ReadingCell(
        #[educe(Debug(method = "skip_fmt"))]
        Pin<Box<dyn Future<Output = (DataReaderImpl, Result<()>)> + Send>>,
    ),
}

/// Wrapper for the read part of a DataStream
#[derive(Educe)]
#[educe(Debug)]
struct DataReaderImpl {
    /// The underlying StreamReader object.
    #[educe(Debug(method = "skip_fmt"))]
    s: StreamReader,

    /// If present, data that we received on this stream but have not
    /// been able to send to the caller yet.
    // TODO: This data structure is probably not what we want, but
    // it's good enough for now.
    #[educe(Debug(method = "skip_fmt"))]
    pending: Vec<u8>,

    /// Index into pending to show what we've already read.
    offset: usize,

    /// If true, we have received a CONNECTED cell on this stream.
    connected: bool,
}

impl AsyncRead for DataReader {
    fn poll_read(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut [u8],
    ) -> Poll<IoResult<usize>> {
        // We're pulling the state object out of the reader.  We MUST
        // put it back before this function returns.
        let mut state = self.state.take().expect("Missing state in DataReader");

        loop {
            let mut future = match state {
                DataReaderState::Ready(mut imp) => {
                    // There may be data to read already.
                    let n_copied = imp.extract_bytes(buf);
                    if n_copied != 0 {
                        // We read data into the buffer.  Tell the caller.
                        self.state = Some(DataReaderState::Ready(imp));
                        return Poll::Ready(Ok(n_copied));
                    }

                    // No data available!  We have to launch a read.
                    Box::pin(imp.read_cell())
                }
                DataReaderState::ReadingCell(fut) => fut,
                DataReaderState::Closed => {
                    self.state = Some(DataReaderState::Closed);
                    return Poll::Ready(Err(Error::NotConnected.into()));
                }
            };

            // We have a future that represents an in-progress read.
            // See if it can make progress.
            match future.as_mut().poll(cx) {
                Poll::Ready((_imp, Err(e))) => {
                    // There aren't any survivable errors in the current
                    // design.
                    self.state = Some(DataReaderState::Closed);
                    let result = if matches!(e, Error::EndReceived(EndReason::DONE)) {
                        Ok(0)
                    } else {
                        Err(e.into())
                    };
                    return Poll::Ready(result);
                }
                Poll::Ready((imp, Ok(()))) => {
                    // It read a cell!  Continue the loop.
                    state = DataReaderState::Ready(imp);
                }
                Poll::Pending => {
                    // The future is pending; store it and tell the
                    // caller to get back to us later.
                    self.state = Some(DataReaderState::ReadingCell(future));
                    return Poll::Pending;
                }
            }
        }
    }
}

#[cfg(feature = "tokio")]
impl TokioAsyncRead for DataReader {
    fn poll_read(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut ReadBuf<'_>,
    ) -> Poll<IoResult<()>> {
        TokioAsyncRead::poll_read(Pin::new(&mut self.compat()), cx, buf)
    }
}

impl DataReaderImpl {
    /// Pull as many bytes as we can off of self.pending, and return that
    /// number of bytes.
    fn extract_bytes(&mut self, buf: &mut [u8]) -> usize {
        let remainder = &self.pending[self.offset..];
        let n_to_copy = std::cmp::min(buf.len(), remainder.len());
        buf[..n_to_copy].copy_from_slice(&remainder[..n_to_copy]);
        self.offset += n_to_copy;

        n_to_copy
    }

    /// Return true iff there are no buffered bytes here to yield
    fn buf_is_empty(&self) -> bool {
        self.pending.len() == self.offset
    }

    /// Load self.pending with the contents of a new data cell.
    ///
    /// This function takes ownership of self so that we can avoid
    /// self-referential lifetimes.
    async fn read_cell(mut self) -> (Self, Result<()>) {
        let cell = self.s.recv().await;

        let result = match cell {
            Ok(RelayMsg::Connected(_)) if !self.connected => {
                self.connected = true;
                Ok(())
            }
            Ok(RelayMsg::Data(d)) if self.connected => {
                self.add_data(d.into());
                Ok(())
            }
            Ok(RelayMsg::End(e)) => Err(Error::EndReceived(e.reason())),
            Err(e) => Err(e),
            Ok(m) => {
                self.s.protocol_error();
                Err(Error::StreamProto(format!(
                    "Unexpected {} cell on stream",
                    m.cmd()
                )))
            }
        };

        (self, result)
    }

    /// Add the data from `d` to the end of our pending bytes.
    fn add_data(&mut self, mut d: Vec<u8>) {
        if self.buf_is_empty() {
            // No data pending?  Just take d as the new pending.
            self.pending = d;
            self.offset = 0;
        } else {
            // TODO(nickm) This has potential to grow `pending` without bound.
            // Fortunately, we don't currently read cells or call this
            // `add_data` method when pending is nonempty—but if we do in the
            // future, we'll have to be careful here.
            self.pending.append(&mut d);
        }
    }
}