1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
//! Relay cell cryptography
//!
//! The Tor protocol centers around "RELAY cells", which are
//! transmitted through the network along circuits.  The client that
//! creates a circuit shares two different set of keys and state with
//! each of the relays on the circuit: one for "outbound" traffic, and
//! one for "inbound" traffic.
//!

use crate::{Error, Result};
use tor_cell::chancell::RawCellBody;
use tor_error::internal;

use generic_array::GenericArray;

/// Type for the body of a relay cell.
#[derive(Clone)]
pub(crate) struct RelayCellBody(RawCellBody);

impl From<RawCellBody> for RelayCellBody {
    fn from(body: RawCellBody) -> Self {
        RelayCellBody(body)
    }
}
impl From<RelayCellBody> for RawCellBody {
    fn from(cell: RelayCellBody) -> Self {
        cell.0
    }
}
impl AsRef<[u8]> for RelayCellBody {
    fn as_ref(&self) -> &[u8] {
        &self.0[..]
    }
}
impl AsMut<[u8]> for RelayCellBody {
    fn as_mut(&mut self) -> &mut [u8] {
        &mut self.0[..]
    }
}

/// Represents the ability for a circuit crypto state to be initialized
/// from a given seed.
pub(crate) trait CryptInit: Sized {
    /// Return the number of bytes that this state will require.
    fn seed_len() -> usize;
    /// Construct this state from a seed of the appropriate length.
    fn initialize(seed: &[u8]) -> Result<Self>;
    /// Initialize this object from a key generator.
    fn construct<K: super::handshake::KeyGenerator>(keygen: K) -> Result<Self> {
        let seed = keygen.expand(Self::seed_len())?;
        Self::initialize(&seed)
    }
}

/// A paired object containing an inbound client layer and an outbound
/// client layer.
///
/// TODO: Maybe we should fold this into CryptInit.
pub(crate) trait ClientLayer<F, B>
where
    F: OutboundClientLayer,
    B: InboundClientLayer,
{
    /// Consume this ClientLayer and return a paired forward and reverse
    /// crypto layer.
    fn split(self) -> (F, B);
}

/// Represents a relay's view of the crypto state on a given circuit.
pub(crate) trait RelayCrypt {
    /// Prepare a RelayCellBody to be sent towards the client.
    fn originate(&mut self, cell: &mut RelayCellBody);
    /// Encrypt a RelayCellBody that is moving towards the client.
    fn encrypt_inbound(&mut self, cell: &mut RelayCellBody);
    /// Decrypt a RelayCellBody that is moving towards the client.
    ///
    /// Return true if it is addressed to us.
    fn decrypt_outbound(&mut self, cell: &mut RelayCellBody) -> bool;
}

/// A client's view of the crypto state shared with a single relay, as
/// used for outbound cells.
pub(crate) trait OutboundClientLayer {
    /// Prepare a RelayCellBody to be sent to the relay at this layer, and
    /// encrypt it.
    ///
    /// Return the authentication tag.
    fn originate_for(&mut self, cell: &mut RelayCellBody) -> &[u8];
    /// Encrypt a RelayCellBody to be decrypted by this layer.
    fn encrypt_outbound(&mut self, cell: &mut RelayCellBody);
}

/// A client's view of the crypto state shared with a single relay, as
/// used for inbound cells.
pub(crate) trait InboundClientLayer {
    /// Decrypt a CellBody that passed through this layer.
    ///
    /// Return an authentication tag if this layer is the originator.
    fn decrypt_inbound(&mut self, cell: &mut RelayCellBody) -> Option<&[u8]>;
}

/// Type to store hop indices on a circuit.
///
/// Hop indices are zero-based: "0" denotes the first hop on the circuit.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub(crate) struct HopNum(u8);

impl From<HopNum> for u8 {
    fn from(hop: HopNum) -> u8 {
        hop.0
    }
}

impl From<u8> for HopNum {
    fn from(v: u8) -> HopNum {
        HopNum(v)
    }
}

impl From<HopNum> for usize {
    fn from(hop: HopNum) -> usize {
        hop.0 as usize
    }
}

impl std::fmt::Display for HopNum {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::result::Result<(), std::fmt::Error> {
        self.0.fmt(f)
    }
}

/// A client's view of the cryptographic state for an entire
/// constructed circuit, as used for sending cells.
pub(crate) struct OutboundClientCrypt {
    /// Vector of layers, one for each hop on the circuit, ordered from the
    /// closest hop to the farthest.
    layers: Vec<Box<dyn OutboundClientLayer + Send>>,
}

/// A client's view of the cryptographic state for an entire
/// constructed circuit, as used for receiving cells.
pub(crate) struct InboundClientCrypt {
    /// Vector of layers, one for each hop on the circuit, ordered from the
    /// closest hop to the farthest.
    layers: Vec<Box<dyn InboundClientLayer + Send>>,
}

impl OutboundClientCrypt {
    /// Return a new (empty) OutboundClientCrypt.
    pub(crate) fn new() -> Self {
        OutboundClientCrypt { layers: Vec::new() }
    }
    /// Prepare a cell body to sent away from the client.
    ///
    /// The cell is prepared for the `hop`th hop, and then encrypted with
    /// the appropriate keys.
    ///
    /// On success, returns a reference to tag that should be expected
    /// for an authenticated SENDME sent in response to this cell.
    pub(crate) fn encrypt(&mut self, cell: &mut RelayCellBody, hop: HopNum) -> Result<&[u8; 20]> {
        let hop: usize = hop.into();
        if hop >= self.layers.len() {
            return Err(Error::NoSuchHop);
        }

        let mut layers = self.layers.iter_mut().take(hop + 1).rev();
        let first_layer = layers.next().ok_or(Error::NoSuchHop)?;
        let tag = first_layer.originate_for(cell);
        for layer in layers {
            layer.encrypt_outbound(cell);
        }
        Ok(tag.try_into().expect("wrong SENDME digest size"))
    }

    /// Add a new layer to this OutboundClientCrypt
    pub(crate) fn add_layer(&mut self, layer: Box<dyn OutboundClientLayer + Send>) {
        assert!(self.layers.len() < std::u8::MAX as usize);
        self.layers.push(layer);
    }

    /// Return the number of layers configured on this OutboundClientCrypt.
    pub(crate) fn n_layers(&self) -> usize {
        self.layers.len()
    }
}

impl InboundClientCrypt {
    /// Return a new (empty) InboundClientCrypt.
    pub(crate) fn new() -> Self {
        InboundClientCrypt { layers: Vec::new() }
    }
    /// Decrypt an incoming cell that is coming to the client.
    ///
    /// On success, return which hop was the originator of the cell.
    // TODO(nickm): Use a real type for the tag, not just `&[u8]`.
    pub(crate) fn decrypt(&mut self, cell: &mut RelayCellBody) -> Result<(HopNum, &[u8])> {
        for (hopnum, layer) in self.layers.iter_mut().enumerate() {
            if let Some(tag) = layer.decrypt_inbound(cell) {
                assert!(hopnum <= std::u8::MAX as usize);
                return Ok(((hopnum as u8).into(), tag));
            }
        }
        Err(Error::BadCellAuth)
    }
    /// Add a new layer to this InboundClientCrypt
    pub(crate) fn add_layer(&mut self, layer: Box<dyn InboundClientLayer + Send>) {
        assert!(self.layers.len() < std::u8::MAX as usize);
        self.layers.push(layer);
    }

    /// Return the number of layers configured on this InboundClientCrypt.
    ///
    /// TODO: use HopNum
    #[allow(dead_code)]
    pub(crate) fn n_layers(&self) -> usize {
        self.layers.len()
    }
}

/// Standard Tor relay crypto, as instantiated for RELAY cells.
pub(crate) type Tor1RelayCrypto =
    tor1::CryptStatePair<tor_llcrypto::cipher::aes::Aes128Ctr, tor_llcrypto::d::Sha1>;

/// Incomplete untested implementation of Tor's current cell crypto.
pub(crate) mod tor1 {
    use super::*;
    use cipher::{KeyIvInit, StreamCipher};
    use digest::Digest;
    use typenum::Unsigned;

    /// A CryptState is part of a RelayCrypt or a ClientLayer.
    ///
    /// It is parameterized on a stream cipher and a digest type: most
    /// circuits will use AES-128-CTR and SHA1, but v3 onion services
    /// use AES-256-CTR and SHA-3.
    pub(crate) struct CryptState<SC: StreamCipher, D: Digest + Clone> {
        /// Stream cipher for en/decrypting cell bodies.
        cipher: SC,
        /// Digest for authenticating cells to/from this hop.
        digest: D,
        /// Most recent digest value generated by this crypto.
        last_digest_val: GenericArray<u8, D::OutputSize>,
    }

    /// A pair of CryptStates, one for the forward (away from client)
    /// direction, and one for the reverse (towards client) direction.
    pub(crate) struct CryptStatePair<SC: StreamCipher, D: Digest + Clone> {
        /// State for en/decrypting cells sent away from the client.
        fwd: CryptState<SC, D>,
        /// State for en/decrypting cells sent towards the client.
        back: CryptState<SC, D>,
    }

    impl<SC: StreamCipher + KeyIvInit, D: Digest + Clone> CryptInit for CryptStatePair<SC, D> {
        fn seed_len() -> usize {
            SC::KeySize::to_usize() * 2 + D::OutputSize::to_usize() * 2
        }
        fn initialize(seed: &[u8]) -> Result<Self> {
            if seed.len() != Self::seed_len() {
                return Err(Error::from(internal!(
                    "seed length {} was invalid",
                    seed.len()
                )));
            }
            let keylen = SC::KeySize::to_usize();
            let dlen = D::OutputSize::to_usize();
            let fdinit = &seed[0..dlen];
            let bdinit = &seed[dlen..dlen * 2];
            let fckey = &seed[dlen * 2..dlen * 2 + keylen];
            let bckey = &seed[dlen * 2 + keylen..dlen * 2 + keylen * 2];
            let fwd = CryptState {
                cipher: SC::new(fckey.try_into().expect("Wrong length"), &Default::default()),
                digest: D::new().chain_update(fdinit),
                last_digest_val: GenericArray::default(),
            };
            let back = CryptState {
                cipher: SC::new(bckey.try_into().expect("Wrong length"), &Default::default()),
                digest: D::new().chain_update(bdinit),
                last_digest_val: GenericArray::default(),
            };
            Ok(CryptStatePair { fwd, back })
        }
    }

    impl<SC, D> ClientLayer<CryptState<SC, D>, CryptState<SC, D>> for CryptStatePair<SC, D>
    where
        SC: StreamCipher,
        D: Digest + Clone,
    {
        fn split(self) -> (CryptState<SC, D>, CryptState<SC, D>) {
            (self.fwd, self.back)
        }
    }

    impl<SC: StreamCipher, D: Digest + Clone> RelayCrypt for CryptStatePair<SC, D> {
        fn originate(&mut self, cell: &mut RelayCellBody) {
            let mut d_ignored = GenericArray::default();
            cell.set_digest(&mut self.back.digest, &mut d_ignored);
        }
        fn encrypt_inbound(&mut self, cell: &mut RelayCellBody) {
            self.back.cipher.apply_keystream(cell.as_mut());
        }
        fn decrypt_outbound(&mut self, cell: &mut RelayCellBody) -> bool {
            self.fwd.cipher.apply_keystream(cell.as_mut());
            let mut d_ignored = GenericArray::default();
            cell.recognized(&mut self.fwd.digest, &mut d_ignored)
        }
    }

    impl<SC: StreamCipher, D: Digest + Clone> OutboundClientLayer for CryptState<SC, D> {
        fn originate_for(&mut self, cell: &mut RelayCellBody) -> &[u8] {
            cell.set_digest(&mut self.digest, &mut self.last_digest_val);
            self.encrypt_outbound(cell);
            &self.last_digest_val
        }
        fn encrypt_outbound(&mut self, cell: &mut RelayCellBody) {
            self.cipher.apply_keystream(&mut cell.0[..]);
        }
    }

    impl<SC: StreamCipher, D: Digest + Clone> InboundClientLayer for CryptState<SC, D> {
        fn decrypt_inbound(&mut self, cell: &mut RelayCellBody) -> Option<&[u8]> {
            self.cipher.apply_keystream(&mut cell.0[..]);
            if cell.recognized(&mut self.digest, &mut self.last_digest_val) {
                Some(&self.last_digest_val)
            } else {
                None
            }
        }
    }

    impl RelayCellBody {
        /// Prepare a cell body by setting its digest and recognized field.
        fn set_digest<D: Digest + Clone>(
            &mut self,
            d: &mut D,
            used_digest: &mut GenericArray<u8, D::OutputSize>,
        ) {
            self.0[1] = 0;
            self.0[2] = 0;
            self.0[5] = 0;
            self.0[6] = 0;
            self.0[7] = 0;
            self.0[8] = 0;

            d.update(&self.0[..]);
            // TODO(nickm) can we avoid this clone?  Probably not.
            *used_digest = d.clone().finalize();
            self.0[5..9].copy_from_slice(&used_digest[0..4]);
        }
        /// Check a cell to see whether its recognized field is set.
        fn recognized<D: Digest + Clone>(
            &self,
            d: &mut D,
            rcvd: &mut GenericArray<u8, D::OutputSize>,
        ) -> bool {
            use crate::util::ct;
            use arrayref::array_ref;

            // Validate 'Recognized' field
            let recognized = u16::from_be_bytes(*array_ref![self.0, 1, 2]);
            if recognized != 0 {
                return false;
            }

            // Now also validate the 'Digest' field:

            let mut dtmp = d.clone();
            // Add bytes up to the 'Digest' field
            dtmp.update(&self.0[..5]);
            // Add zeroes where the 'Digest' field is
            dtmp.update([0_u8; 4]);
            // Add the rest of the bytes
            dtmp.update(&self.0[9..]);
            // Clone the digest before finalize destroys it because we will use
            // it in the future
            let dtmp_clone = dtmp.clone();
            let result = dtmp.finalize();

            if ct::bytes_eq(&self.0[5..9], &result[0..4]) {
                // Copy useful things out of this cell (we keep running digest)
                *d = dtmp_clone;
                *rcvd = result;
                return true;
            }

            false
        }
    }
}

#[cfg(test)]
mod test {
    #![allow(clippy::unwrap_used)]
    use super::*;
    use crate::SecretBytes;
    use rand::RngCore;
    use tor_basic_utils::test_rng::testing_rng;

    fn add_layers(
        cc_out: &mut OutboundClientCrypt,
        cc_in: &mut InboundClientCrypt,
        pair: Tor1RelayCrypto,
    ) {
        let (outbound, inbound) = pair.split();
        cc_out.add_layer(Box::new(outbound));
        cc_in.add_layer(Box::new(inbound));
    }

    #[test]
    fn roundtrip() {
        // Take canned keys and make sure we can do crypto correctly.
        use crate::crypto::handshake::ShakeKeyGenerator as KGen;
        fn s(seed: &[u8]) -> SecretBytes {
            let mut s: SecretBytes = SecretBytes::new(Vec::new());
            s.extend(seed);
            s
        }

        let seed1 = s(b"hidden we are free");
        let seed2 = s(b"free to speak, to free ourselves");
        let seed3 = s(b"free to hide no more");

        let mut cc_out = OutboundClientCrypt::new();
        let mut cc_in = InboundClientCrypt::new();
        let pair = Tor1RelayCrypto::construct(KGen::new(seed1.clone())).unwrap();
        add_layers(&mut cc_out, &mut cc_in, pair);
        let pair = Tor1RelayCrypto::construct(KGen::new(seed2.clone())).unwrap();
        add_layers(&mut cc_out, &mut cc_in, pair);
        let pair = Tor1RelayCrypto::construct(KGen::new(seed3.clone())).unwrap();
        add_layers(&mut cc_out, &mut cc_in, pair);

        assert_eq!(cc_in.n_layers(), 3);
        assert_eq!(cc_out.n_layers(), 3);

        let mut r1 = Tor1RelayCrypto::construct(KGen::new(seed1)).unwrap();
        let mut r2 = Tor1RelayCrypto::construct(KGen::new(seed2)).unwrap();
        let mut r3 = Tor1RelayCrypto::construct(KGen::new(seed3)).unwrap();

        let mut rng = testing_rng();
        for _ in 1..300 {
            // outbound cell
            let mut cell = [0_u8; 509];
            let mut cell_orig = [0_u8; 509];
            rng.fill_bytes(&mut cell_orig);
            cell.copy_from_slice(&cell_orig);
            let mut cell = cell.into();
            let _tag = cc_out.encrypt(&mut cell, 2.into()).unwrap();
            assert_ne!(&cell.as_ref()[9..], &cell_orig.as_ref()[9..]);
            assert!(!r1.decrypt_outbound(&mut cell));
            assert!(!r2.decrypt_outbound(&mut cell));
            assert!(r3.decrypt_outbound(&mut cell));

            assert_eq!(&cell.as_ref()[9..], &cell_orig.as_ref()[9..]);

            // inbound cell
            let mut cell = [0_u8; 509];
            let mut cell_orig = [0_u8; 509];
            rng.fill_bytes(&mut cell_orig);
            cell.copy_from_slice(&cell_orig);
            let mut cell = cell.into();

            r3.originate(&mut cell);
            r3.encrypt_inbound(&mut cell);
            r2.encrypt_inbound(&mut cell);
            r1.encrypt_inbound(&mut cell);
            let (layer, _tag) = cc_in.decrypt(&mut cell).unwrap();
            assert_eq!(layer, 2.into());
            assert_eq!(&cell.as_ref()[9..], &cell_orig.as_ref()[9..]);

            // TODO: Test tag somehow.
        }

        // Try a failure: sending a cell to a nonexistent hop.
        {
            let mut cell = [0_u8; 509].into();
            let err = cc_out.encrypt(&mut cell, 10.into());
            assert!(matches!(err, Err(Error::NoSuchHop)));
        }

        // Try a failure: A junk cell with no correct auth from any layer.
        {
            let mut cell = [0_u8; 509].into();
            let err = cc_in.decrypt(&mut cell);
            assert!(matches!(err, Err(Error::BadCellAuth)));
        }
    }

    // From tor's test_relaycrypt.c

    #[test]
    fn testvec() {
        use digest::XofReader;
        use digest::{ExtendableOutput, Update};

        const K1: &[u8; 72] =
            b"    'My public key is in this signed x509 object', said Tom assertively.";
        const K2: &[u8; 72] =
            b"'Let's chart the pedal phlanges in the tomb', said Tom cryptographically";
        const K3: &[u8; 72] =
            b"     'Segmentation fault bugs don't _just happen_', said Tom seethingly.";

        const SEED: &[u8;108] = b"'You mean to tell me that there's a version of Sha-3 with no limit on the output length?', said Tom shakily.";

        // These test vectors were generated from Tor.
        let data: &[(usize, &str)] = &include!("../../testdata/cell_crypt.data");

        let mut cc_out = OutboundClientCrypt::new();
        let mut cc_in = InboundClientCrypt::new();
        let pair = Tor1RelayCrypto::initialize(&K1[..]).unwrap();
        add_layers(&mut cc_out, &mut cc_in, pair);
        let pair = Tor1RelayCrypto::initialize(&K2[..]).unwrap();
        add_layers(&mut cc_out, &mut cc_in, pair);
        let pair = Tor1RelayCrypto::initialize(&K3[..]).unwrap();
        add_layers(&mut cc_out, &mut cc_in, pair);

        let mut xof = tor_llcrypto::d::Shake256::default();
        xof.update(&SEED[..]);
        let mut stream = xof.finalize_xof();

        let mut j = 0;
        for cellno in 0..51 {
            let mut body = [0_u8; 509];
            body[0] = 2; // command: data.
            body[4] = 1; // streamid: 1.
            body[9] = 1; // length: 498
            body[10] = 242;
            stream.read(&mut body[11..]);

            let mut cell = body.into();
            let _ = cc_out.encrypt(&mut cell, 2.into());

            if cellno == data[j].0 {
                let expected = hex::decode(data[j].1).unwrap();
                assert_eq!(cell.as_ref(), &expected[..]);
                j += 1;
            }
        }
    }
}