1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
//! Futures helpers
use std::future::Future;
use std::marker::PhantomData;
use std::pin::Pin;
use std::task::{Context, Poll};
use futures::future::FusedFuture;
use futures::ready;
use futures::Sink;
use pin_project::pin_project;
/// Switch to the nontrivial version of this, to get debugging output on stderr
macro_rules! dprintln { { $f:literal $($a:tt)* } => { () } }
//macro_rules! dprintln { { $f:literal $($a:tt)* } => { eprintln!(concat!(" ",$f) $($a)*) } }
/// Extension trait for [`Sink`]
pub trait SinkExt<'w, OS, OM>
where
OS: Sink<OM>,
{
/// For processing an item obtained from a future, avoiding async cancel lossage
///
/// ```
/// # use futures::channel::mpsc;
/// # use tor_basic_utils::futures::SinkExt as _;
/// #
/// # #[tokio::main]
/// # async fn main() -> Result<(),mpsc::SendError> {
/// # let (mut sink, sink_r) = mpsc::unbounded::<usize>();
/// # let message_generator_future = futures::future::ready(42);
/// # let process_message = |m| Ok::<_,mpsc::SendError>(m);
/// let (message, sendable) = sink.prepare_send_from(
/// message_generator_future
/// ).await?;
/// let message = process_message(message)?;
/// sendable.send(message);
/// # Ok(())
/// # }
/// ```
///
/// Prepares to send a output message[^terminology] `OM` to an output sink `OS` (`self`),
/// where the `OM` is made from an input message `IM`,
/// and the `IM` is obtained from a future, `generator: IF`.
///
/// [^terminology]: We sometimes use slightly inconsistent terminology,
/// "item" vs "message".
/// This avoids having to have the generic parameters by named `OI` and `II`
/// where `I` is sometimes "item" and sometimes "input".
///
/// When successfully run, `prepare_send_from` gives `(IM, SinkSendable)`.
///
/// After processing `IM` into `OM`,
/// use the [`SinkSendable`] to [`send`](SinkSendable::send) the `OM` to `OS`.
///
/// # Why use this
///
/// This avoids the an async cancellation hazard
/// which exists with naive use of `select!`
/// followed by `OS.send().await`. You might write this:
///
/// ```rust,ignore
/// select!{
/// message = input_stream.next() => {
/// if let Some(message) = message {
/// let message = do_our_processing(message);
/// output_sink(message).await; // <---**BUG**
/// }
/// }
/// control = something_else() => { .. }
/// }
/// ```
///
/// If, when we reach `BUG`, the output sink is not ready to receive the message,
/// the future for that particular `select!` branch will be suspended.
/// But when `select!` finds that *any one* of the branches is ready,
/// it *drops* the futures for the other branches.
/// That drops all the local variables, including possibly `message`, losing it.
///
/// For more about cancellation safety, see
/// [Rust for the Polyglot Programmer](https://www.chiark.greenend.org.uk/~ianmdlvl/rust-polyglot/async.html#cancellation-safety)
/// which has a general summary, and
/// Matthias Einwag's
/// [extensive discussion in his gist](https://gist.github.com/Matthias247/ffc0f189742abf6aa41a226fe07398a8#cancellation-in-async-rust)
/// with comparisons to other languages.
///
/// ## Alternatives
///
/// Unbounded mpsc channels, and certain other primitives,
/// do not suffer from this problem because they do not block.
/// `UnboundedSender` offers
/// [`unbounded_send`](futures::channel::mpsc::UnboundedSender::unbounded_send)
/// but only as an inherent method, so this does not compose with `Sink` combinators.
/// And of course unbounded channels do not implement any backpressure.
///
/// The problem can otherwise be avoided by completely eschewing use of `select!`
/// and writing manual implementations of `Future`, `Sink`, and so on,
/// However, such code is typically considerably more complex and involves
/// entangling the primary logic with future machinery.
/// It is normally better to write primary functionality in `async { }`
/// using utilities (often "futures combinators") such as this one.
///
// Personal note from @Diziet:
// IMO it is generally accepted in the Rust community that
// it is not good practice to write principal code at the manual futues level.
// However, I have not been able to find very clear support for this proposition.
// There are endless articles explaining how futures work internally,
// often by describing how to reimplement standard combinators such as `map`.
// ISTM that these exist to help understanding,
// but it seems to be only rarely stated that doing this is not generally a good idea.
//
// I did find the following:
//
// https://dev.to/mindflavor/rust-futures-an-uneducated-short-and-hopefully-not-boring-tutorial---part-4---a-real-future-from-scratch-734#conclusion
//
// Of course you generally do not write a future manually. You use the ones provided by
// libraries and compose them as needed. It's important to understand how they work
// nevertheless.
//
// And of curse the existence of the `futures` crate is indicative:
// it consists almost entirely of combinators and utilities
// whose purpose is to allow you to write many structures in async code
// without needing to resort to manual future impls.
//
/// # Example
///
/// This comprehensive example demonstrates how to read from possibly multiple sources
/// and also be able to process other events:
///
/// ```
/// # #[tokio::main]
/// # async fn main() {
/// use futures::select;
/// use futures::{SinkExt as _, StreamExt as _};
/// use tor_basic_utils::futures::SinkExt as _;
///
/// let (mut input_w, mut input_r) = futures::channel::mpsc::unbounded::<usize>();
/// let (mut output_w, mut output_r) = futures::channel::mpsc::unbounded::<String>();
/// input_w.send(42).await;
/// select!{
/// ret = output_w.prepare_send_from(async {
/// select!{
/// got_input = input_r.next() => got_input.expect("input stream ended!"),
/// () = futures::future::pending() => panic!(), // other branches are OK here
/// }
/// }) => {
/// let (input_msg, sendable) = ret.unwrap();
/// let output_msg = input_msg.to_string();
/// let () = sendable.send(output_msg).unwrap();
/// },
/// () = futures::future::pending() => panic!(), // other branches are OK here
/// }
///
/// assert_eq!(output_r.next().await.unwrap(), "42");
/// # }
/// ```
///
/// # Formally
///
/// [`prepare_send_from`](SinkExt::prepare_send_from)
/// returns a [`SinkPrepareSendFuture`] which, when awaited:
///
/// * Waits for `OS` to be ready to receive an item.
/// * Runs `message_generator` to obtain a `IM`.
/// * Returns the `IM` (for processing), and a [`SinkSendable`].
///
/// The caller should then:
///
/// * Check the error from `prepare_send_from`
/// (which came from the *output* sink).
/// * Process the `IM`, making an `OM` out of it.
/// * Call [`sendable.send()`](SinkSendable::send) (and check its error).
///
/// # Flushing
///
/// `prepare_send_from` will (when awaited)
/// [`flush`](futures::SinkExt::flush) the output sink
/// when it finds the input is not ready yet.
/// Until then items may be buffered
/// (as if they had been written with [`feed`](futures::SinkExt::feed)).
///
/// # Errors
///
/// ## Output sink errors
///
/// The call site can experience output sink errors in two places,
/// [`prepare_send_from()`](SinkExt::prepare_send_from) and [`SinkSendable::send()`].
/// The caller should typically handle them the same way regardless of when they occurred.
///
/// If the error happens at [`SinkSendable::send()`],
/// the call site will usually be forced to discard the item being processed.
/// This will only occur if the sink is actually broken.
///
/// ## Errors specific to the call site: faillible input, and fallible processing
///
/// At some call sites, the input future may yield errors
/// (perhaps it is reading from a `Stream` of [`Result`]s).
/// in that case the value from the input future will be a [`Result`].
/// Then `IM` is a `Result`, and is provided in the `.0` element
/// of the "successful" return from `prepare_send_from`.
///
/// And, at some call sites, the processing of an `IM` into an `OM` is fallible.
///
/// Handling these latter two error caess is up to the caller,
/// in the code which processes `IM`.
/// The call site will often want to deal with such an error
/// without sending anything into the output sink,
/// and can then just drop the [`SinkSendable`].
///
/// # Implementations
///
/// This is an extension trait and you are not expected to need to implement it.
///
/// There are provided implementations for `Pin<&mut impl Sink>`
/// and `&mut impl Sink + Unpin`, for your convenience.
fn prepare_send_from<IF, IM>(
self,
message_generator: IF,
) -> SinkPrepareSendFuture<'w, IF, OS, OM>
where
IF: Future<Output = IM>;
}
impl<'w, OS, OM> SinkExt<'w, OS, OM> for Pin<&'w mut OS>
where
OS: Sink<OM>,
{
fn prepare_send_from<'r, IF, IM>(
self,
message_generator: IF,
) -> SinkPrepareSendFuture<'w, IF, OS, OM>
where
IF: Future<Output = IM>,
{
SinkPrepareSendFuture {
output: Some(self),
generator: message_generator,
tw: PhantomData,
}
}
}
impl<'w, OS, OM> SinkExt<'w, OS, OM> for &'w mut OS
where
OS: Sink<OM> + Unpin,
{
fn prepare_send_from<'r, IF, IM>(
self,
message_generator: IF,
) -> SinkPrepareSendFuture<'w, IF, OS, OM>
where
IF: Future<Output = IM>,
{
Pin::new(self).prepare_send_from(message_generator)
}
}
/// Future for `SinkExt::prepare_send_from`
#[pin_project]
#[must_use]
pub struct SinkPrepareSendFuture<'w, IF, OS, OM> {
///
#[pin]
generator: IF,
/// This Option exists because otherwise SinkPrepareSendFuture::poll()
/// can't move `output` out of this struct to put it into the `SinkSendable`.
/// (The poll() impl cannot borrow from SinkPrepareSendFuture.)
output: Option<Pin<&'w mut OS>>,
/// `fn(OM)` gives contravariance in OM.
///
/// Variance is confusing.
/// Loosely, a SinkPrepareSendFuture<..OM> consumes an OM.
/// Actually, we don't really need to add any variance restricions wrt OM,
/// because the &mut OS already implies the correct variance,
/// so we could have used the PhantomData<fn(*const OM)> trick.
/// Happily there is no unsafe anywhere nearby, so it is not possible for us to write
/// a bug due to getting the variance wrong - only to erroneously prevent some use
/// case.
tw: PhantomData<fn(OM)>,
}
/// A [`Sink`] which is ready to receive an item
///
/// Produced by [`SinkExt::prepare_send_from`]. See there for the overview docs.
///
/// This references an output sink `OS`.
/// It offers the ability to write into the sink without blocking,
/// (and constitutes a proof token that the sink has declared itself ready for that).
///
/// The only useful method is [`send`](SinkSendable::send).
///
/// `SinkSendable` has no drop glue and can be freely dropped,
/// for example if you prepare to send a message and then
/// encounter an error when producing the output message.
#[must_use]
pub struct SinkSendable<'w, OS, OM> {
///
output: Pin<&'w mut OS>,
///
tw: PhantomData<fn(OM)>,
}
impl<'w, IF, OS, IM, OM> Future for SinkPrepareSendFuture<'w, IF, OS, OM>
where
IF: Future<Output = IM>,
OS: Sink<OM>,
{
type Output = Result<(IM, SinkSendable<'w, OS, OM>), OS::Error>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut self_ = self.project();
/// returns `&mut Pin<&'w mut OS>` from self_.output
//
// macro because the closure's type parameters would be unnameable.
macro_rules! get_output {
($self_:expr) => {
$self_.output.as_mut().expect(BAD_POLL_MSG).as_mut()
};
}
///
const BAD_POLL_MSG: &str =
"future from SinkExt::prepare_send_from (SinkPrepareSendFuture) \
polled after returning Ready(Ok)";
let () = match ready!(get_output!(self_).poll_ready(cx)) {
Err(e) => {
dprintln!("poll: output poll = IF.Err SO IF.Err");
// Deliberately don't fuse by `take`ing output. If we did that, we would expose
// our caller to an additional panic risk. There is no harm in polling the output
// sink again: although `Sink` documents that a sink that returns errors will
// probably continue to do so, it is not forbidden to try it and see. This is in
// any case better than definitely crashing if the `SinkPrepareSendFuture` is
// polled after it gave Ready.
return Poll::Ready(Err(e));
}
Ok(()) => {
dprintln!("poll: output poll = IF.Ok calling generator");
}
};
let value = match self_.generator.as_mut().poll(cx) {
Poll::Pending => {
// We defer flushing the output until the input stops yielding.
// This allows our caller (which is typically a loop) to transfer multiple
// items from their input to their output between flushes.
//
// But we must not return `Pending` without flushing, or the caller could block
// without flushing output, leading to untimely delivery of buffered data.
dprintln!("poll: generator = Pending calling output flush");
let flushed = get_output!(self_).poll_flush(cx);
return match flushed {
Poll::Ready(Err(e)) => {
dprintln!("poll: output flush = IF.Err SO IF.Err");
Poll::Ready(Err(e))
}
Poll::Ready(Ok(())) => {
dprintln!("poll: output flush = IF.Ok SO Pending");
Poll::Pending
}
Poll::Pending => {
dprintln!("poll: output flush = Pending SO Pending");
Poll::Pending
}
};
}
Poll::Ready(v) => {
dprintln!("poll: generator = Ready SO IF.Ok");
v
}
};
let sendable = SinkSendable {
output: self_.output.take().expect(BAD_POLL_MSG),
tw: PhantomData,
};
Poll::Ready(Ok((value, sendable)))
}
}
impl<'w, IF, OS, IM, OM> FusedFuture for SinkPrepareSendFuture<'w, IF, OS, OM>
where
IF: Future<Output = IM>,
OS: Sink<OM>,
{
fn is_terminated(&self) -> bool {
let r = self.output.is_none();
dprintln!("is_terminated = {}", r);
r
}
}
impl<'w, OS, OM> SinkSendable<'w, OS, OM>
where
OS: Sink<OM>,
{
/// Synchronously send an item into `OS`, which is a [`Sink`]
///
/// Can fail if the sink `OS` reports an error.
///
/// (However, the existence of the `SinkSendable` demonstrates that
/// the sink reported itself ready for sending,
/// so this call is synchronous, avoiding cancellation hazards.)
pub fn send(self, item: OM) -> Result<(), OS::Error> {
dprintln!("send ...");
let r = self.output.start_send(item);
dprintln!("send: {:?}", r.as_ref().map_err(|_| (())));
r
}
}
#[cfg(test)]
#[allow(clippy::unwrap_used)] // why is this not the default in tests
#[allow(clippy::print_stderr)]
mod test {
use super::*;
use futures::channel::mpsc;
use futures::future::poll_fn;
use futures::select_biased;
use futures::SinkExt as _;
use futures_await_test::async_test;
use std::convert::Infallible;
use std::sync::Arc;
use std::sync::Mutex;
#[derive(Debug, Eq, PartialEq)]
struct TestError(char);
#[async_test]
async fn prepare_send() {
// Early versions of this used unfold quite a lot more, but it is not really
// convenient for testing. It buffers one item internally, and is also buggy:
// https://github.com/rust-lang/futures-rs/issues/2600
// So we use mpsc channels, which (perhaps with buffering) are quite controllable.
// The eprintln!("FOR ...") calls correspond go the dprintln1() calls in the impl,
// and can check that each code path in the implementation is used,
// by turning on the dbug and using `--nocapture`.
{
eprintln!("-- disconnected ---");
eprintln!("FOR poll: output poll = IF.Err SO IF.Err");
let (mut w, r) = mpsc::unbounded::<usize>();
drop(r);
let ret = w.prepare_send_from(async { Ok::<_, Infallible>(12) }).await;
assert!(ret.map(|_| ()).unwrap_err().is_disconnected());
}
{
eprintln!("-- buffered late disconnect --");
eprintln!("FOR poll: output poll = IF.Ok calling generator");
eprintln!("FOR poll: output flush = IF.Err SO IF.Err");
let (w, r) = mpsc::unbounded::<usize>();
let mut w = w.buffer(10);
let mut r = Some(r);
w.feed(66).await.unwrap();
let ret = w
.prepare_send_from(poll_fn(move |_cx| {
drop(r.take());
Poll::Pending::<usize>
}))
.await;
assert!(ret.map(|_| ()).unwrap_err().is_disconnected());
}
{
eprintln!("-- flushing before wait --");
eprintln!("FOR poll: output flush = IF.Ok SO Pending");
let (mut w, _r) = mpsc::unbounded::<usize>();
let () = select_biased! {
_ = w.prepare_send_from(poll_fn(
move |_cx| {
Poll::Pending::<usize>
}
)) => panic!(),
_ = futures::future::ready(()) => { },
};
}
{
eprintln!("-- flush before wait is pending --");
eprintln!("FOR poll: output flush = Pending SO Pending");
let (mut w, _r) = mpsc::channel::<usize>(0);
let () = w.feed(77).await.unwrap();
let mut w = w.buffer(10);
let () = select_biased! {
_ = w.prepare_send_from(poll_fn(
move |_cx| {
Poll::Pending::<usize>
}
)) => panic!(),
_ = futures::future::ready(()) => { },
};
}
{
eprintln!("-- flush before wait is pending --");
eprintln!("FOR poll: generator = Ready SO IF.Ok");
eprintln!("FOR send ...");
eprintln!("ALSO check that bufferinrg works as expected");
let sunk = Arc::new(Mutex::new(vec![]));
let unfold = futures::sink::unfold((), |(), v| {
let sunk = sunk.clone();
async move {
dbg!();
sunk.lock().unwrap().push(v);
Ok::<_, Infallible>(())
}
});
let mut unfold = Box::pin(unfold.buffer(10));
for v in [42, 43] {
// We can only do two here because that's how many we can actually buffer in Buffer
// and Unfold. Because our closure is always ready, the buffering isn't actually
// as copious as all that. This is fine, because the point of this test is to test
// *flushing*.
dbg!(v);
let ret = unfold
.prepare_send_from(async move { Ok::<_, Infallible>(v) })
.await;
let (msg, sendable) = ret.unwrap();
let msg = msg.unwrap();
assert_eq!(msg, v);
let () = sendable.send(msg).unwrap();
assert_eq!(*sunk.lock().unwrap(), &[]); // It's still buffered
}
select_biased! {
_ = unfold.prepare_send_from(futures::future::pending::<()>()) => panic!(),
_ = futures::future::ready(()) => { },
};
assert_eq!(*sunk.lock().unwrap(), &[42, 43]);
}
}
}