1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
//! An iterator to resolve and canonicalize a filename.

use crate::{Error, Result};
use std::{
    collections::HashMap,
    ffi::OsString,
    fs::Metadata,
    io,
    iter::FusedIterator,
    path::{Path, PathBuf},
    sync::Arc,
};

/// The type of a single path inspected by [`Verifier`](crate::Verifier).
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[allow(clippy::exhaustive_enums)]
pub(crate) enum PathType {
    /// This is indeed the final canonical path we were trying to resolve.
    Final,
    /// This is an intermediary canonical path.  It _should_ be a directory, but
    /// it might not be if the path resolution is about to fail.
    Intermediate,
    /// This is a symbolic link.
    Symlink,
    /// This is a file _inside_ the target directory.
    Content,
}

/// An iterator to resolve and canonicalize a filename, imitating the actual
/// filesystem's lookup behavior.
///
/// A `ResolvePath` looks up a filename by visiting all intermediate steps in
/// turn, starting from the root directory, and following symlinks.  It
/// suppresses duplicates.  Every path that it yields will _either_ be:
///   * A directory in canonical[^1][^2] form.
///   * `dir/link` where dir is a directory in canonical form, and `link` is a
///     symlink in that directory.
///   * `dir/file` where dir is a directory in canonical form, and `file` is a
///     file in that directory.
///
/// [^1]: We define "canonical" in the same way as `Path::canonicalize`: a
///   canonical path is an absolute path containing no "." or ".." elements, and
///   no symlinks.
/// [^2]: Strictly speaking, this iterator on its own cannot guarantee that the
///   paths it yields are truly canonical.  or that they even represent the
///   target.  It is possible that in between checking one path and the next,
///   somebody will modify the first path to replace a directory with a symlink,
///   or replace one symlink with another. To get this kind of guarantee, you
///   have to use a [`Mistrust`](crate::Mistrust) to check the permissions on
///   the directories as you go.  Even then, your guarantee is conditional on
///   none of the intermediary directories having been changed by a trusted user
///   at the wrong time.
///   
///
/// # Implementation notes
///
/// Abstractly, at any given point, the directory that we're resolving looks
/// like `"resolved"/"remaining"`, where `resolved` is the part that we've
/// already looked at (in canonical form, with all symlinks resolved) and
/// `remaining` is the part that we're still trying to resolve.
///
/// We represent `resolved` as a nice plain PathBuf, and  `remaining` as a stack
/// of strings that we want to push on to the end of the path.  We initialize
/// the algorithm with `resolved` empty and `remaining` seeded with the path we
/// want to resolve.  Once there are no more parts to push, the path resolution
/// is done.
///
/// The following invariants apply whenever we are outside of the `next`
/// function:
///    * `resolved.join(remaining)` is an alias for our target path.
///    * `resolved` is in canonical form.
///    * Every ancestor of `resolved` is a key of `already_inspected`.
///
/// # Limitations
///
/// Because we're using `Path::metadata` rather than something that would use
/// `openat()` and `fstat()` under the hood, the permissions returned here are
/// potentially susceptible to TOCTOU issues.  In this crate we address these
/// issues by checking each yielded path immediately to make sure that only
/// _trusted_ users can change it after it is checked.
//
// TODO: This code is potentially of use outside this crate.  Maybe it should be
// public?
#[derive(Clone, Debug)]
pub(crate) struct ResolvePath {
    /// The path that we have resolved so far.  It is always[^1] an absolute
    /// path in canonical form: it contains no ".." or "." entries, and no
    /// symlinks.
    ///
    /// [^1]: See note on [`ResolvePath`] about time-of-check/time-of-use
    ///     issues.
    resolved: PathBuf,

    /// The parts of the path that we have _not yet resolved_.  The item on the
    /// top of the stack (that is, the end), is the next element that we'd like
    /// to add to `resolved`.
    //
    // TODO: I'd like to have a more efficient representation of this; the
    // current one has a lot of tiny little allocations.
    stack: Vec<OsString>,

    /// If true, we have encountered a nonrecoverable error and cannot yield any
    /// more items.
    ///
    /// We have a flag for this so that we know to stop when we've encountered
    /// an error for `lstat()` or `readlink()`: If we can't do those, we can't
    /// continue resolving the path.
    terminated: bool,

    /// How many more steps are we willing to take in resolving this path?  We
    /// decrement this by 1 every time we pop an element from the stack.  If we
    /// ever realize that we've run out of steps, we abort, since that's
    /// probably a symlink loop.
    steps_remaining: usize,

    /// A cache of the paths that we have already yielded to the caller.  We keep
    /// this cache so that we don't have to `lstat()` or `readlink()` any path
    /// more than once.  If the path was a symlink, then the value associated
    /// with it is the target of that symlink.  Otherwise, the value associated
    /// with it is None.
    already_inspected: HashMap<PathBuf, Option<PathBuf>>,
}

/// How many steps are we willing to take in resolving a path?
const MAX_STEPS: usize = 1024;

impl ResolvePath {
    /// Create a new empty ResolvePath.
    fn empty() -> Self {
        ResolvePath {
            resolved: PathBuf::new(),
            stack: Vec::new(),
            terminated: false,
            steps_remaining: MAX_STEPS,
            already_inspected: HashMap::new(),
        }
    }
    /// Construct a new `ResolvePath` iterator to resolve the provided `path`.
    pub(crate) fn new(path: impl AsRef<Path>) -> Result<Self> {
        let mut resolve = Self::empty();
        let path = path.as_ref();
        // The path resolution algorithm will _end_ with resolving the path we
        // were provided...
        push_prefix(&mut resolve.stack, path);
        // ...and if if the path is relative, we will first resolve the current
        // directory.
        if path.is_relative() {
            // This can fail, sadly.
            let cwd = std::env::current_dir().map_err(|e| Error::CurrentDirectory(Arc::new(e)))?;
            if !cwd.is_absolute() {
                // This should be impossible, but let's make sure.
                let ioe = io::Error::new(
                    io::ErrorKind::Other,
                    format!("Current directory {:?} was not absolute.", cwd),
                );
                return Err(Error::CurrentDirectory(Arc::new(ioe)));
            }
            push_prefix(&mut resolve.stack, cwd.as_ref());
        }

        Ok(resolve)
    }

    /// Consume this ResolvePath and return as much work as it was able to
    /// complete.
    ///
    /// If the path was completely resolved, then we return the resolved
    /// canonical path, and None.
    ///
    /// If the path was _not_ completely resolved (the loop terminated early, or
    /// ended with an error), we return the part that we were able to resolve,
    /// and a path that would need to be joined onto it to reach the intended
    /// destination.
    #[cfg(test)]
    pub(crate) fn into_result(self) -> (PathBuf, Option<PathBuf>) {
        let remainder = if self.stack.is_empty() {
            None
        } else {
            Some(self.stack.into_iter().rev().collect())
        };

        (self.resolved, remainder)
    }
}

/// Push the string representation of each component of `path` onto `stack`,
/// from last to first, so that the first component of `path` winds up on the
/// top of the stack.
///
/// (This is a separate function rather than a method for borrow-checker
/// reasons.)
fn push_prefix(stack: &mut Vec<OsString>, path: &Path) {
    stack.extend(
        path.components()
            .rev()
            .map(|component| component.as_os_str().to_owned()),
    );
}

impl Iterator for ResolvePath {
    type Item = Result<(PathBuf, PathType, Metadata)>;

    fn next(&mut self) -> Option<Self::Item> {
        // Usually we'll return a value from our first attempt at this loop; we
        // only call "continue" if we encounter a path that we have already
        // given the caller.
        loop {
            // If we're fused, we're fused.  Nothing more to do.
            if self.terminated {
                return None;
            }
            // We will necessarily take at least `stack.len()` more steps: if we
            // don't have that many steps left, we cannot succeed.  Probably
            // this indicates a symlink loop, though it could also be a maze of
            // some kind.
            //
            // TODO: Arguably, we should keep taking steps until we run out, but doing
            // so might potentially lead to our stack getting huge.  This way we
            // keep the stack depth under control.
            if self.steps_remaining < self.stack.len() {
                self.terminated = true;
                return Some(Err(Error::StepsExceeded));
            }

            // Look at the next component on the stack...
            let next_part = match self.stack.pop() {
                Some(p) => p,
                None => {
                    // This is the successful case: we have finished resolving every component on the stack.
                    self.terminated = true;
                    return None;
                }
            };
            self.steps_remaining -= 1;

            // ..and add that component to the our resolved path to see what we
            // should inspect next.
            let inspecting: std::borrow::Cow<'_, Path> = if next_part == "." {
                // Do nothing.
                self.resolved.as_path().into()
            } else if next_part == ".." {
                // We can safely remove the last part of our path: We know it is
                // canonical, so ".." will not give surprising results.  (If we
                // are already at the root, "PathBuf::pop" will do nothing.)
                self.resolved
                    .parent()
                    .unwrap_or(self.resolved.as_path())
                    .into()
            } else {
                // We extend our path.  This may _temporarily_ make `resolved`
                // non-canonical if next_part is the name of a symlink; we'll
                // fix that in a minute.
                //
                // This is the only thing that can ever make `resolved` longer.
                self.resolved.join(&next_part).into()
            };

            // Now "inspecting" is the path we want to look at.  Later in this
            // function, we should replace "self.resolved" with "inspecting" if we
            // find that "inspecting" is a good canonical path.

            match self.already_inspected.get(inspecting.as_ref()) {
                Some(Some(link_target)) => {
                    // We already inspected this path, and it is a symlink.
                    // Follow it, and loop.
                    //
                    // (See notes below starting with "This is a symlink!" for
                    // more explanation of what we're doing here.)
                    push_prefix(&mut self.stack, link_target.as_path());
                    continue;
                }
                Some(None) => {
                    // We've already inspected this path, and it's canonical.
                    // We told the caller about it once before, so we just loop.
                    self.resolved = inspecting.into_owned();
                    continue;
                }
                None => {
                    // We haven't seen this path before. Carry on.
                }
            }

            // Look up the lstat() of the file, to see if it's a symlink.
            let metadata = match inspecting.symlink_metadata() {
                Ok(m) => m,
                Err(e) => {
                    // Oops: can't lstat.  Move the last component back on to the stack, and terminate.
                    self.stack.push(next_part);
                    self.terminated = true;
                    return Some(Err(Error::inspecting(e, inspecting)));
                }
            };

            if metadata.file_type().is_symlink() {
                // This is a symlink!
                //
                // We have to find out where it leads us...
                let link_target = match inspecting.read_link() {
                    Ok(t) => t,
                    Err(e) => {
                        // Oops: can't readlink.  Move the last component back on to the stack, and terminate.
                        self.stack.push(next_part);
                        self.terminated = true;
                        return Some(Err(Error::inspecting(e, inspecting)));
                    }
                };

                // We don't modify self.resolved here: we would be putting a
                // symlink onto it, and symlinks aren't canonical.  (If the
                // symlink is relative, then we'll continue resolving it from
                // its target on the next iteration.  If the symlink is
                // absolute, its first component will be "/" or the equivalent,
                // which will replace self.resolved.)
                push_prefix(&mut self.stack, link_target.as_path());
                self.already_inspected
                    .insert(inspecting.to_path_buf(), Some(link_target));
                // We yield the link name, not the value of resolved.
                return Some(Ok((inspecting.into_owned(), PathType::Symlink, metadata)));
            } else {
                // It's not a symlink: Therefore it is a real canonical
                // directory or file that exists.
                self.already_inspected
                    .insert(inspecting.to_path_buf(), None);
                self.resolved = inspecting.into_owned();
                let path_type = if self.stack.is_empty() {
                    PathType::Final
                } else {
                    PathType::Intermediate
                };
                return Some(Ok((self.resolved.clone(), path_type, metadata)));
            }
        }
    }
}

impl FusedIterator for ResolvePath {}

/*
   Not needed, but can be a big help with debugging.
impl std::fmt::Display for ResolvePath {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let remaining: PathBuf = self.stack.iter().rev().collect();
        write!(f, "{{ {:?} }}/{{ {:?} }}", &self.resolved, remaining,)
    }
}
*/

#[cfg(test)]
mod test {
    #![allow(clippy::unwrap_used)]
    use super::*;
    use crate::testing::{self, LinkType};

    /// Helper: skip `r` past the first occurrence of the path `p` in a
    /// successful return.
    fn skip_past(r: &mut ResolvePath, p: impl AsRef<Path>) {
        #[allow(clippy::manual_flatten)]
        for item in r {
            if let Ok((name, _, _)) = item {
                if name == p.as_ref() {
                    break;
                }
            }
        }
    }

    #[test]
    fn simple_path() {
        let d = testing::Dir::new();
        let root = d.canonical_root();

        // Try resolving a simple path that exists.
        d.file("a/b/c");
        let mut r = ResolvePath::new(d.path("a/b/c")).unwrap();
        skip_past(&mut r, &root);
        let mut so_far = root.to_path_buf();
        for (c, p) in Path::new("a/b/c").components().zip(&mut r) {
            let (p, pt, meta) = p.unwrap();
            if pt == PathType::Final {
                assert_eq!(c.as_os_str(), "c");
                assert!(meta.is_file());
            } else {
                assert_eq!(pt, PathType::Intermediate);
                assert!(meta.is_dir());
            }
            so_far.push(c);
            assert_eq!(so_far, p);
        }
        let (canonical, rest) = r.into_result();
        assert_eq!(canonical, d.path("a/b/c").canonicalize().unwrap());
        assert!(rest.is_none());

        // Same as above, starting from a relative path to the target.
        let mut r = ResolvePath::new(d.relative_root().join("a/b/c")).unwrap();
        skip_past(&mut r, &root);
        let mut so_far = root.to_path_buf();
        for (c, p) in Path::new("a/b/c").components().zip(&mut r) {
            let (p, pt, meta) = p.unwrap();
            if pt == PathType::Final {
                assert_eq!(c.as_os_str(), "c");
                assert!(meta.is_file());
            } else {
                assert_eq!(pt, PathType::Intermediate);
                assert!(meta.is_dir());
            }
            so_far.push(c);
            assert_eq!(so_far, p);
        }
        let (canonical, rest) = r.into_result();
        assert_eq!(canonical, d.path("a/b/c").canonicalize().unwrap());
        assert!(rest.is_none());

        // Try resolving a simple path that doesn't exist.
        let mut r = ResolvePath::new(d.path("a/xxx/yyy")).unwrap();
        skip_past(&mut r, &root);
        let (p, pt, _) = r.next().unwrap().unwrap();
        assert_eq!(p, root.join("a"));
        assert_eq!(pt, PathType::Intermediate);
        let e = r.next().unwrap();
        match e {
            Err(Error::NotFound(p)) => assert_eq!(p, root.join("a/xxx")),
            _ => panic!(),
        }
        let (start, rest) = r.into_result();
        assert_eq!(start, d.path("a").canonicalize().unwrap());
        assert_eq!(rest.unwrap(), Path::new("xxx/yyy"));
    }

    #[test]
    fn repeats() {
        let d = testing::Dir::new();
        let root = d.canonical_root();

        // We're going to try a path with ..s in it, and make sure that we only
        // get each given path once.
        d.dir("a/b/c/d");
        let mut r = ResolvePath::new(root.join("a/b/../b/../b/c/../c/d")).unwrap();
        skip_past(&mut r, &root);
        let paths: Vec<_> = r.map(|item| item.unwrap().0).collect();
        assert_eq!(
            paths,
            vec![
                root.join("a"),
                root.join("a/b"),
                root.join("a/b/c"),
                root.join("a/b/c/d"),
            ]
        );

        // Now try a symlink to a higher directory, and make sure we only get
        // each path once.
        d.link_rel(LinkType::Dir, "../../", "a/b/c/rel_lnk");
        let mut r = ResolvePath::new(root.join("a/b/c/rel_lnk/b/c/d")).unwrap();
        skip_past(&mut r, &root);
        let paths: Vec<_> = r.map(|item| item.unwrap().0).collect();
        assert_eq!(
            paths,
            vec![
                root.join("a"),
                root.join("a/b"),
                root.join("a/b/c"),
                root.join("a/b/c/rel_lnk"),
                root.join("a/b/c/d"),
            ]
        );

        // Once more, with an absolute symlink.
        d.link_abs(LinkType::Dir, "a", "a/b/c/abs_lnk");
        let mut r = ResolvePath::new(root.join("a/b/c/abs_lnk/b/c/d")).unwrap();
        skip_past(&mut r, &root);
        let paths: Vec<_> = r.map(|item| item.unwrap().0).collect();
        assert_eq!(
            paths,
            vec![
                root.join("a"),
                root.join("a/b"),
                root.join("a/b/c"),
                root.join("a/b/c/abs_lnk"),
                root.join("a/b/c/d"),
            ]
        );

        // One more, with multiple links.
        let mut r = ResolvePath::new(root.join("a/b/c/abs_lnk/b/c/rel_lnk/b/c/d")).unwrap();
        skip_past(&mut r, &root);
        let paths: Vec<_> = r.map(|item| item.unwrap().0).collect();
        assert_eq!(
            paths,
            vec![
                root.join("a"),
                root.join("a/b"),
                root.join("a/b/c"),
                root.join("a/b/c/abs_lnk"),
                root.join("a/b/c/rel_lnk"),
                root.join("a/b/c/d"),
            ]
        );

        // Last time, visiting the same links more than once.
        let mut r =
            ResolvePath::new(root.join("a/b/c/abs_lnk/b/c/rel_lnk/b/c/rel_lnk/b/c/abs_lnk/b/c/d"))
                .unwrap();
        skip_past(&mut r, &root);
        let paths: Vec<_> = r.map(|item| item.unwrap().0).collect();
        assert_eq!(
            paths,
            vec![
                root.join("a"),
                root.join("a/b"),
                root.join("a/b/c"),
                root.join("a/b/c/abs_lnk"),
                root.join("a/b/c/rel_lnk"),
                root.join("a/b/c/d"),
            ]
        );
    }

    #[test]
    fn looping() {
        let d = testing::Dir::new();
        let root = d.canonical_root();

        d.dir("a/b/c");
        // This file links to itself.  We should hit our loop detector and barf.
        d.link_rel(LinkType::File, "../../b/c/d", "a/b/c/d");
        let mut r = ResolvePath::new(root.join("a/b/c/d")).unwrap();
        skip_past(&mut r, &root);
        assert_eq!(r.next().unwrap().unwrap().0, root.join("a"));
        assert_eq!(r.next().unwrap().unwrap().0, root.join("a/b"));
        assert_eq!(r.next().unwrap().unwrap().0, root.join("a/b/c"));
        assert_eq!(r.next().unwrap().unwrap().0, root.join("a/b/c/d"));
        assert!(matches!(
            r.next().unwrap().unwrap_err(),
            Error::StepsExceeded
        ));
        assert!(r.next().is_none());

        // These directories link to each other.
        d.link_rel(LinkType::Dir, "./f", "a/b/c/e");
        d.link_rel(LinkType::Dir, "./e", "a/b/c/f");
        let mut r = ResolvePath::new(root.join("a/b/c/e/413")).unwrap();
        skip_past(&mut r, &root);
        assert_eq!(r.next().unwrap().unwrap().0, root.join("a"));
        assert_eq!(r.next().unwrap().unwrap().0, root.join("a/b"));
        assert_eq!(r.next().unwrap().unwrap().0, root.join("a/b/c"));
        assert_eq!(r.next().unwrap().unwrap().0, root.join("a/b/c/e"));
        assert_eq!(r.next().unwrap().unwrap().0, root.join("a/b/c/f"));
        assert!(matches!(
            r.next().unwrap().unwrap_err(),
            Error::StepsExceeded
        ));
        assert!(r.next().is_none());
    }

    #[cfg(target_family = "unix")]
    #[test]
    fn unix_permissions() {
        use std::os::unix::prelude::PermissionsExt;

        let d = testing::Dir::new();
        let root = d.canonical_root();
        d.dir("a/b/c/d/e");
        d.chmod("a", 0o751);
        d.chmod("a/b", 0o711);
        d.chmod("a/b/c", 0o715);
        d.chmod("a/b/c/d", 0o000);

        let mut r = ResolvePath::new(root.join("a/b/c/d/e/413")).unwrap();
        skip_past(&mut r, &root);
        let resolvable: Vec<_> = (&mut r)
            .take(4)
            .map(|item| {
                let (p, _, m) = item.unwrap();
                (
                    p.strip_prefix(&root)
                        .unwrap()
                        .to_string_lossy()
                        .into_owned(),
                    m.permissions().mode() & 0o777,
                )
            })
            .collect();
        let expected = vec![
            ("a", 0o751),
            ("a/b", 0o711),
            ("a/b/c", 0o715),
            ("a/b/c/d", 0o000),
        ];
        for ((p1, m1), (p2, m2)) in resolvable.iter().zip(expected.iter()) {
            assert_eq!(p1, p2);
            assert_eq!(m1, m2);
        }

        if unsafe { libc::getuid() } == 0 {
            // We won't actually get a CouldNotInspect if we're running as root,
            // since root can read directories that are mode 000.
            return;
        }

        let err = r.next().unwrap();
        assert!(matches!(err, Err(Error::CouldNotInspect(_, _))));

        assert!(r.next().is_none());
    }

    #[test]
    fn past_root() {
        let d = testing::Dir::new();
        let root = d.canonical_root();
        d.dir("a/b");
        d.chmod("a", 0o700);
        d.chmod("a/b", 0o700);

        let root_as_relative: PathBuf = root
            .components()
            .filter(|c| matches!(c, std::path::Component::Normal(_)))
            .collect();
        let n = root.components().count();
        // Start with our the "root" directory of our Dir...
        let mut inspect_path = root.to_path_buf();
        // Then go way past the root of the filesystem
        for _ in 0..n * 2 {
            inspect_path.push("..");
        }
        // Then back down to the "root" directory of the dir..
        inspect_path.push(root_as_relative);
        // Then to a/b.
        inspect_path.push("a/b");

        let r = ResolvePath::new(inspect_path.clone()).unwrap();
        let final_path = r.last().unwrap().unwrap().0;
        assert_eq!(final_path, inspect_path.canonicalize().unwrap());
    }
}