


1. Introduction

The following notes aim to provide a very informal introduction to Stochastic Calculus,
and especially to the Itô integral and some of its applications. They owe a great deal to Dan
Crisan’s Stochastic Calculus and Applications lectures of 1998; and also much to various
books especially those of L. C. G. Rogers and D. Williams, and Dellacherie and Meyer’s
multi volume series ‘Probabilities et Potentiel’. They have also benefited from insights
gained by attending lectures given by T. Kurtz.

The present notes grew out of a set of typed notes which I produced when revising
for the Cambridge, Part III course; combining the printed notes and my own handwritten
notes into a consistent text. I’ve subsequently expanded them inserting some extra proofs
from a great variety of sources. The notes principally concentrate on the parts of the course
which I found hard; thus there is often little or no comment on more standard matters; as
a secondary goal they aim to present the results in a form which can be readily extended
Due to their evolution, they have taken a very informal style; in some ways I hope this
may make them easier to read.

The addition of coverage of discontinuous processes was motivated by my interest in
the subject, and much insight gained from reading the excellent book of J. Jacod and
A. N. Shiryaev.

The goal of the notes in their current form is to present a fairly clear approach to
the Itô integral with respect to continuous semimartingales but without any attempt at
maximal detail. The various alternative approaches to this subject which can be found
in books tend to divide into those presenting the integral directed entirely at Brownian
Motion, and those who wish to prove results in complete generality for a semimartingale.
Here at all points clarity has hopefully been the main goal here, rather than completeness;
although secretly the approach aims to be readily extended to the discontinuous theory.
I make no apology for proofs which spell out every minute detail, since on a first look at
the subject the purpose of some of the steps in a proof often seems elusive. I’d especially
like to convince the reader that the Itô integral isn’t that much harder in concept than
the Lebesgue Integral with which we are all familiar. The motivating principle is to try
and explain every detail, no matter how trivial it may seem once the subject has been
understood!

Passages enclosed in boxes are intended to be viewed as digressions from the main
text; usually describing an alternative approach, or giving an informal description of what
is going on – feel free to skip these sections if you find them unhelpful.

In revising these notes I have resisted the temptation to alter the original structure
of the development of the Itô integral (although I have corrected unintentional mistakes),
since I suspect the more concise proofs which I would favour today would not be helpful
on a first approach to the subject.

These notes contain errors with probability one. I always welcome people telling me
about the errors because then I can fix them! I can be readily contacted by email as
alanb@chiark.greenend.org.uk. Also suggestions for improvements or other additions
are welcome.

Alan Bain
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3. Stochastic Processes

The following notes are a summary of important definitions and results from the theory of
stochastic processes, proofs may be found in the usual books for example [Durrett, 1996].

3.1. Probability Space
Let (Ω,F , P) be a probability space. The set of P-null subsets of Ω is defined by

N := {N ⊂ Ω : N ⊂ A for A ∈ F , with P(A) = 0} .

The space (Ω,F , P) is said to be complete if for A ⊂ B ⊂ Ω with B ∈ F and P(B) = 0
then this implies that A ∈ F .

In addition to the probability space (Ω,F , P), let (E, E) be a measurable space, called
the state space, which in many of the cases considered here will be (R,B), or (Rn,B). A
random variable is a F/E measurable function X : Ω → E.

3.2. Stochastic Process
Given a probability space (Ω,F , P) and a measurable state space (E, E), a stochastic
process is a family (Xt)t≥0 such that Xt is an E valued random variable for each time
t ≥ 0. More formally, a map X : (R+ ×Ω,B+ ⊗F) → (R,B), where B+ are the Borel sets
of the time space R+.

Definition 1. Measurable Process
The process (Xt)t≥0 is said to be measurable if the mapping (R+×Ω,B+⊗F) → (R,B) :
(t, ω) 7→ Xt(ω) is measurable on R× Ω with respect to the product σ-field B(R)⊗F .

Associated with a process is a filtration, an increasing chain of σ-algebras i.e.

Fs ⊂ Ft if 0 ≤ s ≤ t < ∞.

Define F∞ by

F∞ =
∨
t≥0

Ft := σ

⋃
t≥0

Ft

 .

If (Xt)t≥0 is a stochastic process, then the natural filtration of (Xt)t≥0 is given by

FX
t := σ(Xs : s ≤ t).

The process (Xt)t≥0 is said to be (Ft)t≥0 adapted, if Xt is Ft measurable for each t ≥ 0.
The process (Xt)t≥0 is obviously adapted with respect to the natural filtration.

[1]



Stochastic Processes 2

Definition 2. Progressively Measurable Process
A process is progressively measurable if for each t its restriction to the time interval [0, t],
is measurable with respect to B[0,t] ⊗ Ft, where B[0,t] is the Borel σ algebra of subsets of
[0, t].

Why on earth is this useful? Consider a non-continuous stochastic process Xt. From
the definition of a stochastic process for each t that Xt ∈ Ft. Now define Yt = sups∈[0,t] Xs.
Is Ys a stochastic process? The answer is not necessarily – sigma fields are only guaranteed
closed under countable unions, and an event such as

{Ys > 1} =
⋃

0≤s≤s

{Xs > 1}

is an uncountable union. If X were progressively measurable then this would be sufficient
to imply that Ys is Fs measurable. If X has suitable continuity properties, we can restrict
the unions which cause problems to be over some dense subset (say the rationals) and this
solves the problem. Hence the next theorem.
Theorem 3.3.
Every adapted right (or left) continuous, adapted process is progressively measurable.

Proof
We consider the process X restricted to the time interval [0, s]. On this interval for each
n ∈ N we define

Xn
1 :=

2n−1∑
k=0

1[ks/2n,(k+1)s/2n)(t)Xks/2n(ω),

Xn
2 := 1[0,s/2n](t)X0(ω) +

∑
k>0

1(ks/2n,(k+1)s/2n](t)X(k+1)s/2n(ω)

Note that Xn
1 is a left continuous process, so if X is left continuous, working pointwise

(that is, fix ω), the sequence Xn
1 converges to X.

But the individual summands in the definition of Xn
1 are by the adpatedness of X

clearly B[0,s] ⊗ Fs measurable, hence Xn
1 is also. But the convergence implies X is also;

hence X is progressively measurable.
Consideration of the sequence Xn

2 yields the same result for right continuous, adapted
processes.

The following extra information about filtrations should probably be skipped on a
first reading, since they are likely to appear as excess baggage.
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Define
∀t ∈ (0,∞) Ft− =

∨
0≤s<t

Fs

∀t ∈ [0,∞) Ft+ =
∧

t≤s<∞

Fs,

whence it is clear that for each t, Ft− ⊂ Ft ⊂ Ft+.
Definition 3.2.
The family {Ft} is called right continuous if

∀t ∈ [0,∞) Ft = Ft+.

Definition 3.3.
A process (Xt)t≥0 is said to be bounded if there exists a universal constant K such that
for all ω and t ≥ 0, then |Xt(ω)| < K.

Definition 3.4.
Let X = (Xt)t≥0 be a stochastic process defined on (Ω,F , P), and let X ′ = (X ′

t)t≥0 be a
stochastic process defined on (Ω,F , P). Then X and X ′ have the same finite dimensional
distributions if for all n, 0 ≤ t1 < t2 < · · · < tn < ∞, and A1, A2, . . . , An ∈ E ,

P(Xt1 ∈ A1, Xt2 ∈ A2, . . . , Xtn
∈ An) = P′(X ′

t1 ∈ A1, X
′
t2 ∈ A2, . . . , X

′
tn
∈ An).

Definition 3.5.
Let X and X ′ be defined on (Ω,F , P). Then X and X ′ are modifications of each other if
and only if

P ({ω ∈ Ω : Xt(ω) = X ′
t(ω)}) = 1 ∀t ≥ 0.

Definition 3.6.
Let X and X ′ be defined on (Ω,F , P). Then X and X ′ are indistinguishable if and only if

P ({ω ∈ Ω : Xt(ω) = X ′
t(ω)∀t ≥ 0}) = 1.

There is a chain of implications

indistinguishable ⇒ modifications ⇒ same f.d.d.

The following definition provides us with a special name for a process which is indistin-
guishable from the zero process. It will turn out to be important because many definitions
can only be made up to evanescence.
Definition 3.7.
A process X is evanescenct if P(Xt = 0 ∀t) = 1.



4. Martingales

Definition 4.1.
Let X = {Xt,Ft, t ≥ 0} be an integrable process then X is a
(i) Martingale if and only if E(Xt|Fs) = Xs a.s. for 0 ≤ s ≤ t < ∞
(ii) Supermartingale if and only if E(Xt|Fs) ≤ Xs a.s. for 0 ≤ s ≤ t < ∞
(iii) Submartingale if and only if E(Xt|Fs) ≥ Xs a.s. for 0 ≤ s ≤ t < ∞
Theorem (Kolmogorov) 4.2.
Let X = {Xt,Ft, t ≥ 0} be an integrable process. Then define Ft+ :=

∧
ε>0 Ft+ε and also

the partial augmentation of F by F̃t = σ(Ft+,N ). Then there exists a martingale X̃ =
{X̃t, F̃t, t ≥ 0} right continuous, with left limits (CADLAG) such that X and X̃ are
modifications of each other.

Definition 4.3.
A martingale X = {Xt,Ft, t ≥ 0} is said to be an L2-martingale or a square integrable
martingale if E(X2

t ) < ∞ for every t ≥ 0.

Definition 4.4.
A process X = {Xt,Ft, t ≥ 0} is said to be Lp bounded if and only if supt≥0 E(|Xt|p) < ∞.
The space of L2 bounded martingales is denoted by M2, and the subspace of continuous
L2 bounded martingales is denoted Mc

2.

Definition 4.5.
A process X = {Xt,Ft, t ≥ 0} is said to be uniformly integrable if and only if

sup
t≥0

E
(
|Xt|1|Xt|≥N

)
→ 0 as N →∞.

Orthogonality of Martingale Increments
A frequently used property of a martingale M is the orthogonality of increments property
which states that for a square integrable martingale M , and Y ∈ Fs with E(Y 2) < ∞ then

E [Y (Mt −Ms)] = 0 for t ≥ s.

Proof
Via Cauchy Schwartz inequality E|Y (Mt −Ms)| < ∞, and so

E(Y (Mt −Ms)) = E (E(Y (Mt −Ms)|Fs)) = E (Y E(Mt −Ms|Fs)) = 0.

A typical example is Y = Ms, whence E(Ms(Mt −Ms)) = 0 is obtained. A common
application is to the difference of two squares, let t ≥ s then

E((Mt −Ms)2|Fs) =E(M2
t |Fs)− 2MsE(Mt|Fs) + M2

s

=E(M2
t −M2

s |Fs) = E(M2
t |Fs)−M2

s .

[4]
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4.1. Stopping Times
A random variable T : Ω → [0,∞) is a stopping (optional) time if and only if {ω : T (ω) ≤
t} ∈ Ft.

The following theorem is included as a demonstration of checking for stopping times,
and may be skipped if desired.
Theorem 4.6.
T is a stopping time with respect to Ft+ if and only if for all t ∈ [0,∞), the event {T < t}
if Ft measurable.

Proof
If T is an Ft+ stopping time then for all t ∈ (0,∞) the event {T ≤ t} is Ft+ measurable.
Thus for 1/n < t we have {

T ≤ t− 1
n

}
∈ F(t−1/n)+ ⊂ Ft

so

{T < t} =
∞⋃

n=1

{
T ≤ t− 1

n

}
∈ Ft.

To prove the converse, note that if for each t ∈ [0,∞) we have that {T < t} ∈ Ft,
then for each such t {

T < t +
1
n

}
∈ Ft+1/n,

as a consequence of which

{T ≤ t} =
∞⋂

n=1

{
T < t +

1
n

}
∈

∞∧
n=1

Ft+1/n = Ft+.

Given a stochastic process X = (Xt)t≥0, a stopped process XT may be defined by

XT (ω) :=XT (ω)∧t(ω),

Ft :={A ∈ F : A ∩ {T ≤ t} ∈ Ft}.

Theorem (Optional Stopping).
Let X be a right continuous integrable, Ft adapted process. Then the following are equiv-
alent:
(i) X is a martingale.
(ii) XT is a martingale for all stopping times T .
(iii) E(XT ) = E(X0) for all bounded stopping times T .
(iv) E(XT |FS) = XS for all bounded stopping times S and T such that S ≤ T . If in
addition, X is uniformly integrable then (iv) holds for all stopping times (not necessarily
bounded).
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The condition which is most often forgotten is that in (iii) that the stopping time T
be bounded. To see why it is necessary consider Bt a Brownian Motion starting from zero.
Let T = inf{t ≥ 0 : Xt = 1}, clearly a stopping time. Equally Bt is a martingale with
respect to the filtration generated by B itself, but it is also clear that EBT = 1 6= EB0 = 0.
Obviously in this case T < ∞ is false.
Theorem (Doob’s Martingale Inequalities).
Let M = {Mt,Ft, t ≥ 0} be a uniformly integrable martingale, and let M∗ := supt≥0 |Mt|.
Then
(i) Maximal Inequality. For λ > 0,

λP(M∗ ≥ λ) ≤ E [|M∞|1M∗<∞] .

(ii) Lp maximal inequality. For 1 < p < ∞,

‖M∗‖p ≤
p

p− 1
‖M∞‖p.

Note that the norm used in stating the Doob Lp inequality is defined by

‖M‖p = [E(|M |p)]1/p
.

Theorem (Martingale Convergence).
Let M = {Mt,Ft, t ≥ 0} be a martingale.
(i) If M is Lp bounded then M∞(ω) := limt→∞Mt(ω) P-a.s.
(ii) If moreover M is uniformly integrable then limt→∞Mt(ω) = M∞(ω) in L1. Then

for all A ∈ L1(F∞), there exists a martingale At such that limt→∞At = A, and
At = E(A|Ft). Here F∞ := limt→∞ Ft.

(iii) If moreover M is Lp bounded then limt→∞Mt = M∞ in Lp, and for all A ∈ Lp(F∞),
there exists a martingale At such that limt→∞At = A, and At = E(A|Ft).
Definition 4.7.
Let M2 denote the set of L2-bounded CADLAG martingales i.e. martingales M such that

sup
t≥0

M2
t < ∞.

LetMc
2 denote the set of L2-bounded CADLAG martingales which are continuous. A norm

may be defined on the space M2 by ‖M‖2 = ‖M∞‖22 = E(M2
∞).

From the conditional Jensen’s inequality, since f(x) = x2 is convex,

E
(
M2
∞|Ft

)
≥ (E(M∞|Ft))

2

E
(
M2
∞|Ft

)
≥(EMt)2.

Hence taking expectations
EM2

t ≤ EM2
∞,

and since by martingale convergence in L2, we get E(M2
t ) → E(M2

∞), it is clear that

E(M2
∞) = sup

t≥0
E(M2

t ).
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Theorem 4.8.
The space (M2, ‖·‖) (up to equivalence classes defined by modifications) is a Hilbert space,
with Mc

2 a closed subspace.

Proof
We prove this by showing a one to one correspondence between M2 (the space of square
integrable martingales) and L2(F∞). The bijection is obtained via

f :M2 → L2(F∞)
f :(Mt)t≥0 7→ M∞ ≡ lim

t→∞
Mt

g :L2(F∞) →M2

g :M∞ 7→ Mt ≡ E(M∞|Ft)

Notice that
sup

t
EM2

t = ‖M∞‖22 = E(M2
∞) < ∞,

as Mt is a square integrable martingale. As L2(F∞) is a Hilbert space, M2 inherits this
structure.

To see that Mc
2 is a closed subspace of M2, consider a Cauchy sequence {M (n)} in

M2, equivalently {M (n)
∞ } is Cauchy in L2(F∞). Hence M

(n)
∞ converges to a limit, M∞ say,

in L2(F∞). Let Mt := E(M∞|Ft), then

sup
t≥0

∣∣∣M (n)
t −Mt

∣∣∣→ 0, in L2,

that is M (n) → M uniformly in L2. Hence there exists a subsequence n(k) such that
Mn(k) → M uniformly; as a uniform limit of continuous functions is continuous, M ∈Mc

2.
Thus Mc

2 is a closed subspace of M.



5. Basics

5.1. Local Martingales
A martingale has already been defined, but a weaker definition will prove useful for stochas-
tic calculus. Note that I’ll often drop references to the filtration Ft, but this nevertheless
forms an essential part of the (local) martingale.

Just before we dive in and define a Local Martingale, maybe we should pause and
consider the reason for considering them. The important property of local martingales
will only be seen later in the notes; and as we frequently see in this subject it is one of
stability that is, they are a class of objects which are closed under an operation, in this case
under the stochastic integral – an integral of a previsible process with a local martingale
integrator is a local martingale.
Definition 5.1.
M = {Mt,Ft, 0 ≤ t ≤ ∞} is a local martingale if and only if there exists a sequence of
stopping times Tn tending to infinity such that MTn are martingales for all n. The space
of local martingales is denotes Mloc, and the subspace of continuous local martingales is
denotes Mc

loc.
Recall that a martingale (Xt)t≥0 is said to be bounded if there exists a universal

constant K such that for all ω and t ≥ 0, then |Xt(ω)| < K.
Theorem 5.2.
Every bounded local martingale is a martingale.

Proof
Let Tn be a sequence of stopping times as in the definition of a local martingale. This
sequence tends to infinity, so pointwise XTn

t (ω) → Xt(ω). Using the conditional form of the
dominated convergence theorem (using the constant bound as the dominating function),
for t ≥ s ≥ 0

lim
n→∞

E(XTn
t |Fs) = E(Xt|Fs).

But as XTn is a (genuine) martingale, E(XTn
t |Fs) = XTn

s = XTn∧s; so

E(Xt|Fs) = lim
n→∞

E(XTn
t |Fs) = lim

n→∞
XTn

s = Xs.

Hence Xt is a genuine martingale.

Proposition 5.3.
The following are equivalent
(i) M = {Mt,Ft, 0 ≤ t ≤ ∞} is a continuous martingale.
(ii) M = {Mt,Ft, 0 ≤ t ≤ ∞} is a continuous local martingale and for all t ≥ 0, the set
{MT : T a stopping time, T ≤ t} is uniformly integrable.

Proof
(i) ⇒ (ii) By optional stopping theorem, if T ≤ t then MT = E(Mt|FT ) hence the set is
uniformly integrable.

[8]
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(ii) ⇒ (i)It is required to prove that E(M0) = E(MT ) for any bounded stopping time T .
Then by local martingale property for any n,

E(M0) = E(MT∧Tn
),

uniform integrability then implies that

lim
n→∞

E(MT∧Tn
) = E(MT ).

5.2. Local Martingales which are not Martingales
There do exist local martingales which are not themselves martingales. The following is
an example Let Bt be a d dimensional Brownian Motion starting from x. It can be shown
using Itô’s formula that a harmonic function of a Brownian motion is a local martingale
(this is on the example sheet). From standard PDE theory it is known that for d ≥ 3, the
function

f(x) =
1

|x|d−2

is a harmonic function, hence Xt = 1/|Bt|d−2 is a local martingale. Now consider the Lp

norm of this local martingale

Ex|Xt|p =
∫

1
(2πt)d/2

exp
(
−|y − x|2

2t

)
|y|−(d−2)pdy.

Consider when this integral converges. There are no divergence problems for |y| large, the
potential problem lies in the vicinity of the origin. Here the term

1
(2πt)d/2

exp
(
−|y − x|2

2t

)
is bounded, so we only need to consider the remainder of the integrand integrated over a
ball of unit radius about the origin which is bounded by

C

∫
B(0,1)

|y|−(d−2)pdy,

for some constant C, which on tranformation into polar co-ordinates yields a bound of the
form

C ′
∫ 1

0

r−(d−2)prd−1dr,

with C ′ another constant. This is finite if and only if −(d− 2)p + (d− 1) > −1 (standard
integrals of the form 1/rk). This in turn requires that p < d/(d− 2). So clealry Ex|Xt| will
be finite for all d ≥ 3.

Now although Ex|Xt| < ∞ and Xt is a local martingale, we shall show that it is not
a martingale. Note that (Bt − x) has the same distribution as

√
t(B1 − x) under Px (the
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probability measure induced by the BM starting from x). So as t → ∞, |Bt| → ∞ in
probability and Xt → 0 in probability. As Xt ≥ 0, we see that Ex(Xt) = Ex|Xt| < ∞.
Now note that for any R < ∞, we can construct a bound

ExXt ≤
1

(2πt)d/2

∫
|y|≤R

|y|−(d−2)dy + R−(d−2),

which converges, and hence
lim sup

t→∞
ExXt ≤ R−(d−2).

As R was chosen arbitrarily we see that ExXt → 0. But ExX0 = |x|−(d−2) > 0, which
implies that ExXt is not constant, and hence Xt is not a martingale.



6. Total Variation and the Stieltjes Integral

Let A : [0,∞) → R be a CADLAG (continuous to right, with left limits) process. Let a
partition Π = {t0, t1, . . . , tm} have 0 = t0 ≤ t1 ≤ · · · ≤ tm = t; the mesh of the partition is
defined by

δ(Π) = max
1≤k≤m

|tk − tk−1|.

The variation of A is then defined as the increasing process V given by,

Vt := sup
Π


n(Π)∑
k=1

∣∣Atk∧t −Atk−1∧t

∣∣ : 0 = t0 ≤ t1 ≤ · · · ≤ tn = t

 .

An alternative definition is given by

V 0
t := lim

n→∞

∞∑
1

∣∣Ak2−n∧t −A(k−1)2−n∧t

∣∣ .
These can be shown to be equivalent (for CADLAG processes), since trivially (use the
dyadic partition), V 0

t ≤ Vt. It is also possible to show that V 0
t ≥ Vt for the total variation

of a CADLAG process.

Definition 6.1.
A process A is said to have finite variation if the associated variation process V is finite
(i.e. if for every t and every ω, |Vt(ω)| < ∞.

6.1. Why we need a Stochastic Integral
Before delving into the depths of the integral it’s worth stepping back for a moment to see
why the ‘ordinary’ integral cannot be used on a path at a time basis (i.e. separately for
each ω ∈ Ω). Suppose we were to do this i.e. set

It(X) =
∫ t

0

Xs(ω)dMs(ω),

for M ∈ Mc
2; but for an interesting martingale (i.e. one which isn’t zero a.s.), the total

variation is not finite, even on a bounded interval like [0, T ]. Thus the Lebesgue-Stieltjes
integral definition isn’t valid in this case. To generalise we shall see that the quadratic
variation is actually the ‘right’ variation to use (higher variations turn out to be zero and
lower ones infinite, which is easy to prove by considering the variation expressed as the
limit of a sum and factoring it by a maximum multiplies by the quadratic variation, the
first term of which tends to zero by continuity). But to start, we shall consider integrating
a previsible process Ht with an integrator which is an increasing finite variation process.
First we shall prove that a continuous local martingale of finite variation is zero.

[11]
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Proposition 6.2.
If M is a continuous local martingale of finite variation, starting from zero then M is
identically zero.

Proof
Let V be the variation process of M . This V is a continuous, adapted process. Now define a
sequence of stopping times Sn as the first time V exceeds n, i.e. Sn := inft{t ≥ 0 : Vt ≥ n}.
Then the martingale MSn is of bounded variation. It therefore suffices to prove the result
for a bounded, continuous martingale M of bounded variation.

Fix t ≥ 0 and let {0 = t0, t1, . . . , tN = t} be a partition of [0, t]. Then since M0 = 0 it is
clear that, M2

t =
∑N

k=1

(
M2

tk
−M2

tk−1

)
. Then via orthogonality of martingale increments

E(M2
t ) =E

(
N∑

k=1

(
Mtk

−Mtk−1

)2)

≤E
(

Vt sup
k

∣∣Mtk
−Mtk−1

∣∣)
The integrand is bounded by n2 (from definition of the stopping time Sn), hence the
expectation converges to zero as the modulus of the partition tends to zero by the bounded
convergence theorem. Hence M ≡ 0.

6.2. Previsibility
The term previsible has crept into the discussion earlier. Now is the time for a proper
definition.
Definition 6.3.
The previsible (or predictable) σ-field P is the σ-field on R+×Ω generated by the processes
(Xt)t≥0, adapted to Ft, with left continuous paths on (0,∞).

Remark
The same σ-field is generated by left continuous, right limits processes (i.e. càglàd pro-
cesses) which are adapted to Ft−, or indeed continuous processes (Xt)t≥0 which are adapted
to Ft−. It is gnerated by sets of the form A× (s, t] where A ∈ Fs. It should be noted that
càdlàg processes generate the optional σ field which is usually different.
Theorem 6.4.
The previsible σ fieldis also generated by the collection of random sets A × {0} where
A ∈ F0 and A× (s, t] where A ∈ Fs.

Proof
Let the σ field generated by the above collection of sets be denotes P ′. We shall show
P = P ′. Let X be a left continuous process, define for n ∈ N

Xn = X010(t) +
∑

k

Xk/2n1(k/2n,(k+1)/2n](t)

It is clear that Xn ∈ P ′. As X is left continuous, the above sequence of left-continuous
processes converges pointwise to X, so X is P ′ measurable, thus P ⊂ P ′. Conversely
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consider the indicator function of A × (s, t] this can be written as 1[0,tA]\[0,sA], where
sA(ω) = s for ω ∈ A and +∞ otherwise. These indicator functions are adapated and left
continuous, hence P ′ ⊂ P.

Definition 6.5.
A process (Xt)t≥0 is said to be previsible, if the mapping (t, ω) 7→ Xt(ω) is measurable
with respect to the previsible σ-field P.

6.3. Lebesgue-Stieltjes Integral
[In the lecture notes for this course, the Lebesgue-Stieltjes integral is considered first for
functions A and H; here I consider processes on a pathwise basis.]

Let A be an increasing cadlag process. This induces a Borel measure dA on (0,∞)
such that

dA((s, t])(ω) = At(ω)−As(ω).

Let H be a previsible process (as defined above). The Lebesgue-Stieltjes integral of H is
defined with respect to an increasing process A by

(H ·A)t(ω) =
∫ t

0

Hs(ω)dAs(ω),

whenever H ≥ 0 or (|H| ·A)t < ∞.
As a notational aside, we shall write

(H ·A)t ≡
∫ t

0

HdX,

and later on we shall use
d(H ·X) ≡ HdX.

This definition may be extended to integrator of finite variation which are not increas-
ing, by decomposing the process A of finite variation into a difference of two increasing
processes, so A = A+ −A−, where A± = (V ±A)/2 (here V is the total variation process
for A). The integral of H with respect to the finite variation process A is then defined by

(H ·A)t(ω) := (H ·A+)t(ω)− (H ·A−)t(ω),

whenever (|H| · V )t < ∞.
There are no really new concepts of the integral in the foregoing; it is basically the

Lebesgue-Stieltjes integral eextended from functions H(t) to processes in a pathwise fashion
(that’s why ω has been included in those definitions as a reminder).
Theorem 6.6.
If X is a non-negative continuous local martingale and E(X0) < ∞ then Xt is a super-
martingale. If additionally X has constant mean, i.e. E(Xt) = E(X0) for all t then Xt is a
martingale.
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Proof
As Xt is a continuous local martingale there is a sequence of stopping times Tn ↑ ∞ such
that XTn is a genuine martingale. From this martingale property

E(XTn
t |Fs) = XTn

s .

As Xt ≥ 0 we can apply the conditional form of Fatou’s lemma, so

E(Xt|Fs) = E(lim inf
n→∞

XTn
t |Fs) ≤ lim inf

n→∞
E(XTn

t |Fs) = lim inf
n→∞

XTn
s = Xs.

Hence E(Xt|Fs) ≤ Xs, so Xt is a supermartingale.
Given the constant mean property E(Xt) = E(Xs). Let

An := {ω : Xs − E(Xt|Fs) > 1/n},

so

A :=
∞⋃

n=1

An = {ω : Xs − E(Xt|Fs) > 0}.

Consider P(A) = P(∪∞n=1An) ≤
∑∞

n=1 P(An). Suppose for some n, P(An) > ε, then note
that

ω ∈ An : Xs − E(Xt|Fs) > 1/n

ω ∈ Ω/An : Xs − E(Xt|Fs) ≥ 0

Hence
Xs − E(Xt|Fs) ≥

1
n

1An ,

taking expectations yields
E(Xs)− E(Xt) >

ε

n
,

but by the constant mean property the left hand side is zero; hence a contradiction, thus
all the P(An) are zero, so

Xs = E(Xt|Fs) a.s.



7. The Integral

We would like eventually to extend the definition of the integral to integrands which are
previsible processes and integrators which are semimartingales (to be defined later in these
notes). In fact in these notes we’ll only get as far as continuous semimartingales; but it is
possible to go the whole way and define the integral of a previsible process with respect to
a general semimartingale; but some extra problems are thrown up on the way, in particular
as regards the construction of the quadratic variation process of a discontinuous process.

Various special classes of process will be needed in the sequel and these are all defined
here for convenience. Naturally with terms like ‘elementary’ and ‘simple’ occurring many
books have different names for the same concepts – so beware!

7.1. Elementary Processes
An elementary process Ht(ω) is one of the form

Ht(ω) = Z(ω)1(S(ω),T (ω)](t),

where S, T are stopping times, S ≤ T ≤ ∞, and Z is a bounded FS measurable random
variable.

Such a process is the simplest non-trivial example of a previsible process. Let’s prove
that it is previsible:

H is clearly a left continuous process, so we need only show that it is adapted. It can
be considered as the pointwise limit of a sequence of right continuous processes

Hn(t) = lim
n→∞

Z1[Sn,Tn), Sn = S +
1
n

, Tn = T +
1
n

.

So it is sufficient to show that Z1[U,V ) is adapted when U and V are stopping times which
satisfy U ≤ V , and Z is a bounded FU measurable function. Let B be a borel set of R,
then the event

{Z1[U,V )(t) ∈ B} = [{Z ∈ B} ∩ {U ≤ t}] ∩ {V > t}.

By the definition of U as a stopping time and hence the definition of FU , the event enclosed
by square brackets is in Ft, and since V is a stopping time {V > t} = Ω/{V ≤ t} is also
in Ft; hence Z1[U,V ) is adapted.

7.2. Strictly Simple and Simple Processes
A process H is strictly simple (H ∈ L∗) if there exist 0 ≤ t0 ≤ · · · ≤ tn < ∞ and uniformly
bounded Ftk

measurable random variables Zk such that

H = H0(ω)10(t)
n−1∑
k=0

Zk(ω)1(tk,tk+1](t).

[15]
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This can be extended to H is a simple processes (H ∈ L), if there exists a sequence
of stopping times 0 ≤ T0 ≤ · · · ≤ Tk → ∞, and Zk uniformly bounded FTk

measurable
random variables such that

H = H0(ω)10(t) +
∞∑

k=0

Zk1(Tk,Tk+1].

Similarly a simple process is also a previsible process. The fundamental result will
follow from the fact that the σ-algebra generated by the simple processes is exactly the
previsible σ-algebra. We shall see the application of this after the next section.



8. The Stochastic Integral

As has been hinted at earlier the stochastic integral must be built up in stages, and to
start with we shall consider integrators which are L2 bounded martingales, and integrands
which are simple processes.

8.1. Integral for H ∈ L and M ∈M2

For a simple process H ∈ L, and M an L2 bounded martingale then the integral may be
defined by the ‘martingale transform’ (c.f. discrete martingale theory)

∫ t

0

HsdMs = (H ·M)t :=
∞∑

k=0

Zk

(
MTk+1∧t −MTk∧t

)
Proposition 8.1.
If H is a simple function, M a L2 bounded martingale, and T a stopping time. Then
(i) (H ·M)T = (H1(0,T ]) ·M = H · (MT ).
(ii) (H ·M) ∈M2.
(iii) E[(H ·M)2∞] =

∑∞
k=0[Z

2
k(M2

Tk+1
−M2

Tk
)] ≤ ‖H‖2∞E(M2

∞).
Proof

Part (i)
As H ∈ L we can write

H =
∞∑

k=0

Zk1(Tk,Tk+1],

for Tk stopping times, and Zk an FTk
measurable bounded random variable. By our defi-

nition for M ∈M2, we have

(H ·M)t =
∞∑

k=0

Zk

(
MTk+1∧t −MTk∧t

)
,

and so, for T a general stopping time consider (H ·M)T
t = (H ·M)T∧t and so

(H ·M)T
t =

∞∑
k=0

Zk

(
MTk+1∧T∧t −MTk∧T∧t

)
.

Similar computations can be performed for (H · MT ), noting that MT
t = MT∧t and for

(H1(0,T ] ·M) yielding the same result in both cases. Hence

(H ·M)T = (H1(0,T ] ·M) = (H ·MT ).

[17]
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Part (ii)
To prove this result, first we shall establish it for an elementary function H ∈ E , and then
extend to L by linearity. Suppose

H = Z1(R,S],

where R and S are stopping times and Z is a bounded FS measurable random variable.
Let T be an arbitrary stopping time. We shall prove that

E ((H ·M)T ) = E ((H ·M)0) ,

and hence via optional stopping conclude that (H ·M)t is a martingale.
Note that

(H ·M)∞ = Z (MS −MR) ,

and hence as M is a martingale, and Z is FR measurable we obtain

E(H ·M)∞ =E (E (Z (MS −MR)) |FR) = E (ZE ((MS −MR) |FR))
=0.

Via part (i) note that E(H ·M)T = E(H ·MT ), so

E(H ·M)T = E(H ·MT )∞ = 0.

Thus (H ·M)t is a martingale by optional stopping theorem. By linearity, this result
extends to H a simple function (i.e. H ∈ L).

Part (iii)
We wish to prove that (H ·M) is and L2 bounded martingale. We again start by considering
H ∈ E , an elementary function, i.e.

H = Z1(R,S],

where as before R and S are stopping times, and Z is a bounded FR measurable random
variable.

E
(
(H ·M)2∞

)
=E

(
Z2(MS −MR)2

)
,

=E
(
Z2E

(
(MS −MR)2|FR

))
,

where Z2 is removed from the conditional expectation since it is and FR measurable
random variable. Using the same argument as used in the orthogonality of martingale
increments proof,

E
(
(H ·M)2∞

)
= E

(
Z2E

(
(M2

S −M2
R)|FR

))
= E

[
(Z2

(
M2

S −M2
R

))
.

As M is an L2 bounded martingale and Z is a bounded process,

E
(
(H ·M)2∞

)
≤ sup

ω∈Ω
2|Z(ω)|2E

(
M2
∞
)
.
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so (H ·M) is an L2 bounded martingale; so together with part (ii), (H ·M) ∈M2.
To extend this to simple functions is similar, but requires a little care In general the

orthogonality of increments arguments extends to the case where only finitely many of the
Zk in the definition of the simple function H are non zero. Let K be the largest k such
that Zk 6≡ 0.

E
(
(H ·M)2∞

)
=

K∑
k=0

E
(
Z2

k

(
M2

Tk+1
−M2

Tk

))
,

which can be bounded as

E
(
(H ·M)2∞

)
≤‖H∞‖2E

(
K∑

k=0

(
M2

Tk+1
−M2

Tk

))
≤‖H∞‖2E

(
M2

TK+1
−M2

T0

)
≤ ‖H∞‖2EM2

∞,

since we require T0 = 0, and M ∈M2, so the final bound is obtained via the L2 martingale
convergence theorem.

Now extend this to the case of an infinite sum; let n ≤ m, we have that

(H ·M)Tm − (H ·M)Tn = (H1(Tn,Tm] ·M),

applying the result just proven for finite sums to the right hand side yields

∥∥(H ·M)Tm
∞ − (H ·M)Tn

∞
∥∥2

2
=

m−1∑
k=n

E
(
Z2

k

(
M2

Tk+1
−M2

Tk

))
≤ ‖H∞‖22 E

(
M2
∞ −M2

Tn

)
.

But by the L2 martingale convergence theorem the right hand side of this bound tends to
zero as n → ∞; hence (H · M)Tn converges in M2 and the limit must be the pointwise
limit (H ·M). Let n = 0 and m →∞ and the result of part (iii) is obtained.

8.2. Quadratic Variation
We mentioned earlier that the total variation is the variation which is used by the usual
Lebesgue-Stieltjes integral, and that this cannot be used for defining a stochastic integral,
since any continuous local martingale of finite variation is indistinguishable from zero. We
are now going to look at a variation which will prove fundamental for the construction of
the integral. All the definitions as given here aren’t based on the partition construction.
This is because I shall follow Dellacherie and Meyer and show that the other definitions
are equivalent by using the stochastic integral.
Theorem 8.2.
The quadratic variation process 〈M〉t of a continuous L2 integrable martingale M is
the unique process At starting from zero such that M2

t − At is a uniformly integrable
martingale.
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Proof
For each n define stopping times

Sn
0 = 0, Sn

k+1 = inf
{

t > Tn
k :
∣∣∣Mt −MT n

k

∣∣∣ > 2−n
}

for k ≥ 0

Define
Tn

k := Sn
k ∧ t

Then
M2

t =
∑
k≥1

(
M2

t∧Sn
k
−M2

t∧Sn
k−1

)
=
∑
k≥1

(
M2

T n
k
−MT n

k−1

)
=2
∑
k≥1

MT n
k−1

(
MT n

k
−MT n

k−1

)
+
∑
k≥1

(
MT n

k
−MT n

k−1

)2

(∗)

Now define Hn to be the simple process given by

Hn :=
∑
k≥1

MSn
k−1

1(Sn
k−1,Sn

k
].

We can then think of the first term in the decomposition (∗) as (Hn ·M). Now define

An
t :=

∑
k≥1

(
MT n

k
−MT n

k−1

)2

,

so the expression (∗) becomes

M2
t = 2(Hn ·M)t + An

t . (∗∗)

Note from the construction of the stopping times Sn
k we have the following properties

‖Hn −Hn+1‖∞ =sup
t
|Hn

t −Hn+1
t | ≤ 2−(n+1)

‖Hn −Hn+m‖∞ =sup
t
|Hn

t −Hn+m
t | ≤ 2−(n+1) for all m ≥ 1

‖Hn −M‖∞ =sup
t
|Hn

t −Mt| ≤ 2−n

Let Jn(ω) be the set of all stopping times Sn
k (ω) i.e.

Jn(ω) := {Sn
k (ω) : k ≥ 0}.

Clearly Jn(ω) ⊂ Jn+1(ω). Now for any m ≥ 1, using proposition 7.1(iii) the following
result holds

E
([

(Hn ·M)− (Hn+m ·M)
]2
∞

)
=E

([({
Hn −Hn+m

}
·M
)]2
∞

)
≤‖Hn −Hn+m‖2∞E(M2

∞)

≤
(
2−(n+1)

)2

E(M2
∞).
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Thus (Hn ·M)∞ is a Cauchy sequence in the complete Hilbert space L2(F∞); hence by
completeness of the Hilbert Space it converges to a limit in the same space. As (Hn ·M)
is a continuous martingale for each n, so is the the limit N say. By Doob’s L2 inequality
applied to the continuous martingale (Hn ·M)−N ,

E
(

sup
t≥0

|(Hn ·M)−N |2
)
≤ 4E

(
[(H ·M)−N ]2∞

)
→n→∞ 0,

Hence (Hn · M) converges to N uniformly a.s.. From the relation (∗∗) we see that as a
consequence of this, the process An converges to a process A, where

M2
t = 2Nt + At.

Now we must check that this limit process A is increasing. Clearly An(Sn
k ) ≤ An(Sn

k+1),
and since Jn(ω) ⊂ Jn+1(ω), it is also true that A(Sn

k ) ≤ A(Sn
k+1) for all n and k, and

so A is certainly increasing on the closure of J(ω) := ∪nJn(ω). However if I is an open
interval in the complement of J , then no stopping time Sn

k lies in this interval, so M must
be constant throughout I, so the same is true for the process A. Hence the process A
is continuous, increasing, and null at zero; such that M2

t − At = 2Nt, where Nt is a UI
martingale (since it is L2 bounded). Thus we have established the existence result. It only
remains to consider uniqueness.

Uniqueness follows from the result that a continuous local martingale of finite variation
is everywhere zero. Suppose the process A in the above definition were not unique. That is
suppose that also for some Bt continuous increasing from zero, M2

t −Bt is a UI martingale.
Then as M2

t − At is also a UI martingale by subtracting these two equations we get that
At−Bt is a UI martingale, null at zero. It clearly must have finite variation, and hence be
zero.

The following corollary will be needed to prove the integration by parts formula, and
can be skipped on a first reading; however it is clearer to place it here, since this avoids
having to redefine the notation.
Corollary 8.3.
Let M be a bounded continuous martingale, starting from zero. Then

M2
t = 2

∫ t

0

MsdMs + 〈M〉t.

Proof
In the construction of the quadratic variation process the quadratic variation was con-
structed as the uniform limit in L2 of processes An

t such that

An
t = M2

t − 2(Hn ·M)t,

where each Hn was a bounded previsible process, such that

sup
t
|Hn

t −M | ≤ 2−n,
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and hence Hn → M in L2(M), so the martingales (Hn ·M) converge to (M ·M) uniformly
in L2, hence it follows immediately that

M2
t = 2

∫ t

0

MsdMs + 〈M〉t,

Theorem 8.4.
The quadratic variation process 〈M〉t of a continuous local martingale M is the unique
increasing process A, starting from zero such that M2 −A is a local martingale.

Proof
We shall use a localisation technique to extend the definition of quadratic variation from
L2 bounded martingales to general local martingales.

The mysterious seeming technique of localisation isn’t really that complex to under-
stand. The idea is that it enables us to extend a definition which applies for ‘X widgets’ to
one valid for ‘local X widgets’. It achieves this by using a sequence of stopping times which
reduce the ‘local X widgets’ to ‘X widgets’ ; the original definition can then be applied to
the stopped version of the ‘X widget’. We only need to check that we can sew up the pieces
without any holes i.e. that our definition is independent of the choice of stopping times!

Let Tn = inf{t : |Mt| > n}, define a sequence of stopping times. Now define

〈M〉t := 〈MTn〉 for 0 ≤ t ≤ Tn

To check the consistency of this definition note that

〈MTn〉Tn−1 = 〈MTn−1〉

and since the sequence of stopping times Tn → ∞, we see that 〈M〉 is defined for all t.
Uniqueness follows from the result that any finite variation continuous local martingale
starting from zero is identically zero.

The quadratic variation turns out to be the ‘right’ sort of variation to consider for
a martingale; since we have already shown that all but the zero martingale have infinite
total variation; and it can be shown that the higher order variations of a martingale are
zero a.s.. Note that the definition given is for a continuous local martingale; we shall
see later how to extend this to a continuous semimartingale.

8.3. Covariation
From the definition of the quadratic variation of a local martingale we can define the covari-
ation of two local martingales N and M which are locally L2 bounded via the polarisation
identity

〈M,N〉 :=
〈M + N〉 − 〈M −N〉

4
.

We need to generalise this slightly, since the above definition required the quadratic
variation terms to be finite. We can prove the following theorem in a straightforward
manner using the definition of quadratic variation above, and this will motivate the general
definition of the covariation process.
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Theorem 8.5.
For M and N two local martingales which are locally L2 bounded then there exists a unique
finite variation process A starting from zero such that MN −A is a local martingale. This
process A is the covariation of M and N .

This theorem is turned round to give the usual definition of the covariation process of
two continuous local martingales as:
Definition 8.6.
For two continuous local martingales N and M , there exists a unique finite variation
process A, such that MN − A is a local martingale. The covariance process of N and M
is defined as this process A.

It can readily be verified that the covariation process can be regarded as a symmet-
ric bilinear form on the space of local martingales, i.e. for L,M and N continuous local
martingales

〈M + N,L〉 =〈M,L〉+ 〈N,L〉,
〈M,N〉 =〈N,M〉,
〈λM,N〉 =λ〈M,N〉, λ ∈ R.

8.4. Extension of the Integral to L2(M )
We have previously defined the integral for H a simple function (in L), and M ∈Mc

2, and
we have noted that (H ·M) is itself in M2. Hence

E
(
(H ·M)2∞

)
= E

(
Z2

i−1

(
MTi

−MTi−1

)2)
Recall that for M ∈ M2, then M2 − 〈M〉 is a uniformly integrable martingale. Hence for
S and T stopping times such that S ≤ T , then

E
(
(MT −MS)2|FS

)
= E(M2

T −M2
S |FS) = E(〈M〉T − 〈M〉S |FS).

So summing we obtain

E
(
(H ·M)2∞

)
=E

∑
Z2

i−1

(
〈M〉Ti

− 〈M〉Ti−1

)
,

=E
(
(H2 · 〈M〉)∞

)
.

In the light of this, we define a seminorm ‖H‖M via

‖H‖M =
[
E
(
(H2 · 〈M〉)∞

)]1/2

=
[
E
(∫ ∞

0

H2
s d〈M〉s

)]1/2

.

The space L2(M) is then defined as the subspace of the previsible processes, where this
seminorm is finite, i.e.

L2(M) := {previsible processes H such that ‖H‖M < ∞}.
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However we would actually like to be able to treat this as a Hilbert space, and there
remains a problem, namely that if X ∈ L2(M) and ‖X‖M = 0, this doesn’t imply that X
is the zero process. Thus we follow the usual route of defining an equivalence relation via
X ∼ Y if and only if ‖X − Y ‖M = 0. We now define

L2(M) := {equivalence classes of previsible processes H such that ‖H‖M < ∞},

and this is a Hilbert space with norm ‖ · ‖M (it can be seen that it is a Hilbert space by
considering it as suitable L2 space).

This establishes an isometry (called the Itô isometry) between the spaces L2(M) ∩ L
and L2(F∞) given by

I :L2(M) ∩ L → L2(F∞)
I :H 7→ (H ·M)∞

Remember that there is a basic bijection between the space M2 and the Hilbert Space
L2(F∞) in which each square integrable martingale M is represented by its limiting value
M∞, so the image under the isometry (H ·M)∞ in L2(F∞) may be thought of a describing
an M2 martingale. Hence this endows M2 with a Hilbert Space structure, with an inner
product given by

(M,N) = E (N∞M∞) .

We shall now use this Itô isometry to extend the definition of the stochastic integral
from L (the class of simple functions) to the whole of L2(M). Roughly speaking we shall
approximate an element of L2(M) via a sequence of simple functions converging to it; just
as in the construction of the Lebesgue Integral. In doing this, we shall use the Monotone
Class Theorem.

Recall that in the conventional construction of the Lebesgue integration, and proof of
the elementary results the following standard machine is repeatedly invoked. To prove a
‘linear’ result for all h ∈ L1(S, Σ, µ), proceed in the following way:
(i) Show the result is true for h and indicator function.
(ii) Show that by linearity the result extends to all positive step functions.
(iii) Use the Monotone convergence theorem to see that if hn ↑ h, where the hn are

step functions, then the result must also be true for h a non-negative, Σ measurable
function.

(iv) Write h = h+−h− where both h+ and h− are non-negative functions and use linearity
to obtain the result for h ∈ L1.
The monotone class lemmas is a replacement for this procedure, which hides away all

the ‘machinery’ used in the constructions.

Monotone Class Theorem.
Let A be π-system generating the σ-algebra F (i.e. σ(A) = F). If H is a linear set of
bounded functions from Ω to R satisfying
(i) 1A ∈ H, for all A ∈ A,
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(ii) 0 ≤ fn ↑ f , where fn ∈ H and f is a bounded function f : Ω → R, then this implies
that f ∈ H,
then H contains every bounded, F-measurable function f : Ω → R.

In order to apply this in our case, we need to prove that the σ-algebra of previsible
processes is that generated by the simple functions.

The Previsible σ-field and the Simple Processes
It is fairly simple to show that the space of simple processes L forms a vector space
(exercise: check linearity, constant multiples and zero).
Lemma 8.7.
The σ-algebra generated by the simple functions is the previsible σ-algebra i.e. the pre-
visible σ-algebra us the smallest σ-algebra with respect to which every simple process is
measurable.

Proof
It suffices to show that every left continuous right limit process, which is bounded and
adapted to Ft is measurable with respect to the σ-algebra generated by the simple func-
tions. Let Ht be a bounded left continuous right limits process, then

H = lim
k→∞

lim
n→∞

nk∑
i=2

H(i−1)/n

(
i− 1

n
,

i

n

]
,

and if Ht is adapted to Ft then H(i−1)/n is a bounded element of F(i−1)/n.
We can now apply the Monotone Class Theorem to the vector space H of processes

with a time parameter in (0,∞), regarded as maps from (0,∞) × Ω → R. Then if this
vector space contains all the simple functions i.e. L ⊂ H, then H contains every bounded
previsible process on (0,∞).

Assembling the Pieces
Since I is an isometry it has a unique extension to the closure of

U = L2(M) ∩ L,

in L2(M). By the application of the monotone class lemma to H = U , and the π-system
of simple functions. We see that U must contain every bounded previsible process; hence
U = L2(M). Thus the Itô Isometry extends to a map from L2(M) to L2(F∞).

Let us look at this result more informally. For a previsible H ∈ L2(M), because of the
density of L in L2(M), we can find a sequence of simple functions Hn which converges to
H, as n → ∞. We then consider I(H) as the limit of the I(Hn). To verify that this limit
is unique, suppose that H ′

n → H as n →∞ also, where H ′
n ∈ L. Note that Hn −H ′

n ∈ L.
Also Hn −H ′

n → 0 and so ((Hn −H ′
n) ·M) → 0, and hence by the Itô isometry the limits

limn→∞(Hn ·M) and limn→∞(H ′
n ·M) coincide.

The following result is essential in order to extend the integral to continuous local
martingales.
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Proposition 8.8.
For M ∈M2, for any H ∈ L2(M) and for any stopping time T then

(H ·M)T = (H1(0,T ] ·M) = (H ·MT ).

Proof
Consider the following linear maps in turn

f1 :L2(F∞) → L2(F∞)
f1 :Y 7→ E(Y |FT )

This map is a contraction on L2(F∞) since by conditional Jensen’s inequality

E(Y∞|FT )2 ≤ E(Y 2
∞|FT ),

and taking expectations yields

‖E(Y |FT )‖22 = E
(
E(Y∞|FT )2

)
≤ E

(
E(Y 2

∞|FT )
)

= E(Y 2
∞) = ‖Y ‖22.

Hence f1 is a contraction on L2(F∞). Now

f2 :L2(M) → L2(M)
f2 :H 7→ H1(0,T ]

Clearly from the definition of ‖ ·‖M , and from the fact that the quadratic variation process
is increasing

∥∥H1(0,T ]

∥∥
M

=
∫ ∞

0

H2
s 1(0,T ]d〈M〉s =

∫ T

0

H2
s d〈M〉s ≤

∫ ∞

0

H2
s d〈M〉s = ‖H‖M .

Hence f2 is a contraction on L2(M). Hence if I denotes the Itô isometry then f1 ◦ I and
I ◦ f2 are also contractions from L2(M) to L2(F∞), (using the fact that I is an isometry
between L2(M) and L2(F∞)).

Now introduce I(T ), the stochastic integral map associated with MT , i.e.

I(T )(H) ≡ (H ·MT )∞.

Note that
‖I(T )(H)‖2 = ‖H‖MT ≤ ‖H‖M .

We have previously shown that the maps f1 ◦ I and I ◦ f2 and H 7→ I(T )(H) agree on
the space of simple functions by direct calculation. We note that L is dense in L2(M)
(from application of Monotone Class Lemma to the simple functions). Hence from the
three bounds above the three maps agree on L2(M).
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8.5. Localisation
We’ve already met the idea of localisation in extending the definition of quadratic variation
from L2 bounded continuous martingales to continuous local martingales. In this context
a previsible process {Ht}t≥0, is locally previsible if there exists a sequence of stopping
times Tn → ∞ such that for all n H1(0,Tn] is a previsible process. Fairly obviously every
previsible process has this property. However if in addition we want the process H to be
locally bounded we need the condition that there exists a sequence Tn of stopping times,
tending to infinity such that H1(0,Tn] is uniformly bounded for each n.

For the integrator (a martingale of integrable variation say), the localisation is to a
local martingale, that is one which has a sequence of stopping times Tn → ∞ such that
for all n, XTn is a genuine martingale.

If we can prove a result like

(H ·X)T = (H1(0,T ] ·XT )

for H and X in their original (i.e. non-localised classes) then it is possible to extend the
definition of (H ·X) to the local classes.

Note firstly that for H and X local, and Tn a reducing sequence1 of stopping times
for both H and X then we see that (H1(0,T ] ·XT ) is defined in the existing fashion. Also
note that if T = Tn−1 we can check consistency

(H1(0,Tn] ·XTn)Tn−1 = (H ·X)Tn−1 = (H1(0,Tn−1] ·X
Tn−1).

Thus it is consistent to define (H ·X)t on t ∈ [0,∞) via

(H ·X)Tn = (H1(0,Tn] ·XTn), ∀n.

We must check that this is well defined, viz if we choose another regularising sequence Sn,
we get the same definition of (H ·X). To see this note:

(H1(0,Tn] ·XTn)Sn = (H1(0,Tn∧Sn] ·XTn∧Sn) = (H1(0,Sn] ·XSn)Tn ,

hence the definition of (H ·X)t is the same if constructed from the regularising sequence
Sn as if constructed via Tn.

8.6. Some Important Results
We can now extend most of our results to stochastic integrals of a previsible process H
with respect to a continuous local martingale M . In fact in these notes we will never
drop the continuity requirement. It can be done; but it requires considerably more work,
especially with regard to the definition of the quadratic variation process.

1 The reducing sequence is the sequence of stopping times tending to infinity which makes the local
version of the object into the non-local version. We can find one such sequence, because if say {Tn}
reduces H and {Sn} reduces X then Tn ∧ Sn reduces both H and X.
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Theorem 8.9.
Let H be a locally bounded previsible process, and M a continuous local martingale. Let
T be an arbitrary stopping time. Then:
(i) (H ·M)T = (H1(0,T ] ·M) = (H ·MT )
(ii) (H ·M) is a continuous local martingale
(iii) 〈H ·M〉 = H2 · 〈M〉
(iv) H · (K ·M) = (HK) ·M
Proof
The proof of parts (i) and (ii) follows from the result used in the localisation that:

(H ·M)T = (H1(0,T ] ·M) = (H ·MT )

for H bounded previsible process in L2(M) and M an L2 bounded martingale. Using this
result it suffices to prove (iii) and (iv) where M , H and K are uniformly bounded (via
localisation).

Part (iii)
E
[
(H ·M)2T

]
=E

[(
H1(0,T ] ·M

)
·M)2∞

]
=E

[(
H1(0,T ] · 〈M〉

)2
∞

]
=E

[(
H2 · 〈M〉

)
T

]
Hence we see that (H ·M)2−(H2 ·〈M〉) is a martingale (via the optional stopping theorem),
and so by uniqueness of the quadratic variation process, we have established

〈H ·M〉 = H2 · 〈M〉.

Part (iv)
The truth of this statement is readily established for H and K simple functions (in L). To
extend to H and K bounded previsible processes note that

E
[
(H · (K ·M))2∞

]
=E

[(
H2 · 〈K ·M〉

)
∞

]
=E

[(
H2 · (K2 · 〈M〉)

)
∞

]
=E

[(
(HK)2 · 〈M〉

)
∞

]
=E

[
((HK) ·M)2∞

]
Also note the following bound

E
[(

HK)2 · 〈M〉
)
∞

]
≤ min

{
‖H‖2∞‖K‖2M , ‖H‖2M‖K‖2∞

}
.



9. Semimartingales

I mentioned at the start of these notes that the most general form of the stochastic integral
would have a previsible process as the integrand and a semimartingale as an integrator.
Now it’s time to extend the definition of the Itô integral to the case of semimartingale
integrators.
Definition 9.1.
A process X is a semimartingale if X is an adapted CADLAG process which has a decom-
position

X = X0 + M + A,

where M is a local martingale, null at zero and A is a process null at zero, with paths of
finite variation.

Note that the decomposition is not necessarily unique as there exist martingales which
have finite variation. To remove many of these difficulties we shall impose a continuity
condition, since under this most of our problems will vanish.
Definition 9.2.
A continuous semimartingale is a process (Xt)t≥0 which has a Doob-Meyer decomposition

X = X0 + M + A,

where X0 is F0-measurable, M0 = A0 = 0, Mt is a continuous local martingale and At is
a continuous adapted process of finite variation.

Theorem 9.3.
The Doob-Meyer decomposition in the definition of a continuous semimartingale is unique.

Proof
Let another such decomposition be

X = X0 + M ′ + A′,

where M ′ is a continuous local martingale and A a continuous adapted process of finite
variation. Then consider the process N , where

N = M ′ −M = A′ −A,

by the first equality, N is the difference of two continuous local martingales, and hence is
itself a continuous local martingale; and by the second inequality it has finite variation.
Hence by an earlier proposition (5.2) it must be zero. Hence M ′ = M and A′ = A.

We define† the quadratic variation of the continuous semimartingale as that of the
continuous local martingale part i.e. for X = X0 + M + A,

〈X〉 := 〈M〉.

† These definitions can be made to look natural by considering the quadratic variation defined in terms
of a sum of squared increments; but following this approach, these are result which are proved later
using the Itô integral, since this provided a better approach to the discontinuous theory.

[29]
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Similarly if Y + Y0 + N + B is another semimartingale, where B is finite variation and N
is a continuous local martingale, we define

〈X, Y 〉 := 〈M,N〉.

We can extend the definition of the stochastic integral to continuous semimartingale
integrators by defining

(H ·X) := (H ·M) + (H ·A),

where the first integral is a stochastic integral as defined earlier and the second is a
Lebesgue-Stieltjes integral (as the integrator is a process of finite variation).



10. Relations to Sums

This section is optional; and is included to bring together the two approaches to the
constructions involved in the stochastic integral.

For example the quadratic variation of a process can either be defined in terms of
martingale properties, or alternatively in terms of sums of squares of increments.

10.1. The UCP topology

We shall meet the notion of convergence uniformly on compacts in probability when con-
sidering stochastic integrals as limits of sums, so it makes sense to review this topology
here.

Definition 10.1.

A sequence {Hn}n≥1 converges to a process H uniformly on compacts in probability (ab-
breviated u.c.p.) if for each t > 0,

sup
0≤s≤t

|Hn
s −Hs| → 0 in probability.

At first sight this may seem to be quite an esoteric definition; in fact it is a natural
extension of convergence in probability to processes. It would also appear to be quite
difficult to handle, however Doob’s martingale inequalities provide the key to handling it.
Let

H∗
t = sup

0≤s≤t
|Hs|,

then for Y n a CADLAG process, Y n converges to Y u.c.p. iff (Y n − Y )∗ converges to
zero in probability for each t ≥ 0. Thus to prove that a sequence converges u.c.p. it often
suffices to apply Doob’s inequality to prove that the supremum converges to zero in L2,
whence it must converge to zero in probability, whence u.c.p. convergence follows.

The space of CADLAG processes with u.c.p. topology is in fact metrizable, a compat-
ible metric is given by

d(X, Y ) =
∞∑

n=1

1
2n

E (min(1, (X − Y )∗n)) ,

for X and Y CADLAG processes. The metric space can also be shown to be complete. For
details see Protter.

[31]
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Since we have just met a new kind of convergence, it is helpful to recall the other usual
types of convergence on a probability space. For convenience here are the usual definitions:

Pointwise
A sequence of random variables Xn converges to X pointwise if for all ω not in some null
set,

Xn(ω) → X(ω).

Probability
A sequence of r.v.s Xn converges to X in probability, if for any ε > 0,

P (|Xn −X| > ε) → 0, as n →∞.

Lp convergence
A sequence of random variables Xn converges to X in Lp, if

E|Xn −X|p → 0, as n →∞.

It is trivial to see that pointwise convergence implies convergence in probability. It is
also true that Lp convergence implies convergence in probability as the following theorem
shows
Theorem 10.2.
If Xn converges to X in Lp for p > 0, then Xn converges to X in probability.

Proof
Apply Chebyshev’s inequality to f(x) = xp, which yields for any ε > 0,

P (|Xn| ≥ ε) ≤ ε−pE (|Xn|p) → 0, as n →∞.

Theorem 10.3.
If Xn → X in probability, then there exists a subsequence nk such that Xnk

→ X a.s.

Theorem 10.4.
If Xn → X a.s., then Xn → X in probability.

10.2. Approximation via Riemann Sums
Following Dellacherie and Meyer we shall establish the equivalence of the two constructions
for the quadratic variation by the following theorem which approximates the stochastic
integral via Riemann sums.
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Theorem 10.2.
Let X be a semimartingale, and H a locally bounded previsible CADLAG process starting
from zero. Then∫ t

0

HsdXs = lim
n→∞

∞∑
k=0

Ht∧k2−n

(
Xt∧(k+1)2−n −Xt∧k2−n

)
u.c.p.

Proof
Let Ks = Hs1s≤t, and define the following sequence of simple function approximations

Kn
s :=

∞∑
k=0

Ht∧k2−n1(t∧k2−n,t∧(k+1)2−n](s).

Clearly this sequence Kn
s converges pointwise to Ks. We can decompose the semimartingale

X as X = X0 + At + Mt where At is of finite variation and Mt is a continuous local
martingale, both starting from zero. The result that∫ t

0

Kn
s dAs →

∫ t

0

KsdAs, u.c.p.

is standard from the Lebesgue-Stieltjes theory. Let Tk be a reducing sequence for the
continuous local martingale M such that MTk is a bounded martingale. Also since K is
locally bounded we can find a sequence of stopping times Sk such that KSk is a bounded
previsible process. It therefore suffices to prove for a sequence of stopping times Rk such
that Rk ↑ ∞, then

(Kn ·M)Rk
s → (K ·M)Rk

s , u.c.p..

By Doob’s L2 inequality, and the Itô isometry we have

E
[
((Kn ·M)− (K ·M))∗

]2 ≤4E [(Kn ·M)− (K ·M)]2 , Doob L2

≤4‖Kn −K‖2M , Itô Isometry

≤4
∫

(Kn
s −Ks)2d〈M〉s

As |Kn−K| → 0 pointwise, and K is bounded, clearly |Kn−K| is also bounded uniformly
in n. Hence by the Dominated Convergence Theorem for the Lebesgue-Stieltjes integral∫

(Kn
s −Ks)2d〈M〉s → 0 a.s..

Hence, we may conclude

E
(
[(Kn ·M)− (K ·M)]∗

)2 → 0, as n →∞.

So
[(Kn ·M)− (K ·M)]∗ → 0 in L2,
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as n →∞; but this implies that

[(Kn ·M)− (K ·M)]∗ → 0 in probability.

Hence
[(Kn ·M)− (K ·M)] → 0 u.c.p.

as required, and putting the two parts together yields∫ t

0

Kn
s dXs →

∫ t

0

KsdXs, u.c.p.

which is the required result.

This result can now be applied to the construction of the quadratic variation process,
as illustrated by the next theorem.
Theorem 10.3.
The quadratic variation process 〈X〉t is equal to the following limit in probability

〈X〉t = lim
n→∞

∞∑
k=0

(
Xt∧(k+1)2−n −Xt∧k2−n

)2 in probability.

Proof
In the theorem (7.2) establishing the existence of the quadratic variation process, we noted
in (∗∗) that

An
t = M2

t − 2(Hn ·M)t.

Now from application of the previous theorem

2
∫ t

0

XsdXs = lim
n→∞

∞∑
k=0

Xt∧k2−n

(
Xt∧(k+1)2−n −Xt∧k2−n

)
.

In addition,

X2
t −X2

0 =
∞∑

k=0

(
X2

t∧(k+1)2−n −X2
t∧k2−n

)
.

The difference of these two equations yields

At = X2
0 + lim

n→∞

∞∑
k=0

(
Xt∧(k+1)2−n −Xt∧k2−n

)2
,

where the limit is taken in probability. Hence the function A is increasing and positive on
the rational numbers, and hence on the whole of R by right continuity.

Remark
The theorem can be strengthened still further by a result of Doléans-Dade to the effect
that for X a continuous semimartingale

〈X〉t = lim
n→∞

∞∑
k=0

(
Xt∧(k+1)2−n −Xt∧k2−n

)2
,

where the limit is in the strong sense in L1. This result is harder to prove (essentially the
uniform integrability of the sums must be proven) and this is not done here.



11. Itô’s Formula

Itô’s Formula is the analog of integration by parts in the stochastic calculus. It is also
the first place where we see a major difference creep into the theory, and realise that our
formalism has found a new subtlety in the subject.

More importantly, it is the fundamental weapon used to evaluate Itô integrals; we
shall see some examples of this shortly.

The Itô isometry provides a clean-cut definition of the stochastic integral; however it
was originally defined via the following theorem of Kunita and Watanabe.
Theorem (Kunita-Watanabe Identity) 11.1.
Let M ∈ M2 and H and K are locally bounded previsible processes. Then (H ·M)∞ is
the unique element of L2(F∞) such that for every N ∈ M2 we have:

E [(H ·M)∞N∞] = E [(H · 〈M,N〉)∞]

Moreover we have
〈(H ·M), N〉 = H · 〈M,N〉.

Proof
Consider an elementary function H, so H = Z1(S,T ], where Z is an FS measurable bounded
random variable, and S and T are stopping times such that S ≤ T . It is clear that

E [(H ·M)∞N∞] =E [Z (MT −MS) N∞]
=E [Z(MT NT −MSNS)]
=E [M∞(H ·N)∞]

Now by linearity this can be extended to establish the result for all simple functions (in
L). We finally extend to general locally bounded previsible H, by considering a sequence
(provided it exists) of simple functions Hn such that Hn → H in L2(M). Then there exists
a subsequence nk such that Hnk converges to H is L2(N). Then

E
(
(Hnk ·M)∞N∞

)
− E

(
(H ·M)∞N∞

)
=E
((

(Hnk −H) ·M
)
N∞

)
≤
√

E
(
[(Hnk −H) ·M)]2

)√
E(N2

∞)

≤
√

E
(
[(Hnk ·M)− (H ·M)]2

)√
E(N2

∞)

By construction Hnk → H in L2(M) which means that

‖Hnk −H‖M → 0, as k →∞.

By the Itô isometry

E
[
((Hnk −H) ·M)2

]
= ‖Hnk −H‖2M → 0, as k →∞,

[35]
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that is (Hnk ·M)∞ → (H ·M)∞ in L2. Hence as N is an L2 bounded martingale, the right
hand side of the above expression tends to zero as k → ∞. Similarly as (Hnk · N)∞ →
(H ·N)∞ in L2, we see also that

E ((Hnk ·N)∞M∞) → 0, as k →∞.

Hence we can pass to the limit to obtain the result for H.
To prove the second part of the theorem, we shall first show that

〈(H ·N), (K ·M)〉+ 〈(K ·N), (H ·M)〉 = 2HK〈M,N〉.

By polarisation

〈M,N〉 =
〈M + N〉 − 〈M −N〉

4
,

also

HK =
(H + K)2 − (H −K)2

4
.

Hence

2(HK · 〈M,N〉) =
1
8

([
(H + K)2 − (H −K)2

]
· {〈M+N〉 − 〈M-N〉}

)
.

Now we use the result that 〈(H ·M)〉 = (H2 · 〈M〉) which has been proved previously in
theorem (7.9(iii)), to see that

2(HK · 〈M,N〉) =
1
8

(
〈(H + K) · (M + N)〉 − 〈(H + K) · (M −N)〉

− 〈(H −K) · (M + N)〉+ 〈(H −K) · (M −N)〉
)

.

Considering the first two terms

〈(H + K)·(M + N)〉 − 〈(H + K) · (M −N)〉 =
=〈(H + K) ·M + (H + K) ·N〉 − 〈(H + K) ·M − (H + K) ·N〉
=4〈(H + K) ·M, (H + K) ·N〉 by polarisation
=4 (〈H ·M,H ·N〉+ 〈H ·M,K ·N〉+ 〈K ·M,H ·N〉+ 〈K ·M,K ·N〉) .

Similarly for the second two terms

〈(H −K)·(M + N)〉 − 〈(H −K) · (M −N)〉 =
=〈(H −K) ·M + (H −K) ·N〉 − 〈(H −K) ·M − (H −K) ·N〉
=4〈(H −K) ·M, (H −K) ·N〉 by polarisation
=4 (〈H ·M,H ·N〉 − 〈H ·M,K ·N〉 − 〈K ·M,H ·N〉+ 〈K ·M,K ·N〉) .
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Adding these two together yields

2(HK · 〈M,N〉) = 〈(H ·N), (K ·M)〉+ 〈(K ·N), (H ·M)〉

Putting K ≡ 1 yields

2H · 〈M,N〉 = 〈H ·M,N〉+ 〈M,H ·N〉.

So it suffices to prove that 〈(H ·M), N〉 = 〈M, (H · N)〉, which is equivalent to showing
that

(H ·M)N − (H ·N)M

is a local martingale (from the definition of covariation process). By localisation it suffices
to consider M and N bounded martingales, whence we must check that for all stopping
times T ,

E ((H ·M)T NT ) = E ((H ·N)T MT ) ,

but by the first part of the theorem

E ((H ·M)∞N∞) = E ((H ·N)∞M∞) ,

which is sufficient to establish the result, since

(H ·M)T NT =(H ·M)T
∞NT

∞

(H ·N)T MT =(H ·N)T
∞MT

∞

Corollary 11.2.
Let N,M be continuous local martingales and H and K locally bounded previsible pro-
cesses, then

〈(H ·N), (K ·M)〉 = (HK · 〈N,M〉).

Proof
Note that the covariation is symmetric, hence

〈(H ·N), (K ·M)〉 =(H · 〈X, (K ·M)〉)
=(H · 〈(K ·M), X)〉)
=(HK · 〈M,N〉).

We can prove a stochastic calculus analogue of the usual integration by parts formula.
However note that there is an extra term on the right hand side, the covariation of the
processes X and Y . This is the first major difference we have seen between the Stochastic
Integral and the usual Lebesgue Integral.

Before we can prove the general theorem, we need a lemma.



Itô’s Formula 38

Lemma (Parts for Finite Variation Process and a Martingale) 11.3.
Let M be a bounded continuous martingale starting from zero, and V a bounded variation
process starting from zero. Then

MtVt =
∫ t

0

MsdVs +
∫ t

0

VsdMs.

Proof
For n fixed, we can write

MtVt =
∑
k≥1

Mk2−n∧t

(
Vk2−n∧t − V(k−1)2−n∧t

)
+
∑
k≥1

V(k−1)2−n∧t

(
Mk2−n∧t −M(k−1)2−n∧t

)
=
∑
k≥1

Mk2−n∧t

(
Vk2−n∧t − V(k−1)2−n∧t

)
+
∫ t

0

Hn
s dMs,

where Hn is the previsible simple process

Hn
s =

∑
k≥1

Vk2−n∧t1((k−1)2−n∧t,k2−n∧t](s).

These Hn are bounded and converge to V by the continuity of V , so as n →∞ the second
term tends to ∫ t

0

VsdMs,

and by the Dominated Convergence Theorem for Lebesgue-Stieltjes integrals, the second
term converges to ∫ t

0

MsdVs,

as n →∞.

Theorem (Integration by Parts) 11.4.
For X and Y continuous semimartingales, then the following holds

XtYt −X0Y0 =
∫ t

0

XsdYs +
∫ t

0

YsdXs + 〈X, Y 〉t.

Proof
It is trivial to see that it suffices to prove the result for processes starting from zero.
Hence let Xt = Mt + At and Yt = Nt + Bt in Doob-Meyer decomposition, so Nt and Mt

are continuous local martingales and At and Bt are finite variation processes, all starting
from zero. By localisation we can consider the local martingales M and N to be bounded
martingales and the FV processes A and B to have bounded variation. Hence by the usual
(finite variation) theory

AtBt =
∫ t

0

AsdBs +
∫ t

0

BsdAs.
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It only remains to prove for bounded martingales N and M starting from zero that

MtNt =
∫ t

0

MsdNs +
∫ t

0

NsdMs + 〈M,N〉t.

This follows by application of polarisation to corollary (7.3) to the quadratic variation
existence theorem. Hence

(Mt + At)(Nt + Bt) =MtNt + MtBt + NtAt + AtBt

=
∫ t

0

MsdNs +
∫ t

0

NsdMs + 〈M,N〉t

+
∫ t

0

MsdBs +
∫ t

0

BsdMs +
∫ t

0

NsdAs +
∫ t

0

AsdNs

+
∫ t

0

AsdBs +
∫ t

0

BsdAs

=
∫ t

0

(Ms + As)d(Ns + Bs) +
∫ t

0

(Ns + Bs)d(Ms + As) + 〈M,N〉.

Reflect for a moment that this theorem is implying another useful closure property of
continuous semimartingales. It implies that the product of two continuous semimartingales
XtYt is a continuous semimartingale, since it can be written as a stochastic integrals with
respect to continuous semimartingales and so it itself a continuous semimartingale.
Theorem (Itô’s Formula) 11.5.
Let f : Rn → Rn be a twice continuously differentiable function, and also let X =
(X1,X2, . . . , Xn) be a continuous semimartingale in Rn. Then

f(Xt)− f(X0) =
n∑

i=1

∫ t

0

∂f

∂xi
(Xs)dXi

s +
1
2

n∑
i,j=1

∫ t

0

∂f

∂xi∂xj
(Xs)d〈Xi, Xj〉s.

Proof
To prove Itô’s formula; first consider the n = 1 case to simplify the notation. Then let
A be the collection of C2 (twice differentiable) functions f : R → R for which it holds.
Clearly A is a vector space; in fact we shall show that it is also an algebra. To do this we
must check that if f and g are in A, then their product fg is also in A. Let Ft = f(Xt)
and Gt = g(Xt) be the associated semimartingales. From the integration by parts formula

FtGt − F0G0 =
∫ t

0

FsdGs +
∫ t

0

GsdFs + 〈Fs, Gs〉.

However since by assumption f and g are in A, Itô’s formula may be applied to them
individually, so ∫ t

0

FsdGs =
∫ t

0

f(Xs)
∂f

∂x
(Xs)dXs.
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Also by the Kunita-Watanabe formula extended to continuous local martingales we have

〈F,G〉t =
∫ t

0

f ′(Xs)g′(Xs)d〈X, X〉s.

Thus from the integration by parts,

FtGt − F0G0 =
∫ t

0

FsdGs +
∫ t

0

GsdFs +
∫ t

0

f ′(Xs)g′(Xs)d〈X, X〉s,

=
∫ t

0

(Fsg
′(Xs) + f ′(Xs)Gs) dXs

+
1
2

∫ t

0

(Fsg
′′(Xs) + 2f ′g′(Xs) + f ′′(Xs)Gs) d〈M〉s.

So this is just what Itô’s formula states for fg and so Itô’s formula also applies to fg;
hence fg ∈ A.

Since trivially f(x) = x is in A, then as A is an algebra, and a vector space this
implies that A contains all polynomials. So to complete the proof, we must approximate f
by polynomials (which we can do by standard functional analysis), and check that in the
limit we obtain Itô’s formula.

Introduce a sequence Un := inf{t : |Xt| + 〈X〉t > n}. Hence {Un} is a sequence of
stopping times tending to infinity. Now we shall prove Itô’s formula for twice continuously
differentiable f restricted to the interval [0, Un], so we can consider X as a bounded martin-
gale. Consider a polynomial sequence fk approximating f , in the sense that for r = 0, 1, 2,
f

(r)
k → f (r) uniformly on a compact interval. We have proved that Itô’s formula holds for

all polynomial, so it holds for fk and hence

fk(Xt∧Un
)− fk(X0) =

∫ t∧Un

0

f ′(Xs)dXs +
1
2

∫ t∧Un

0

f ′′k (Xs)d〈X〉s.

Let the continuous semimartingale X have Doob-Meyer decomposition

Xt = X0 + Mt + At,

where M is a continuous local martingale and A is a finite variation process. We can rewrite
the above as

fk(Xt∧Un
)− fk(X0) =

∫ t∧Un

0

f ′(Xs)dMs +
∫ t∧Un

0

f ′(Xs)dAs +
1
2

∫ t∧Un

0

f ′′k (Xs)d〈M〉s.

since 〈X〉 = 〈M〉. On (0, Un] the process |X| is uniformly bounded by n, so for r = 0, 1, 2
from the convergence (which is uniform on the compact interval [0, Un]) we obtain

sup
|x|≤n

∣∣∣f (r)
k − f (r)

∣∣∣→ 0 as k →∞

And from the Itô isometry we get the required convergence.
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11.1. Applications of Itô’s Formula
Let Bt be a standard Brownian motion; the aim of this example is to establish that:∫ t

0

BsdBs =
1
2
B2

t −
1
2
t.

This example gives a nice simple demonstration that all our hard work has achieved some-
thing. The result isn’t the same as that which would be given by the ‘logical’ extension of
the usual integration rules.

To prove this we apply Itô’s formula to the function f(x) = x2. We obtain

f(Bt)− f(B0) =
∫ t

0

∂f

∂x
(Bs)dBs +

1
2

∫ t

0

∂2f

∂x2
(Bs)d〈B,B〉s,

noting that B0 = 0 for a standard Brownian Motion we see that

B2
t = 2

∫ t

0

BsdBs +
1
2
2ds,

whence we derive that ∫ t

0

BsdBs =
B2

t

2
− t

2
.

For those who have read the foregoing material carefully, there are grounds to complain that
there are simpler ways to establish this result, notably by consideration of the definition of
the quadratic variation process. However the point of this example was to show how Itô’s
formula can help in the actual evaluation of stochastic integrals; not to establish a totally
new result.

11.2. Exponential Martingales
Exponential martingales play an important part in the theory. Suppose X is a continuous
semimartingale starting from zero. Define:

Zt = exp
(

Xt −
1
2
〈X〉t

)
.

This Zt is called the exponential semimartingale associated with Xt, and it is the
solution of the stochastic differential equation

dZt = ZtdXt,

that is

Zt = 1 +
∫ t

0

ZsdXs,

so clearly if X is a continuous local martingale, i.e. X ∈ Mc
loc then this implies, by the

stability property of stochastic integration, that Z ∈Mc
loc also.
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Proof

For existence, apply Itô’s formula to f(x) = exp(x) to obtain

d (exp(Yt)) = exp(Yt)dYt +
1
2

exp(Yt)d〈Y, Y 〉t.

Hence

d
(

exp(Xt −
1
2
〈X〉t)

)
=exp(Xt −

1
2
〈X〉t)d

(
Xt −

1
2
〈X〉t

)
+

1
2

exp
(

Xt −
1
2
〈X〉t

)
d
〈

Xt −
1
2
〈X〉t, Xt −

1
2
〈X〉t

〉
=exp(Xt −

1
2
〈X〉t)dXt −

1
2

exp
(

Xt −
1
2
〈X〉t

)
d〈X〉t

+
1
2

exp
(

Xt −
1
2
〈X〉t

)
d〈X〉t

=ZtdXt

Hence Zt certainly solves the equation. Now to check uniqueness, define

Yt = exp
(
−Xt +

1
2
〈X〉t

)
,

we wish to show that for every solution of the Stochastic Differential Equation ZtYt is a
constant. By a similar application of Itô’s formula

dYt = −YtdXt + Ytd〈X〉t,

whence by integration by parts (alternatively consider Itô applied to f(x, y) = xy),

d(ZtYt) =ZtdYt + YtdZt + 〈Z, Y 〉t,
=Zt(−YtdXt + Ytd〈X〉t) + YtZtdXt + (−YtZt)d〈X〉t,
=0.

So ZtYt is a constant, hence the unique solution of the stochastic differential equation
dZt = ZtdXt, with Z0 = 1, is

Zt = exp
(

Xt −
1
2
〈X〉t

)
.
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Example
Let Xt = λBt, for an arbitrary scalar λ. Clearly Xt is a continuous local martingale, so
the associated exponential martingale is

Mt = exp
(

λBt −
1
2
λ2t

)
.

It is clear that the exponential semimartingale of a real valued martingale must be
non-negative, and thus by application of Fatou’s lemma we can show that it is a super-
martingale, thus E(Mt) ≤ 1 for all t.
Theorem 11.6.
Let M be a non-negative local martingale, such that EM0 < ∞ then M is a supermartin-
gale.

Proof
Let Tn be a reducing sequence for Mn −M0, then for t > s ≥ 0,

E(Mt∧Tn |Fs) = E(M0|Fs) + E(Mt∧Tn −M0|Fs)
= M0 + Ms∧Tn −M0 = Ms∧Tn .

Now by application of the conditional form of Fatou’s lemma

E(Mt|Fs) = E(lim inf
n→∞

Mt∧Tn
|Fs) ≤ lim inf

n→∞
E(Mt∧Tn

|Fs) = Ms.

Thus M is a supermartingale as required.

Checking for a Martingale
The general exponential semimartingale is useful, but in many applications, not the least
of which will be Girsanov’s formula an actual Martingale will be needed. How do we go
about checking if a local martingale is a martingale anyway? It will turn out that there are
various methods, some of which crop up in the section on filtration. First I shall present a
simple example and then prove a more general theorem. A common error is to think that
it is sufficient to show that a local martingale is locally bounded in L2 to show that it is
a martingale – this is not sufficient as should be made clear by this example!

The exponential of λBt

We continue our example from above. Let Mt = exp(λBt − 1/2λ2t) be the exponential
semimartingale associated with a standard Brownian Motion Bt, starting from zero. By
the previous argument we know that

Mt = 1 +
∫ t

0

λMsdBs,

hence M is a local martingale. Fix T a constant time, which is of course a stopping time,
then BT is an L2 bounded martingale (E(BT

t )2 = t ∧ T ≤ T ). We then show that MT is
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in L2(BT ) as follows

‖MT ‖B = E

(∫ T

0

M2
s d〈B〉s

)
,

= E

(∫ T

0

M2
s ds

)
,

≤ E

(∫ T

0

exp(2λBs)ds

)
,

=
∫ T

0

E (exp(2λBs)) ds,

=
∫ T

0

exp(2λ2s2)ds < ∞.

In the final equality we use that fact that Bs is distributed as N(0, s), and we use the char-
acteristic function of the normal distribution. Thus by the integration isometry theorem
we have that (MT ·B)t is an L2 bounded martingale. Thus for every such T , ZT is an L2

bounded martingale, which implies that M is a martingale.

The Exponential Martingale Inequality
We have seen a specific proof that a certain (important) exponential martingale is a true
martingale, we now show a more general argument.

Theorem 11.7.
Let M be a continuous local martingale, starting from zero. Suppose for each t, there exists
a constant Kt such that 〈M〉t < ∞ a.s., then for every t, and every y > 0,

P
[

sup
0≤s≤t

Ms > y

]
≤ exp(−y2/2Kt).

Furthermore, the associated exponential semimartingale Zt = exp(θMt − 1/2θ2〈M〉t) is a
true martingale.

Proof

We have already noted that the exponential semimartingale Zt is a supermartingale, so
E(Zt) ≤ 1 for all t ≥ 0, and hence for θ > 0 and y > 0,

P
[
sup
s≤t

Ms > y

]
≤ P

[
sup
s≤t

Zs > exp(θy − 1/2θ2Kt)
]

,

≤ exp(−θy + 1/2θ2Kt).

Optimizing over θ now gives the desired result. For the second part, we establish the
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following bound

E
(

sup
0≤s≤t

Zs

)
≤ E

(
exp

[
sup

0≤s≤t
Zs

])
,

≤
∫ ∞

0

P [sup 0 ≤ s ≤ tZs ≥ log λ] dλ,

≤ 1 +
∫ ∞

1

exp
(
−(log λ)2/2Kt

)
dλ < ∞.

(∗)

We have previously noted that Z is a local martingale; let Tn be a reducing sequence for
Z, hence ZTn is a martingale, hence

E [Zt∧Tn |Fs] = Zs∧Tn . (∗∗)

We note that Zt is dominated by exp(θ sup0≤s≤t Zs), and thus by our bound we can
apply the dominated convergence theorem to (∗∗) as n →∞ to establish that Z is a true
martingale.

Corollary 11.8.
For all ε, δ > 0,

P
[
sup
t≥0

Mt ≥ ε & 〈M〉∞ ≤ δ

]
≤ exp(−ε2/2δ).

Proof
Set T = inf{t ≥ 0 : Mt ≥ ε}, the conditions of the previous theorem now apply to MT ,
with Kt = ε.

From this corollary, it is clear that if H is any bounded previsible process, then

exp
(∫ t

0

HsdBs −
1
2

∫ t

0

|Hs|2ds

)
is a true martingale, since this is the exponential semimartingale associated with the process∫

HdB.
Corollary 11.9.
If the bounds Kt on 〈M〉 are uniform, that is if Kt ≤ C for all t, then the exponential
martingale is Uniformly Integrable. We shall use the useful result∫ ∞

0

P(X ≥ log λ)dλ =
∫ ∞

0

E
(
1eX≥λ

)
dλ = E

∫ ∞

0

1eX≥λdλ = E(eX).

Proof
Note that the bound (∗) extends to a uniform bound

E
(

sup
t≥0

Zt

)
≤ 1 +

∫ ∞

1

exp
(
−(log λ)2/2C

)
dλ < ∞.

Hence Z is bounded in L∞ and thus a uniformly integrable martingale.



12. Lévy Characterisation of Brownian Motion

A very useful result can be proved using the Itô calculus about the characterisation of
Brownian Motion.

Theorem 12.1.
Let {Bi}t≥0 be continuous local martingales starting from zero for i = 1, . . . , n. Then
Bt = (B1

t , . . . , Bn
t ) is a Brownian motion with respect to (Ω,F , P) adapted to the filtration

Ft, if and only iff

〈Bi, Bj〉t = δijt ∀i, j ∈ {1, . . . , n}.

Proof
In these circumstances it follows that the statement Bt is a Brownian Motion is by definition
equivalent to stating that Bt − Bs is independent of Fs and is distributed normally with
mean zero and covariance matrix (t− s)I.

Clearly if Bt is a Brownian motion then the covariation result follows trivially from the
definitions. Now to establish the converse, we assume 〈Bi, Bj〉t = δijt for i, j ∈ {1, . . . , n},
and shall prove Bt is a Brownian Motion.

Observe that for fixed θ ∈ Rn we can define Mθ
t by

Mθ
t := f(Bt, t) = exp

(
i(θ, x) +

1
2
|θ|2 t

)
.

By application of Itô’s formula to f we obtain (in differential form using the Einstein
summation convention)

d (f(Bt, t)) =
∂f

∂xj
(Bt, t)dBj

t +
∂f

∂t
(Bt, t)dt +

1
2

∂2f

∂xj∂xk
(Bt, t)d〈Bj , Bk〉t,

=iθjf(Bt, t)dBj
t +

1
2
|θ|2 f(Bt, t)dt− 1

2
θjθkδjkf(Bt, t)dt

=iθjf(Bt, t)dBj
t .

Hence

Mθ
t = 1 +

∫ t

0

d(f(Bt, t)),

and is a sum of stochastic integrals with respect to continuous local martingales and is
hence itself a continuous local martingale. But note that for each t,

|Mθ
t | =

(
e

1
2 |θ|

2t
)

< ∞

Hence for any fixed time t0, (M t0)t satisfies

|(M t0)t| ≤ |(M t0)∞| < ∞,

[46]
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and so is a bounded local martingale; hence (M t0)t) is a martingale. Hence M t0 is a genuine
martingale. Thus for 0 ≤ s < t we have

E (exp (i(θ, Bt −Bs)) |Fs ) = exp
(
−1

2
(t− s) |θ|2

)
a.s.

However this is just the characteristic function of a normal random variable following
N(0, t − s); so by the Lévy character theorem Bt − Bs is a N(0, t − s) random variable.



13. Time Change of Brownian Motion

This result is one of frequent application, essentially it tells us that any continuous local
martingale starting from zero, can be written as a time change of Brownian motion. So
modulo a time change a Brownian motion is the most general kind of continuous local
martingale.
Proposition 13.1.
Let M be a continuous local martingale starting from zero, such that 〈M〉t →∞ as t →∞.
Then define

τs := inf{t > 0 : 〈M〉t > s}.

Then define
Ãs := Mτs .

(i) This τs is an F stopping time.
(ii) 〈M〉τs

= s.
(iii) The local martingale M can be written as a time change of Brownian Motion as
Mt = B〈M〉

t

. Moreover the process Ãs is an F̃s adapted Brownian Motion, where F̃s is

the time-changed σ algebra i.e. F̃s = Fτs
.

Proof
We may assume that the map t 7→ 〈M〉t is strictly increasing. Note that the map s 7→ τs is
the inverse to t 7→ 〈M〉t. Hence the results (i),(ii) and (iii).

Define
Tn := inf{t : |M |t > n},

[Un := 〈M〉Tn
.

Note that from these definitions

τt∧Un
= inf{s > 0 : 〈M〉s > t ∧ Un}
= inf{s > 0 : 〈M〉s > t ∧ 〈M〉Tn

}
=Tn ∧ τt

So
ÃUn

s = Ãs∧Un
= MTn

τt
.

Now note that Un is an F̃t stopping time, since consider

Λ ≡ {Un ≤ t} ≡ {〈M〉Tn
≤ t} ≡ {Tn ≤ τt},

the latter event is clearly Fτt measurable i.e. it is F̃t measurable, so Un is a F̃t stopping
time. We may now apply the optional stopping theorem to the UI martingale MTn , which
yields

E
(
ÃUn

t |Fs

)
=E

(
Ãt∧Un |F̃s

)
= E

(
MTn

τt
|F̃s

)
=E

(
MTn

τt
|Fτs

)
= MTn

τs
= ÃUn

s .

[48]
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So Ãt is a F̃t local martingale. But we also know that (M2 − 〈M〉)Tn is a UI martingale,
since MTn is a UI martingale. By the optional stopping theorem, for 0 < r < s we have

E
(
Ã2

s∧Un
− (s ∧ Un)|F̃r

)
= E

(((
MTn

τs

)2 − 〈M〉τs∧Tn

)
|Fτr

)
=E

((
M2

τs
− 〈M〉τs

)Tn |Fτr

)
=
(
M2

τr
− 〈M〉τr

)Tn

=Ã2
r∧Un

− (r ∧ Un).

Hence Ã2− t is a F̃t local martingale. Before we can apply Lévy’s characterisation theorem
we must check that Ã is continuous; that is we must check that for almost every ω that
M is constant on each interval of constancy of 〈M〉. By localisation it suffices to consider
M a square integrable martingale, now let q be a positive rational, and define

Sq := inf{t > q : 〈M〉t > 〈M〉q},

then it is enough to show that M is constant on [q, Sq). But M2 − 〈M〉 is a martingale,
hence

E
[(

M2
Sq
− 〈M〉Sq

)2

|Fq

]
=M2

q − 〈M〉q

=M2
q − 〈M〉Sq

, as 〈M〉q = 〈M〉Sq
.

Hence
E
[(

MSq
−Mq

)2 |Fq

]
= 0,

which establishes that Ã is continuous.
Thus Ã is a continuous F̃t adapted martingale with 〈Ãs〉s = s and so by the Lévy

characterisation theorem Ãs is a Brownian Motion.

13.1. Gaussian Martingales
The time change of Brownian Motion can be used to prove the following useful theorem.
Theorem 13.2.
If M is a continuous local martingale starting from zero, and 〈M〉t is deterministic, that
is if we can find a deterministic function f taking values in the non-negative real numbers
such that 〈M〉t = f(t) a.e., then M is a Gaussian Martingale (i.e. Mt has a Gaussian
distribution for almost all t).

Proof
Note that by the time change of Brownian Motion theorem, we can write Mt as a time
change of Brownian Motion through

Mt = B〈M〉
t

,

where B is a standard Brownian Motion. By hypothesis 〈M〉t = f(t), a deterministic
function for almost all t, hence for almost all t,

Mt = Bf(t),
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but the right hand side is a Gaussian random variable following N(0, f(t)). Hence M is a
Gaussian Martingale, and at time t it has distribution given by N(0, 〈M〉t).

As a corollary consider the stochastic integral of a purely deterministic function with
respect to a Brownian motion.
Corollary 13.3.
Let g(t) be a deterministic function of t, then M defined by

Mt :=
∫ t

0

f(s)dBs,

satisfies

Mt ∼ N

(
0,

∫ t

0

|f(s)|2ds

)
.

Proof
From the definition of M via a stochastic integral with respect to a continuous martingale,
it is clear that M is a continuous local martingale, and by the Kunita-Watanabe result,
the quadratic variation of M is given by

〈M〉t =
∫ t

0

|f(s)|ds,

hence the result follows.

This result can also be established directly in a fashion which is very similar to the
proof of the Lévy characterisation theorem. Consider Z defined via

Zt = exp
(

iθMt +
1
2
θ2〈M〉t

)
,

as in the Lévy characterisation proof, we see that this is a continuous local martingale,
and by boundedness furthermore is a martingale, and hence

E(Z0) = E(Zt),

whence

E (exp(iθMt)) = E
(

exp
(
−1

2
θ2

∫ t

0

f(s)2ds

))
which is the characteristic function of the appropriate normal distribution.



14. Girsanov’s Theorem

Girsanov’s theorem is an element of stochastic calculus which does not have an analogue
in standard calculus.

14.1. Change of measure
When we wish to compare two measures P and Q, we don’t want either of them simply to
throw information away; since when they are positive they can be related by the Radon-
Nikodym derivative; this motivates the following definition of equivalence of two measures.
Definition 14.1.
Two measures P and Q are said to be equivalent if they operate on the same sample space,
and if A is any event in the sample space then

P(A) > 0 ⇔ Q(A) > 0.

In other words P is absolutely continuous with respect to Q and Q is absolutely continuous
with respect to P.

Theorem 14.2.
If P and Q are equivalent measures, and Xt is an Ft-adapted process then the following
results hold

EQ(Xt) = EP

(
dQ
dP

Xt

)
,

EQ(Xt|Fs) = L−1
s EP (LtXt|Fs) ,

where

Ls = EP

(
dQ
dP

∣∣∣∣Fs

)
.

Here Lt is the Radon-Nikodym derivative of Q with respect to P. The first result basically
shows that this is a martingale, and the second is a continuous time version of Bayes
theorem.
Proof
The first part is basically the statement that the Radon-Nikodym derivative is a martingale.
This follows because the measures P and Q are equivalent, but this will not be proved in
detail here. Let Y be an Ft measurable random variable, such that EQ(|Y |) < ∞. We shall
prove that

EQ(Y |Fs) =
1
Ls

EP [Y Lt|Fs] a.s. (P and Q).

Then for any A ∈ Fs, using the definition of conditional expectation we have that

EQ

(
1A

1
Ls

EP [Y Lt|Fs]
)

=EP (1AEP [Y Lt|Fs])

=EP [1AY Lt] = EQ [1AY ] .

Substituting Y = Xt gives the desired result.

[51]
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Theorem (Girsanov).
Let M be a continuous local martingale, and let Z be the associated exponential martingale

Zt = exp
(

Mt −
1
2
〈M〉t

)
.

If Z is uniformly integrable, then a new measure Q, equivalent to P may be defined by

dQ
dP

= Z∞.

Then if X is a continuous P local martingale, X − 〈X, M〉 is a Q local martingale.

Proof
Since Z∞ exists a.s. it defines a uniformly integrable martingale (the exponential mar-
tingale), a version of which is given by Zt = E(Z∞|Ft). Hence Q constructed thus is
a probability measure which is equivalent to P. Now consider X, a P local martingale.
Define a sequence of stopping times which tend to infinity via

Tn := inf{t ≥ 0 : |Xt| ≥ n, or |〈X, M〉t| ≥ n}.

Now consider the process Y defined via

Y := XTn − 〈XTn ,M〉.

By Itô’s formula for 0 ≤ t ≤ Tn, remembering that dZt = ZtdMt as Z is the exponential
martingale associated with M ,

d(ZtYt) =ZtdYt + YtdZt + 〈Z, Y 〉
=Zt(dXt − d〈X, M〉) + YtZtdMt + 〈Z, Y 〉
=Zt(dXt − d〈X, M〉) + (Xt − 〈X, M〉t)ZtdMt + Ztd〈X, M〉
=(Xt − 〈X, M〉t)ZtdMt + ZtdXt

Where the result 〈Z, Y 〉t = Zt〈X, M〉t follows from the Kunita-Watanabe theorem. Hence
ZY is a P-local martingale. But since Z is uniformly integrable, and Y is bounded (by
construction of the stopping time Tn), hence ZY is a genuine P-martingale. Hence for s < t
and A ∈ Fs, we have

EQ [(Yt − Ys)1A] = E [Z∞(Yt − Ys)1A] = E [(ZtYt − ZsYs)1A] = 0,

hence Y is a Q martingale. Thus X−〈X, M〉 is a Q local martingale, since Tn is a reducing
sequence such that (X − 〈X, M〉)Tn is a Q-martingale, and Tn ↑ ∞ as n →∞.

Corollary 14.3.
Let Wt be a P Brownian motion, then W̃t := Wt − 〈W,M〉t is a Q Brownian motion.

Proof
Use Lévy’s characterisation of Brownian motion to see that since W̃t is continuous and
〈W̃ , W̃ 〉t = 〈W,W 〉t = t, since Wt is a P Brownian motion, then W̃ is a Q Brownian
motion.



15. Brownian Martingale Representation Theorem

The following theorem has many applications, for example in the rigorous study of math-
ematical finance, even though the result is purely an existence theorem. The Malliavin
calculus offers methods by which the process H in the following theorem can be stated
explicitly, but these methods are beyond the scope of these notes!
Theorem 15.1.
Let Bt be a Brownian Motion on Rn and Gt is the usual augmentation of the filtration
generated by Bt. If Y is L2 integrable and is measurable with respect to G∞ then there
exists a previsible Gt measurable process Hs uniquely defined up to evanescence such that

E(Y |Gt) = E(Y ) +
∫ t

0

Hs · dBs (1)

The proof of this result can seem hard if you are not familiar with functional analysis
style arguments. The outline of the proof is to describe all Y s which are GT measurable
which cannot be represented in the form (1) as belonging to the orthogonal complement of
a space. Then we show that for Z in this orthogonal complement that E(ZX) = 0 for all X
in a large space of GT measurable functions. Finally we show that this space is sufficiently
big that actually we have proved this for all GT measurable functions, which includes Z so
E(Z2) = 0 and hence Z = 0 a.s. and we are done!
Proof
Without loss of generality prove the result in the case EY = 0 where Y is L2 integrable
and measurable with respect to GT for some constant T > 0.

Define the space

L2
T (B) =

{
H : H is Gt previsible and E

(∫ T

0

‖Hs‖2ds

)
< ∞

}
Consider the stochastic integral map

I : L2
T (B) → L2(GT )

defined by

I(H) =
∫ T

0

Hs · dBs.

As a consequence of the Itô isometry theorem, this map is an isometry. Hence the image V
under I of the Hilbert space L2

T (B) is complete and hence a closed subspace of L2
0(GT ) =

{H ∈ L2(GT ) : EH = 0}. The theorem will be proved if we can establish that the image is
the whole space.

We follow the usual approach in such proofs; consider the orthogonal complement of
V in L2

0(GT ) and we aim to show that every element of this orthogonal complement is zero.
Suppose that Z is in the orthogonal complement of L2

0(GT ), thus

E(ZX) = 0 for all X ∈ L2
0(GT ) (2)

[53]
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We can define Zt = E(Z|Gt) which is an L2 bounded martingale. We know that the sigma
field G0 is trivial by the 0-1 law therefore

Z0 = E(Z|G0) = EZ = 0.

Let H ∈ L2(B) let NT = I(H); we may define Nt = E(NT |Gt) for 0 ≤ t ≤ T . Clearly
NT ∈ V as it is the image under I of some H.

Let S be a stopping time such that S ≤ T then

NS = E(NT |GS) = E

(∫ S

0

Hs · dBs +
∫ T

S

Hs · dBs

∣∣∣∣∣GS

)
= I(H1(0,S]),

so consequently NS ∈ V . The orthogonality relation (2) then implies that E(ZNS) = 0.
Thus using the martingale property of Z,

E(ZNS) = E(E(ZNS |GS)) = E(NSE(Z|GS)) = E(ZSNS) = 0

Since ZT and NT are square integrable, it follows that ZtNt is a uniformly integrable
martingale.

Since the stochastic exponential of a process may be written as

Mt = E(iθ ·Bt) = exp
(

iθ ·Bt +
1
2
|θ|2t

)
=
∫ t

0

iMtθ · dBt,

such a process can be taken as H = iθMt in the definition of NT and by the foregoing
argument we see that ZtMt is a martingale. Thus

ZsMs = E(ZtMt|Gs) = E
(

Zt exp
(

iθ ·Bt +
1
2
|θ|2t

)∣∣∣∣Gs

)
Thus

Zs exp
(
−1

2
|θ|2(t− s)

)
= E (Zt exp (iθ · (Bt −Bs)| Gs)) .

Consider a partition 0 < t1 < t2 < · · · < tm ≤ T , and by repeating the above argument,
conditioning on each Gtj

we establish that

E

ZT exp

i
∑

j

θj · (Btj
−Btj−1)

 = E
(

Z0 exp
(
−1

2

∑
(tj − tj−1)|θj |2

))
= 0,

(3)
where the last equality follows since Z0 = 0.

This is true for any choices of θj ∈ Rn for j = 1, . . . n. The complex valued functions
defined on (Rn)m by

P (r)(x1, . . . ,xm) =
K(n)∑
k=1

c
(r)
k exp

i
m∑

j=1

a(r)
j,k · xj
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clearly separate points (i.e. for given distinct points we can choose coefficients such that the
functions have distinct values at these points), form a linear space and are closed under
complex conjugation. Therefore by the Stone-Weierstass theorem (see [Bollobas, 1990]),
their uniform closure is the space of complex valued functions (recall that the complex
variable form of this theorem only requires local compactness of the domain).

Therefore we can approximate any continuous bounded complex valued function f :
(Rn)m → C by a sequence of such P s. But we have already shown in (3) that

E
(
ZT P (r)(Bt1 , . . . ,Btn)

)
= 0

Hence by uniform approximation we can extend this to any f continuous, bounded

E (ZT f(Bt1 , . . . ,Btn
)) = 0.

Now we use the monotone class framework; consider the class H such that for H ∈ H,

E(ZT H) = 0

This {calH} is a vector space, and contains the constant one since E(Z) = 0. The fore-
going argument shows that it contains all H measurable with respect to the sigma field
σ(Bt1 , . . . ,Btn

) with 0 < t1 < t2 < · · · < tn ≤ T . Thus the monotone class theorem
implies that it contains all functions which are measurable with respect to GT .

The function ZT ∈ GT , and we have shown E(ZT X) = 0 for X ∈ GT . Thus we can
take X = ZT whence E(Z2

T ) = 0 which implies that ZT = 0 a.s.. This establishes the
desired result.

The reader should examine the latter part of the proof carefully; it is in fact related
to the proof that the set{

exp
(

i

∫ t

0

θs · dBs

)
: θ ∈ L∞([0, t], Rm)

}
is total in L1. A set S is said to be total if E(af) = 0 for all a ∈ S implies a = 0 a.s.. The
full proof of this result will reappear in a more abstract form in the stochastic filtering
section of these notes.



16. Stochastic Differential Equations

Stochastic differential equations arise naturally in various engineering problems, where the
effects of random ‘noise’ perturbations to a system are being considered. For example in
the problem of tracking a satelite, we know that it’s motion will obey Newton’s law to a
very high degree of accuracy, so in theory we can integrate the trajectories from the initial
point. However in practice there are other random effects which perturb the motion.

The variety of SDE to be considered here describes a diffusion process and has the
form

dXt = b(t, Xt) + σ(t,Xt)dBt, (∗)
where bi(x, t), and σij(t, x) for 1 ≤ i ≤ d and 1 ≤ j ≤ r are Borel measurable functions.

In practice such SDEs generally occur written in the Statonowich form, but as we have
seen the Itô form has numerous calculational advantages (especially the fact that local
martinagles are a closed class under the Itô integral), so it is conventional to transform the
SDE to the Itô form before proceeding.

Strong Solutions
A strong solution of the SDE (∗) on the given probability space (Ω,F , P) with initial
condition ζ is a process (Xt)t≥0 which has continuous sample paths such that
(i) Xt is adapted to the augmented filtration generated by the Brownian motion B and

initial condition ζ, which is denoted Ft.
(ii) P(X0 = ζ) = 1
(iii) For every 0 ≤ t < ∞ and for each 1 ≤ i ≤ d and 1 ≤ j ≤ r, then the folllowing holds

almost surely ∫ t

0

(
|bi(s,Xs)|+ σ2

ij(s,Xs)
)
ds < ∞,

(iv) Almost surely the following holds

Xt = X0 +
∫ t

0

b(s,Xs)ds +
∫ t

0

σ(s,Xs)dBs.

Lipshitz Conditions
Let ‖ · ‖ denote the usual Euclidean norm on Rd. Recall that a function f is said to be
Lipshitz if there exists a constant K such that

‖f(x)− f(y)‖ ≤ K‖x− y‖,

we shall generalise the norm concept to a (d× r) matrix σ by defining

‖σ‖2 =
d∑

i=1

r∑
j=1

σ2
ij .

The concept of Liphshitz continuity can be extended to that of local Lipshitz continuity,
by requiring that for each n there exists Kn, such that for all x and y such that ‖x‖ ≤ n
and ‖y‖ ≤ n then

‖f(x)− f(y)‖ ≤ Kn‖x− y‖.

[56]
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Strong Uniqueness of Solutions

Theorem (Uniqueness) 16.1.
Suppose that b(t, x) and σ(t, x) are locally Lipshitz continuous in the spatial variable (x).
That is for every n ≥ 1 there exists a constant Kn > 0 such that for every t ≥ 0, ‖x‖ ≤ n
and ‖y‖ ≤ n the following holds

‖b(t, x)− b(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ Kn‖x− y‖.

Then strong uniqueness holds for the pair (b, σ), which is to say that if X and X̃ are two
strong solutions of (∗) relative to B with initial condition ζ then X and X̃ are indistin-
guishable, that is

P
[
Xt = X̃t∀t : 0 ≤ t < ∞

]
= 1.

The proof of this result is importanty inasmuch as it illustrates the first example of a
technique of bounding which recurs again and again throughout the theory of stochastic
differential equations. Therefore I make no appology for spelling the proof out in excessive
detail, as it is most important to understand exactly where each step comes from!

Proof
Suppose that X and X̃ are strong solutions of (∗), relative to the same brownian motion
B and initial condition ζ on the same probability space (Ω,F , P). Define a sequence of
stopping times

τn = inf{t ≥ 0 : ‖Xt‖ ≥ n}, and τ̃n = inf{t ≥ 0 : ‖Yt‖ ≥ n}.

Now set Sn = min(τn, τ̃n). Clearly Sn is also a stopping time, and Sn → ∞ a.s. (P) as
n →∞. These stopping times are only needed because b and σ are being assumed merely
to be locally Lipshitz. If they are assumed to be Lipshitz, as will be needed in the existence
part of the proof, then this complexity may be ignored.

Hence

Xt∧Sn
− X̃t∧Sn

=
∫ t∧Sn

0

(
b(u, Xu)− b(u, X̃u)

)
du

+
∫ t∧Sn

0

(
σ(u, Xu)− σ(u, X̃u)

)
dWu.

Now we consider evaluating E‖Xt∧Sn − X̃t∧Sn‖2, the first stage follows using the identity
(a + b)2 ≤ 4(a2 + b2),

E‖Xt∧Sn
− X̃t∧Sn

‖2 ≤4E

[∫ t∧Sn

0

(
b(u, Xu)− b(u, X̃u)

)
du

]2

+ 4E

[∫ t∧Sn

0

(
σ(u, Xu)− σ(u, X̃u)

)
dWu

]2
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Considering the second term, we use the Itô isometry which we remember states that
‖(H ·M)‖2 = ‖H‖M , so

E

[∫ t∧Sn

0

(
σ(u, Xu)− σ(u, X̃u)

)
dWu

]2

=E

[∫ t∧Sn

0

|σ(u, Xu)− σ(u, X̃u)|2du

]

The classical Hölder inequality (in the form of the Cauchy Schwartz inequality) for
Lebsgue integrals which states that for p, q ∈ (1,∞), with p−1 + q−1 = 1 the following
inequality is satisfied.

∫
|f(x)g(x)|dµ(x) ≤

(∫
|f(x)|pdµ(x)

)1/p(∫
|g(x)|qdµ(x)

)1/q

This result may be applied to the other term, taking p = q = 2 which yields

E

[∫ t∧Sn

0

(
b(u, Xu)− b(u, X̃u)

)
du

]2

≤ E

[∫ t∧Sn

0

∣∣∣b(u, Xu)− b(u, X̃u)
∣∣∣ du

]2

≤ E

[∫ t∧Sn

0

1ds

∫ t∧Sn

0

(
b(u, Xu)− b(u, X̃u)

)2

ds

]

≤ E

[
t

∫ t∧Sn

0

(
b(u, Xu)− b(u, X̃u)

)2
]

Thus combining these two useful inequalities and using the nth local Lipshitz relations we
have that

E‖Xt∧Sn − X̃t∧Sn‖2 ≤4tE

[∫ t∧Sn

0

(
b(u, Xu)− b(u, X̃u)

)2
]

+ 4E

[∫ t∧Sn

0

|σ(u, Xu)− σ(u, X̃u)|2du

]

≤ 4(T + 1)K2
nE
∫ t

0

(
Xu∧Sn

− X̃u∧Sn

)2

du

Now by Gronwall’s lemma, which in this case has a zero term outside of the integral, we
see that E‖Xt∧Sn − X̃t∧Sn‖2 = 0, and hence that P(Xt∧Sn = X̃t∧Sn) = 1 for all t < ∞.
That is these two processes are modifications, and thus indistinguishable. Letting n →∞
we see that the same is true for {Xt}t≥0 and {X̃t}t≥0.

Now we impose Lipshitz conditions on the functions b and σ to produce an existence
result. The following form omits some measure theoretic details which are very important;
for a clear treatment see Chung & Williams chapter 10.
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Theorem (Existence) 16.2.
If the coefficients b and σ satisfy the global lipshitz conditions that for all u, t

b(u, x)− b(u, y) ≤ K|x− y|, |σ(t, x)− σ(t, y)| ≤ K|x− y|,

and additionally the bounded growth condition

|b(t, x)|2 + |σ(t, x)|2 ≤ K2(1 + |x|2)

Fix a probability space (Ω,F , P). Let ξ be a random valued vector, independent of the
Brownian Motion Bt, with finite second moment. Let Ft be the augmented filtration as-
sociated with the Brownian Motion Bt and ξ. Then there exists a continuous, adapted
process X which is a strong solution of the SDE with initial condition ξ. Additionally this
process is square integrable: for each T > 0 there exists C(K, T ) such that

E|Xt|2 ≤ C
(
1 + E|ξ|2

)
eCt,

for 0 ≤ t ≤ T .

Proof
This proof proceeds by Picard iteration through a map F , analogously to the deterministic
case to prove the existence of solutions to first order ordinary differential equations. This is
a departure from the more conventional proof of this result. Let F be a map from the space
CT of continuous adapted processes X from Ω× [0, T ] to R, such that E

[(
supt≤T Xt

)2]
<

∞. Define X
(k)
t recursively, with X

(0)
t = ξ, and

X
(k+1)
t = F (Xk)t = ξ +

∫ t

0

b(s,X(k)
s )ds +

∫ t

0

σ(s,X(k)
s )dBs

[Note: we have left out checking that the image of X under F is indeed adapted!] Now note
that using (a+ b)2 ≤ 2a2 +ab2, we have using the same bounds as in the uniqueness result
that

E

[(
sup

0≤t≤T
F (X)t − F (Y )t

)2
]
≤ 2E

sup
t≤T

∣∣∣∣∣
∫ T

0

(σ(Xs)− σ(Ys)) dBs

∣∣∣∣∣
2


+ 2E

sup
t≤T

∣∣∣∣∣
∫ T

0

(b(Xs)− b(Ys)) ds

∣∣∣∣∣
2


≤ 2K2(4 + T )
∫ T

0

E

[(
sup
t≤T

|Xt − Yt|2
)2
]

dt.

By induction we see that for each T we can prove

E

[(
sup
t≤T

Fn(X)− Fn(Y )
)2
]
≤ CnTn

n!
E

[(
sup
t≤T

Xt − Yt

)2
]
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So by taking n sufficiently large we have that Fn is a contraction mapping and so by the
contraction mapping theorem, Fn mapping CT to itself has a fixed point, which must be
unique, call it X(T ). Clearly from the uniqueness part X

(T )
t = X

(T ′)
t for t ≤ T ∧ T ′ a.s.,

and so we may consistently define X ∈ C by

Xt = X
(N)
t for t ≤ N, N ∈ N,

which solves the SDE, and has already been shown to be unique.



17. Relations to Second Order PDEs

The aim of this section is to show a rather surprising connection between stochastic differ-
ential equations and the solution of second order partial differential equations. Surprising
though the results may seem they often provide a viable route to calculating the solutions
of explicit PDEs (an example of this is solving the Black-Scholes Equation in Option Pric-
ing, which is much easier to solve via stochastic methods, than as a second order PDE).
At first this may well seem to be surprising since one problem is entirely deterministic and
the other in inherently stochastic!

17.1. Infinitesimal Generator
Consider the following d-dimensional SDE,

dXt =b(Xt)dt + σ(Xt)dBt,

X0 =x0

where σ is a d× d matrix with elements σ = {σij}. This SDE has infinitesimal generator
A, where

A =
d∑

j=1

bk(Xt)
∂

∂xj
+

1
2

d∑
i=1

d∑
j=1

d∑
k=1

σik(Xt)σkj(Xt)
∂2

∂xi∂xj
.

It is conventional to set

aij =
d∑

k=1

σikσkj ,

whence A takes the simpler form

A =
d∑

j=1

bj(Xt)
∂

∂xj
+

1
2

d∑
i=1

d∑
j=1

aij(Xt)
∂2

∂xi∂xj
.

Why is the definition useful? Consider application of Itô’s formula to f(Xt), which
yields

f(Xt)− f(X0) =
∫ t

0

d∑
j=1

∂f

∂xj
(Xs)dXs +

1
2

∫ t

0

d∑
i=1

d∑
j=1

∂2f

∂xi∂xj
(Xs)d〈Xi, Xj〉s.

Substituting for dXt from the SDE we obtain,

f(Xt)− f(X0) =
∫ t

0

 d∑
j=1

bj(Xs)
∂f

∂xj
(Xs) +

1
2

d∑
i=1

d∑
j=1

d∑
k=1

σikσkj
∂2f

∂xi∂xj
(Xs)

dt

+
∫ t

0

d∑
j=1

σij(Xs)
∂f

∂xj
(Xs)dBs

=
∫ t

0

Af(Xs)ds +
∫ t

0

d∑
j=1

σij(Xs)
∂f

∂xj
(Xs)dBs

[61]
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Definition 17.1.
We say that Xt satisfies the martingale problem for A, if Xt is Ft adapted and

Mt = f(Xt)− f(X0)−
∫ t

0

Af(Xs)ds,

is a martingale for each f ∈ C2
c (Rd).

It is simple to verify from the foregoing that any solution of the associated SDE
solves the martingale problem for A. This can be generalised if we consider test functions
φ ∈ C2(R+ × Rd, R), and define

Mφ
t := φ(t,Xt)− φ(0,X0)−

∫ t

0

(
∂

∂s
+ A

)
φ(s,Xs)ds.

then Mφ
t is a local martingale, for Xt a solution of the SDE associated with the infinitesimal

generator A. The proof follows by an application of Itô’s formula to Mφ
t , similar to that

of the above discussion.

17.2. The Dirichlet Problem
Let Ω be a subspace of Rd with a smooth boundary ∂Ω. The Dirichlet Problem for f is
defined as the solution of the system

Au + φ = 0 on Ω,

u = f on ∂Ω.

Where A is a second order partial differential operator of the form

A =
d∑

j=1

bj(Xt)
∂

∂xj
+

1
2

d∑
i=1

d∑
j=1

aij(Xt)
∂2

∂xi∂xj
,

which is associated as before to an SDE. This SDE will play an important role in what is
to follow.

A simple example of a Dirichlet Problem is the solution of the Laplace equation in
the disc, with Dirichlet boundary conditions on the boundary, i.e.

∇2u = 0 on D,

u = f on ∂D.
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Theorem 17.2.
For each f ∈ C2

b (∂Ω) there exists a unique u ∈ C2
b (Ω) solving the Dirichlet problem for f .

Moreover there exists a continuous function m : Ω → (0,∞) such that for all f ∈ C2
b (∂Ω)

this solution is given by

u(x) =
∫

∂Ω

m(x,y)f(y)σ(dy).

Now remember the SDE which is associated with the infinitesimal generator A:

dXt =b(Xt)dt + σ(Xt)dBt,

X0 =x0

Often in what follows we shall want to consider the conditional expectation and probability
measures, conditional on x0 = x, these will be denoted Ex and Px respectively.
Theorem (Dirichlet Solution).
Define a stopping time via

T := inf{t ≥ 0 : Xt /∈ Ω}.

Then u(x) given by

u(x) := Ex

[∫ T

0

φ(Xs)ds + f(XT )

]
,

solves the Dirichlet problem for f .

Proof
Define

Mt := u(XT∧t) +
∫ t∧T

0

φ(Xs)ds.

We shall now show that this Mt is a martingale. For t ≥ T , it is clear that dMt = 0. For
t < T by Itô’s formula

dMt = du(Xt) + φ(Xt)dt.

Also, by Itô’s formula,

du(Xt) =
d∑

j=1

∂u

∂xi
(Xt)dXi

t +
1
2

d∑
i=1

d∑
j=1

∂2u

∂xi∂xj
(Xt)d〈Xi, Xj〉t

=
d∑

j=1

∂u

∂xj
(Xt) [b(Xt)dt + σ(Xt)dBt] +

1
2

d∑
i=1

d∑
j=1

d∑
k=1

σikσkj
∂du

∂xi∂xj
(Xt)dt

=Au(Xt)dt +
d∑

j=1

σ(Xt)
∂u

∂xj
(Xt)dBt.

Putting these two applications of Itô’s formula together yields

dMt = (Au(Xt) + φ(Xt)) dt +
d∑

j=1

σ(Xt)
∂u

∂xj
(Xt)dBt.
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but since u solves the Dirichlet problem, then

(Au + φ)(Xt) = 0,

hence

dMt =(Au(Xt) + φ(Xt)) dt +
d∑

j=1

σ(Xt)
∂u

∂xj
(Xt)dB

j
t ,

=
d∑

j=1

σ(Xt)
∂u

∂xj
(Xt)dB

j
t .

from which we conclude by the stability property of the stochastic integral that Mt is a
local martingale. However Mt is uniformly bounded on [0, t], and hence Mt is a martingale.

In particular, let φ(x) ≡ 1, and f ≡ 0, by the optional stopping theorem, since T ∧ t
is a bounded stoppping time, this gives

u(x) = Ex(M0) = Ex(MT∧t) = Ex [u(XT∧t) + (T ∧ t)].

Letting t → ∞, we have via monotone convergence that Ex(T ) < ∞, since we know that
the solutions u is bounded from the PDE solution existance theorem; hence T < ∞ a.s..
We cannot simply apply the optional stopping theorem directly, since T is not necessarily
a bounded stopping time. But for arbitrary φ and f , we have that

|Mt| ≤ ‖u‖∞ + T‖φ‖∞ = sup
x∈Ω

|u(x)|+ T sup
x∈Ω

|φ(x)|,

whence as Ex(T ) < ∞, the martingale M is uniformly integrable, and by the martingale
convergence theorem has a limit M∞. This limiting random variable is given by

M∞ = f(XT ) +
∫ T

0

φ(Xs)ds.

Hence from the identity ExM0 = ExM∞ we have that,

u(x) = Ex(M0) = Ex(M∞) = Ex

[
f(XT ) +

∫ T

0

φ(Xs)ds

]
.
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17.3. The Cauchy Problem
The Cauchy Problem for f , a C2

b function, is the solution of the system

∂u

∂t
= Au on Ω

u(0,x) = f(x) on x ∈ Ω
u(t,x) = f(x) ∀t ≥ 0, on x ∈ ∂Ω

A typical problem of this sort is to solve the heat equation,

∂u

∂t
=

1
2
∇2u,

where the function u represents the temperature in a region Ω, and the boundary condition
is to specify the temperature field over the region at time zero, i.e. a condition of the form

u(0,x) = f(x) for x ∈ Ω,

In addition the boundary has its temperature fixed at zero,

u(0,x) = 0 for x ∈ ∂Ω.

If Ω is just the real line, then the solution has the beautifully simple form

u(t, x) = Ex (f(Bt)) ,

where Bt is a standard Brownian Motion.
Theorem (Cauchy Existence) 17.3.
For each f ∈ C2

b (Rd) there exists a unique u in C1,2
b (R×Rd) such that u solves the Cauchy

Problem for f . Moreover there exists a continuous function (the heat kernel)

p : (0,∞)× Rd × Rd → (0,∞),

such that for all f ∈ C2
b (Rd), the solution to the Cauchy Problem for f is given by

u(t,x) =
∫

Rd

p(t,x,y)f(y)dy.

Theorem 17.4.
Let u ∈ C1,2

b (R× Rd) be the solution of the Cauchy Problem for f . Then define

T := inf{t ≥ 0 : Xt /∈ Ω},

a stopping time. Then
u(t,x) = Ex [f(XT∧t)]
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Proof
Fix s ∈ (0,∞) and consider the time reversed process

Mt := u((s− t) ∧ T,Xt∧T ).

There are three cases now to consider; for 0 ≤ T ≤ t ≤ s, Mt = u((s − t) ∧ T,XT ),
where XT ∈ ∂Ω, so from the boundary condition, Mt = f(XT ), and hence it is clear that
dMt = 0. For 0 ≤ s ≤ T ≤ t and for 0 ≤ t ≤ s ≤ T , the argument is similar; in the latter
case by Itô’s formula we obtain

dMt =− ∂u

∂t
(s− t,Xt)dt +

d∑
j=1

∂u

∂xj
(s− t,Xt)dXj

t

+
1
2

d∑
i=1

d∑
j=1

∂2u

∂xi∂xj
(s− t,Xt)d〈Xi, Xj〉t,

=
(
−∂u

∂t
+ Au

)
(s− t,Xt)dt +

d∑
j=1

∂u

∂xj
(s− t,Xt)

d∑
k=1

σjk(Xt)dBk
t .

We obtain a similar result in the 0 ≤ t ≤ T ≤ s, case but with s replaced by T . Thus for
u solving the Cauchy Problem for f , we have that(

−∂u

∂t
+ Au

)
= 0,

we see that Mt is a local martingale. Boundedness implies that Mt is a martingale, and
hence by optional stopping

u(s,x) = Ex(M0) = Ex(Ms) = Ex(f(Xs∧T )),

17.4. Feynman-Kac̆ Representation
Feynman observed the following representation for the representation of the solution of a
PDE via the expectation of a suitable function of a Brownian Motion ‘intuitively’ and the
theory was later made rigorous by Kac̆.

In what context was Feynman interested in this problem? Consider the Schrödinger Equa-
tion,

− ~2

2m
∇2Φ(x, t) + V (x)Φ(x, t) = i~

∂

∂t
Φ(x, t),

which is a second order PDE. Feynman introduced the concept of a path-integral to ex-
press solutions to such an equation. In a manner which is analogous the the ‘hamiltonian’
principle in classical mechanics, there is an action integral which is minimised over all
‘permissible paths’ that the system can take.
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We have already considered solving the Cauchy problem

∂u

∂t
= Au on Ω

u(0,x) = f(x) on x ∈ Ω
u(t,x) = f(x) ∀t ≥ 0, on x ∈ ∂Ω

where A is the generator of an SDE and hence of the form

A =
d∑

j=1

bj(Xt)
∂

∂xj
+

1
2

d∑
i=1

d∑
j=1

aij(Xt)
∂2

∂xi∂xj
.

Now consider the more general form of the same Cauchy problem where we consider a
Cauchy Problem with generator L of the form:

L ≡ A + v =
d∑

j=1

bj(Xt)
∂

∂xj
+

1
2

d∑
i=1

d∑
j=1

aij(Xt)
∂2

∂xi∂xj
+ v(Xt).

For example

A =
1
2
∇2 + v(Xt),

so in this example we are solving the problem

∂u

∂t
=

1
2
∇2u(t,Xt) + v(Xt)u(Xt) on Rd.

u(0,x) = f(x) on ∂Rd.

The Feynman-Kac̆ Representation Theorem expresses the solution of a general second
order PDE in terms of an expectation of a function of a Brownian Motion. To simplify
the statement of the result, we shall work on Ω = Rd, since this removes the problem of
considering the Brownian Motion hitting the boundary.
Theorem (Feynman-Kac̆ Representation).
Let u ∈ C1,2

b (R× Rd) be a solution of the Cauchy Problem with a generator of the above
form for f , and let Bt be a Brownian Motion in Rd starting at x. Then

u(t,x) = Ex

[
f(Bt) exp

(∫ t

0

v(Bs)ds

)]
.

Proof
Fix s ∈ (0,∞) and apply Itô’s formula to

Mt = u(s− t,Xt) exp
(∫ t

0

v(Br)dr

)
.
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For notational convenience, let

Et = exp
(∫ t

0

v(Br)dr

)
.

For 0 ≤ t ≤ s, we have

dMt =
d∑

j=1

∂u

∂xj
(s− t,Xt)EtdBj

t +
(

∂u

∂t
+ Au + vu

)
(s− t,Xt)Etdt

=
d∑

j=1

∂u

∂xj
(s− t,Xt)EtdBj

t .

Hence Mt is a local martingale; since it it bounded, Mt is a martingale and hence by
optional stopping

u(s,x) = Ex(M0) = Ex(Ms) = Ex (f(Xs)Es) .
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