chiark / gitweb /
Improve analysis section.
[storin] / storin.tex
CommitLineData
e6e0e332
MW
1%%% -*-latex-*-
2%%%
4643f89a 3%%% $Id: storin.tex,v 1.3 2000/05/25 19:46:22 mdw Exp $
e6e0e332
MW
4%%%
5%%% Definition of the cipher
6%%%
7%%% (c) 2000 Mark Wooding
8%%%
9
10%%%----- Revision history ---------------------------------------------------
11%%%
12%%% $Log: storin.tex,v $
4643f89a
MW
13%%% Revision 1.3 2000/05/25 19:46:22 mdw
14%%% Improve analysis section.
15%%%
31b692a0
MW
16%%% Revision 1.2 2000/05/21 21:43:26 mdw
17%%% Fix a couple of typos.
18%%%
e6e0e332
MW
19%%% Revision 1.1 2000/05/21 11:28:30 mdw
20%%% Initial check-in.
21%%%
22
23%%%----- Preamble -----------------------------------------------------------
24
25\documentclass[a4paper]{article}
26\usepackage[palatino, helvetica, courier, maths=cmr]{mdwfonts}
27\usepackage{mdwtab}
28\usepackage{mathenv}
29\usepackage{amsfonts}
30\usepackage{mdwmath}
31\usepackage[all, dvips]{xy}
32
33\def\ror{\mathbin{>\!\!>\!\!>}}
34\def\rol{\mathbin{<\!\!<\!\!<}}
35\def\lsr{\mathbin{>\!\!>}}
36\def\lsl{\mathbin{<\!\!<}}
37\def\xor{\oplus}
38\def\seq#1{{\langle #1 \rangle}}
39
4643f89a
MW
40\def\hex#1{\texttt{#1}_{16}}
41
e6e0e332
MW
42\sloppy
43
44\title{Storin: A block cipher for digital signal processors}
45\author{Mark Wooding (\texttt{mdw@nsict.org})}
46
47%% --- The cipher diagrams ---
48
49\def\figkeymix#1#2#3#4{%
50 \ar "a"; p-(0, 0.5)*{\xor} ="a" \ar "a"+(1, 0) *+[r]{k_{#1}}; "a"%
51 \ar "b"; p-(0, 0.5)*{\xor} ="b" \ar "b"+(1, 0) *+[r]{k_{#2}}; "b"%
52 \ar "c"; p-(0, 0.5)*{\xor} ="c" \ar "c"+(1, 0) *+[r]{k_{#3}}; "c"%
53 \ar "d"; p-(0, 0.5)*{\xor} ="d" \ar "d"+(1, 0) *+[r]{k_{#4}}; "d"%
54}
55
56\def\figmatrix{%
57 \POS "a"+(3, -1) *++=(7, 0)[F]u\txt{Matrix multiply} ="m"%
58 \ar "a"; "m"+U-(3, 0) \ar "b"; "m"+U-(1, 0)%
59 \ar "c"; "m"+U+(1, 0) \ar "d"; "m"+U+(3, 0)%
60}
61
62\def\figlintrans{%
63 \ar "m"+D-(3, 0); "a"-(0, 2.25)*{\xor} ="a"%
64 \POS "a"+(1, 0) *+[F]{{} \lsr 12} ="x"%
65 \ar `r "a"+(0, 0.5); p+(1, 0) "x" \ar "x"; "a"%
66 \ar "m"+D-(1, 0); "b"-(0, 2.25)*{\xor} ="b"%
67 \POS "b"+(1, 0) *+[F]{{} \lsr 12} ="x"%
68 \ar `r "b"+(0, 0.5); p+(1, 0) "x" \ar "x"; "b"%
69 \ar "m"+D+(1, 0); "c"-(0, 2.25)*{\xor} ="c"%
70 \POS "c"+(1, 0) *+[F]{{} \lsr 12} ="x"%
71 \ar `r "c"+(0, 0.5); p+(1, 0) "x" \ar "x"; "c"%
72 \ar "m"+D+(3, 0); "d"-(0, 2.25)*{\xor} ="d"%
73 \POS "d"+(1, 0) *+[F]{{} \lsr 12} ="x"%
74 \ar `r "d"+(0, 0.5); p+(1, 0) "x" \ar "x"; "d"%
75}
76
77\def\figilintrans{%
78 \ar "a"; "a"-(0, 1)*{\xor} ="a"%
79 \POS "a"+(1, 0) *+[F]{{} \lsr 12} ="x"%
80 \ar `r "a"+(0, 0.5); p+(1, 0) "x" \ar "x"; "a"%
81 \ar "b"; "b"-(0, 1)*{\xor} ="b"%
82 \POS "b"+(1, 0) *+[F]{{} \lsr 12} ="x"%
83 \ar `r "b"+(0, 0.5); p+(1, 0) "x" \ar "x"; "b"%
84 \ar "c"; "c"-(0, 1)*{\xor} ="c"%
85 \POS "c"+(1, 0) *+[F]{{} \lsr 12} ="x"%
86 \ar `r "c"+(0, 0.5); p+(1, 0) "x" \ar "x"; "c"%
87 \ar "d"; "d"-(0, 1)*{\xor} ="d"%
88 \POS "d"+(1, 0) *+[F]{{} \lsr 12} ="x"%
89 \ar `r "d"+(0, 0.5); p+(1, 0) "x" \ar "x"; "d"%
90}
91
31b692a0 92\def\figstart#1{%
e6e0e332
MW
93 \POS 0;<1cm,0cm>:%
94 \turnradius{4pt}%
31b692a0
MW
95 \ar @{-} (0, 0) *+{a#1}; p-(0, 0.5) ="a"
96 \ar @{-} (2, 0) *+{b#1}; p-(0, 0.5) ="b"
97 \ar @{-} (4, 0) *+{c#1}; p-(0, 0.5) ="c"
98 \ar @{-} (6, 0) *+{d#1}; p-(0, 0.5) ="d"
e6e0e332
MW
99}
100
101\def\figround#1#2#3#4#5{%
102 \ar @{.} "a"-(0.5, 0); p+(8, 0)%
103 \POS "a"+(8, -1.75) *[r]\txt{#5}%
104 \figkeymix{#1}{#2}{#3}{#4}%
105 \figmatrix%
106 \figlintrans%
107 \ar @{-} "a"; p-(0, .5) ="a"
108 \ar @{-} "b"; p-(0, .5) ="b"
109 \ar @{-} "c"; p-(0, .5) ="c"
110 \ar @{-} "d"; p-(0, .5) ="d"
111}
112
113\def\figiround#1#2#3#4#5{%
114 \ar @{.} "a"-(0.5, 0); p+(8, 0)%
115 \POS "a"+(8, -1.75) *[r]\txt{#5}%
116 \figkeymix{#1}{#2}{#3}{#4}%
117 \figilintrans%
118 \figmatrix%
119 \ar @{-} "m"+D-(3, 0); p-(0, .5) ="a"
120 \ar @{-} "m"+D-(1, 0); p-(0, .5) ="b"
121 \ar @{-} "m"+D+(1, 0); p-(0, .5) ="c"
122 \ar @{-} "m"+D+(3, 0); p-(0, .5) ="d"
123}
124
125\def\figgap{%
126 \ar @{.} "a"-(0.5, 0); p+(8, 0)
127 \POS "a"+(8, -1)*[r]\txt{Six more rounds}
128 \ar @{--} "a"; "a"-(0, 2) ="a"
129 \ar @{--} "b"; "b"-(0, 2) ="b"
130 \ar @{--} "c"; "c"-(0, 2) ="c"
131 \ar @{--} "d"; "d"-(0, 2) ="d"
132}
133
31b692a0 134\def\figwhite#1#2#3#4#5{%
e6e0e332
MW
135 \ar @{.} "a"-(0.5, 0); p+(8, 0)
136 \POS "a"+(8, -1)*[r]\txt{Postwhitening}
137 \figkeymix{#1}{#2}{#3}{#4}
31b692a0
MW
138 \ar "a"; p-(0, 1) *+{a#5}
139 \ar "b"; p-(0, 1) *+{b#5}
140 \ar "c"; p-(0, 1) *+{c#5}
141 \ar "d"; p-(0, 1) *+{d#5}
e6e0e332
MW
142}
143
144\begin{document}
145\maketitle
146
147%%%----- The main text ------------------------------------------------------
148
149\begin{abstract}
150 We present Storin: a new 96-bit block cipher designed to play to the
151 strengths of current digital signal processors (DSPs). In particular, DSPs
152 tend to provide single-cycle multiply-and-accumulate operations, making
153 matrix multiplications very cheap. Working in an environment where
154 multiplication is as fast as exclusive-or changes the usual perceptions
155 about which operations provide good cryptographic strength cheaply. The
156 scarcity of available memory, for code and for tables, and a penalty for
157 nonsequential access to data also make traditional block ciphers based
158 around substitution tables unsuitable.
159\end{abstract}
160
161\tableofcontents
162
163\section{Definition of the cipher}
164
165\subsection{Overview}
166
167Storin is an eight-round SP network operating on 96-bit blocks. The block
168cipher uses 36 24-bit subkey words, derived from a user key by the key
169schedule.
170
171The 96-bit input is split into four 24-bit words. Each round then processes
172these four words, using the following three steps:
173\begin{enumerate}
174\item Mixing in of some key material. Four 24-bit subkey words are XORed
175 with the four data words.
176\item A matrix multiplication mod $2^{24}$. The four words are treated as a
177 column vector and premultiplied by a $4 \times 4$ vector using addition and
178 multiplication mod $2^{24}$. This is the main nonlinear step in the
179 cipher, and it also provides most of the cipher's diffusion.
180\item A simple linear transformation, which replaces each word $x$ by $x \xor
181 (x \lsr 12)$.
182\end{enumerate}
183The four data words output by the final round are XORed with the last four
184subkey words in a final postwhitening stage and combined to form the 96-bit
185ciphertext.
186
187The cipher structure is shown diagrammatically in figure~\ref{fig:cipher}.
188
189\begin{figure}
190\centering
191\leavevmode
192\begin{xy}
193 \xycompile{
31b692a0 194 \figstart{}
e6e0e332
MW
195 \figround{0}{1}{2}{3}{Round 1}
196 \figround{4}{5}{6}{7}{Round 2}
197 \figgap
31b692a0 198 \figwhite{32}{33}{34}{35}{'}}
e6e0e332
MW
199\end{xy}
200\caption{The Storin encryption function}
201\label{fig:cipher}
202\end{figure}
203
204Since the matrix used in step 2 is chosen to be invertible, the cipher can be
205inverted readily, simply by performing the inverse steps in the reverse
206order. Since the postwhitening stage is the same as a key mixing stage,
207decryption can be viewed as eight rounds consisting of key mixing, linear
208transformation and matrix multiplication, followed by a postwhitening stage.
209Thus, the structure of the inverse cipher is very similar to the forwards
210cipher, and uses the same components. The decryption function is shown
211diagrammatically in figure~\ref{fig:decipher}.
212
213\begin{figure}
214\centering
215\leavevmode
216\begin{xy}
217 \xycompile{
31b692a0 218 \figstart{'}
e6e0e332
MW
219 \figiround{32}{33}{34}{35}{Round 1}
220 \figiround{28}{29}{30}{31}{Round 2}
221 \figgap
31b692a0 222 \figwhite{0}{1}{2}{3}{}}
e6e0e332
MW
223\end{xy}
224\caption{The Storin decryption function}
225\label{fig:decipher}
226\end{figure}
227
228The key schedule is designed to be simple and to reuse the cipher components
229already available. Given a user key, which is a sequence of one or more
23024-bit words, it produces the 36 subkey words required by the cipher. The
231key schedule is very similar to Blowfish \cite{blowfish}. The subkey array
232is assigned an initial constant value derived from the matrix used in the
233cipher. Words from the user key are XORed into the array, starting from the
234beginning, and restarting from the beginning of the user key when all the
235user key words are exhausted. A 96-bit block is initialized to zero, and
236enciphered with Storin, using the subkeys currently in the array. The first
237four subkey words are then replaced with the resulting ciphertext, which is
238then encrypted again using the new subkeys. The next four subkey words are
239replaced with the ciphertext, and the process continues, nine times in all,
240until all of the subkey words have been replaced.
241
4643f89a
MW
242The Storin key schedule can in theory accept user keys up to 36 words (864
243bits) long. However, there are possible security problems with keys shorter
244than 28 words (672 bits). We believe that it's unrealistic to expect this
245much strength from the cipher and recommend against using keys longer than 5
246words (120 bits).
e6e0e332
MW
247
248
249\subsection{Encryption}
250
251We define $\mathcal{W} = \mathbb{Z}_{2^{24}}$ to be set of 24-bit words, and
252$\mathcal{P} = \mathcal{W}^4$ to be the set of four-entry column vectors over
253$\mathcal{W}$. Storin plaintext blocks are members of $\mathcal{P}$.
254
255The Storin encryption function uses 36 24-bit words of key material $k_0$,
256$k_1$, \ldots, $k_{35}$, which are produced from the user key by the key
257schedule, described below. The key-mixing operation $K_i: \mathcal{P}
258\rightarrow \mathcal{P}$ is defined for $0 \le i < 9$ by:
259\[
260 K_i \begin{pmatrix} a \\ b \\ c \\d \end{pmatrix}
261 =
262 \begin{pmatrix}
263 a \xor k_{4i} \\ b \xor k_{4i+1} \\ c \xor k_{4i+2} \\ d \xor k_{4i+3}
264 \end{pmatrix}
265\]
266
267The matrix multiplication operation $M: \mathcal{P} \to \mathcal{P}$
268is described by $M(\mathbf{x}) = \mathbf{M} \mathbf{x}$, where $\mathbf{M}$
269is a fixed invertible $4 \times 4$ matrix over $\mathcal{W}$. The value of
270$\mathbf{M}$ is defined below.
271
272The linear transformation $L: \mathcal{P} \to \mathcal{P}$ is defined by:
273\[
274 L \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}
275 =
276 \begin{pmatrix}
277 a \xor (a \lsr 12) \\
278 b \xor (b \lsr 12) \\
279 c \xor (c \lsr 12) \\
280 d \xor (d \lsr 12)
281 \end{pmatrix}
282\]
283
284The round function $R_i: \mathcal{P} \to \mathcal{P}$ is defined for $0 \le i
285< 8$ by
286\[ R_i(\mathbf{x}) = L\bigl(\mathbf{M} K_i(\mathbf{x}) \bigr) \]
287
288The cipher $C: \mathcal{P} \to \mathcal{P}$ is defined in terms of $R_i$ and
289$K_i$. Let $\mathbf{x}_0 \in \mathcal{P}$ be a plaintext vector. Let
290$\mathbf{x}_{i+1} = R_i(\mathbf{x}_i)$ for $0 \le i < 8$. Then we define
291$C(\mathbf{x})$ by setting $C(\mathbf{x}_0) = K_8(\mathbf{x}_8)$.
292
293
294\subsection{Key schedule}
295
296The key schedule converts a user key, which is a sequence of 24-bit words,
297into the 36 subkeys required by the cipher.
298
299For $i \ge 0$, we define that
300\[
301\begin{pmatrix}
302 m_{16i + 0} & m_{16i + 1} & m_{16i + 2} & m_{16i + 3} \\
303 m_{16i + 4} & m_{16i + 5} & m_{16i + 6} & m_{16i + 7} \\
304 m_{16i + 8} & m_{16i + 9} & m_{16i + 10} & m_{16i + 11} \\
305 m_{16i + 12} & m_{16i + 13} & m_{16i + 14} & m_{16i + 15}
306\end{pmatrix}
307= \mathbf{M}^{i + 2}
308\]
309
310Let the user-supplied key be $u_0$, $u_1$, \ldots, $u_{n-1}$, for some $n >
3110$. We define the sequence $z_0$, $z_1$, \ldots\ by
312\[ z_i = m_i \xor u_{i \bmod n} \]
313for $i \ge 0$.
314
315Denote the result of encrypting vector $\mathbf{x}$ using subkeys from the
316sequence $\seq{w} = w_0, w_1, \ldots, w_{35}$ as $C_{\seq{w}}(\mathbf{x})$.
317We define the key schedule to be $k_0$, $k_1$, \ldots, $k_{35}$, where:
318\begin{eqlines*}
319 \seq{p^{(i)}} = k_0, k_1, \ldots, k_{4i-1}, z_{4i}, z_{4i+1}, \ldots \\
320 \mathbf{x}_0 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}; \qquad
321 \begin{pmatrix} k_{4i} \\ k_{4i+1} \\ k_{4i+2} \\ k_{4i+3} \end{pmatrix}
322 = \mathbf{x}_{i+1} = C_{\seq{p^{(i)}}}(\mathbf{x}_i)
323\end{eqlines*}
324
325
326\subsection{Decryption}
327
328The individual operations used during encryption are all invertible. Key
329mixing is inverted by taking keys from the other end of the array:
330\[ K^{-1}_i(\mathbf{x}) = K_{8-i}(\mathbf{x}) \]
331The matrix multiplication may be inverted simply by using the inverse matrix
332$\mathbf{M}^{-1}$:
333\[ M^{-1}(\mathbf{x}) = \mathbf{M}^{-1} \mathbf{x} \]
334Finally, the linear transformation is its own inverse:
335\[ L^{-1}(\mathbf{x}) = L(\mathbf{x}) \]
336The inverse round function can now be defined as:
337\[ R^{-1}_i(\mathbf{x}) =
338 \mathbf{M}^{-1} L\bigl(K^{-1}_i(\mathbf{x})\bigr) \]
339
340The decryption function $C^{-1}: \mathcal{P} \to \mathcal{P}$ is defined
341in terms of $R^{-1}$ and $K^{-1}$ in a very similar way to encryption. Let
342$\mathbf{x}_0$ be a ciphertext vector. Let $\mathbf{x}_{i+1} =
343R^{-1}_i(\mathbf{x}_i)$ for $0 \le i < 8$. Then we define
344$C^{-1}(\mathbf{x}_0) = K^{-1}_8(\mathbf{x}_8)$.
345
346
347\subsection{Constants}
348
349The matrix $\mathbf{M}$ and its inverse $\mathbf{M}^{-1}$ are:
350\begin{eqnarray*}[rl]
351 \mathbf{M} = &
4643f89a
MW
352 \begin{pmatrix}
353 \hex{f7a413} & \hex{54bd81} & \hex{447550} & \hex{ff4449} \\
354 \hex{f31e87} & \hex{d85388} & \hex{de32cb} & \hex{40e3d7} \\
355 \hex{d9db1d} & \hex{551b45} & \hex{e9d19f} & \hex{e443de} \\
356 \hex{4b949a} & \hex{4d435d} & \hex{ef0a17} & \hex{b784e1}
e6e0e332
MW
357 \end{pmatrix} \\
358 \mathbf{M}^{-1} = &
4643f89a
MW
359 \begin{pmatrix}
360 \hex{17391b} & \hex{fafb4b} & \hex{a66823} & \hex{f2efb6} \\
361 \hex{13e0e5} & \hex{2ed5e4} & \hex{b2cfff} & \hex{d9cdb5} \\
362 \hex{2af462} & \hex{33826d} & \hex{de66a1} & \hex{eb6c85} \\
363 \hex{c2f423} & \hex{e904a3} & \hex{e772d8} & \hex{d791f1}
e6e0e332
MW
364 \end{pmatrix}
365\end{eqnarray*}
366
367
368
369\section{Rationale and analysis}
370
371\subsection{Design decisions}
372
373The initial objective was to produce a cipher which played to the particular
374strengths of digital signal processors. DSPs tend to have good multipliers,
31b692a0 375and are particularly good at matrix multiplication. The decision to use a
e6e0e332
MW
376matrix multiplication over $\mathbb{Z}_{2^{24}}$ seemed natural, given that
37724 bits is a commonly offered word size.
378
379The choice of a 96-bit block is also fairly natural. A 2 word (48-bit) block
380is clearly too small, and a 3 word (72-bit) block is a little on the small
381side too.
382
383
384\subsection{Matrix multiplication over $\mathbb{Z}_{2^{24}}$}
385
386Integer multiplication on a DSP is a cheap source of nonlinearity. Note that
387bit $i$ of the result depends on all of the bits in the operands of lesser or
388equal significance.position $i$ downwards.
389
390The decision to make the $4 \times 4$ matrix fixed was taken fairly early on.
391Generating invertible matrices from key material seemed like too much work to
392expect from the DSP.
393
394The matrix is generated pseudorandomly from a seed string, using SHA-1. The
395criteria we used to choose the matrix are:
396\begin{enumerate}
397\item The matrix must be invertible.
398\item Exactly one entry in each row and column of the matrix must be even.
399\end{enumerate}
400Criterion 1 is obvious. Criterion 2 encourages diffusion between the entries
401in the block vector. Note that if a matrix satisfies the second criterion,
402its inverse also does.
403
404Consider a vector $\mathbf{x}$ and its product with the matrix $\mathbf{M}
405\mathbf{x}$. Whether the top bit of entry $i$ in $\mathbf{x}$ affects
406entry $j$ in the product depends on whether the entry in row $j$, column $i$
407of $\mathbf{M}$ is even. Criterion 2 ensures the following:
408\begin{itemize}
4643f89a 409\item A top-bit change in a single word affects three words in the output.
e6e0e332
MW
410\item A top-bit change in two words affects two words in the output.
411\end{itemize}
412
413The seed string used is \texttt{matrix-seed-string}. The program which
414generates the matrix is included with the Storin example source code.
415
416\subsection{The linear transformation}
417
418A bit change in one of the inputs to the matrix can only affect bits at that
419position and higher in the output. The linear transformation at the end of
420the round aims to provide diffusion from the high-order bits back to the
421low-order bits.
422
423A single high-order bit change in the input to a round will affect the
424high-order bits of three words in the output of the matrix multiply. The
425linear transformation causes it to affect bits in the low halves of each of
426these words. The second round's multiplication causes these bits to affect
427the whole top halves of all of the output words. The linear transformation
428propagates this change to the bottom halves. Complete avalanche is therefore
429achieved after three rounds of Storin.
430
431
432\subsection{Key schedule notes}
433
434The key schedule is intended to be adequate for bulk encryption; it doesn't
4643f89a
MW
435provide good key agility, and isn't intended to. The key schedule accepts up
436to 28 words of user key, although expecting 672 bits of security from the
437cipher is not realistic. The suggested maximum of 5 words (120 bits) seems
438more sensible. This maximum can be raised easily when our understanding of
439the cipher increases our confidence in it.
e6e0e332
MW
440
441The key schedule is strongly reminiscent of Blowfish \cite{blowfish}. Use of
442existing components of the cipher, such as the matrix multiplication and the
443cipher itself, help reduce the amount of code required in the implementation.
444
4643f89a
MW
445The restriction of the key schedule to 28 words is due to an interesting
446property, also shared by Blowfish \cite{blowfish}: the output of the first
e6e0e332
MW
447round of the second encryption is zero. To see why this is so, it is enough
448to note that the first round key has just been set equal to what is now the
449plaintext; the result of the key mixing stage is zero, which is unaffected by
4643f89a 450the matrix and linear transformation. See figure~\ref{fig:bfkeysched}.
e6e0e332 451
4643f89a
MW
452A limit of 28 words is chosen to ensure that the round-1 key affects the
453round-2 key in a part of the cipher earlier than the postwhitening stage.
454
455\begin{figure}
456\centering
457\leavevmode
458\begin{xy}
459 \xycompile{
460 \POS 0; <0.7cm, 0cm>:
461 \POS (0, 0) ="o" +(3, 0) ="w"
462 \ar "o" *+{P[0]}; p-(0, 1) *{\xor} ="x"
463 \ar "x" -(1, 0) *+[l]{P[0]}; "x"
464 \ar@{-} "x"; p-(0, 2) ="as"
465 \ar "w" *+{P[1]}; p-(0, 2) *{\xor} ="x"
466 \ar "o"-(0, 2); "x" |-*+[F]{F}
467 \ar@{-} "x"; p-(0, 1) ="bs"
468 \ar@{-} "as"; "bs"-(0, 1) ="w"
469 \ar@{-} "bs"; "as"-(0, 1) ="o"
470 \ar "o"; p-(0, 1) *+{P[1] \xor F(0)} ="x"
471 \ar "x"; p-(0, 1) *{\xor} ="x"
472 \ar "x" -(1, 0) *+[l]{P[1]}; "x"
473 \ar "x"; p-(0, 2) *+{F(0)}
474 \ar "w"; p-(0, 1) *+{0} ="x"
475 \ar "x"; p-(0, 2) *{\xor} ="x"
476 \ar "o"-(0, 3); "x" |-*+[F]{F}
477 \ar "x"; p-(0, 1) *+{F^2(0)}}
478\end{xy}
479\caption{Blowfish key schedule: $P[2]$ and $P[3]$ don't depend on $P[0]$ and
480 $P[1]$.}
481\label{fig:bfkeysched}
482\end{figure}
e6e0e332
MW
483
484\subsection{Attacking Storin}
485
486A brief\footnote{About three days' worth on a 300MHz Pentium II.}
487computerized analysis of the matrix multiplication failed to turn up any
488high-probability differential characteristics. While an exhaustive search
489was clearly not possible, the program tested all differentials of Hamming
490weight 5 or less, and then random differentials, applying each to a suite of
491$2^{13}$ different 96-bit inputs chosen at random. No output difference was
492noted more than once.
493
4643f89a
MW
494There is a two-round truncated differential \cite{storin-tdiff}, which can be
495used to break Storin reduced to only 2 rounds. The differential
496\[ (\hex{800000}, \hex{800000}, \hex{800000}, 0) \to
497 (0, 0, \hex{800000}, 0) \]
498holds with probability 1 through the matrix multiplication.
499Differentials in the linear transform are easy to find; for example:
500\[ (0, 0, \hex{800000}, 0) \to (0, 0, \hex{800800}, 0) \]
501We can continue through the second round's matrix multiplication with a
502truncated differential, again with probability 1:
503\[ (0, 0, \hex{800800}, 0) \to
504 (\hex{???000}, \hex{???800}, \hex{???800}, \hex{???800}) \]
505The following linear transform can be commuted with the postwhitening by
506applying a trivial reversible transformation to the postwhitening keys, and
507we can apply it to the ciphertext. If we do this, we can combine the
508differentials above to construct a probability-1 characteristic for a 2-round
509variant of Storin:
510\[ (\hex{800000}, \hex{800000}, \hex{800000}, 0) \to
511 (\hex{???000}, \hex{???800}, \hex{???800}, \hex{???800}) \]
512This characteristic is non-iterative, and can't be extended to more rounds.
513
514In \cite{storin-collide}, Matthew Fisher speculates on breaking 2 rounds of
515Storin by forcing collisions in the matrix multiplication outputs. This
516attack doesn't extend to more than two rounds either.
517
e6e0e332
MW
518One possible avenue of attack worth exploring is to attempt to cause zero
519words to be input into the first-round matrix by choosing plaintext words
520identical to subkey words for the first round. Causing $n$ matrix input
521words to be zero clearly takes $O(2^{24n})$ time. If a method can be found
522to detect when zero words have been input to the matrix, this can be used to
523discover the subkey words rather more rapidly than exhaustive search. We
524can't see a way to exploit this at the moment, but it could be a fruitful
525place to look for cryptanalysis.
526
527
528\section{Conclusion}
529
530We have presented a new block cipher, Storin. Any cryptanalysis will be
531received with interest.
532
533
534\begin{thebibliography}{99}
4643f89a
MW
535\bibitem{storin-collide} M. Fisher, `Yet another block cipher: Storin',
536 sci.crypt article, message-id \texttt{<8gjctn\$9ct\$1@nnrp1.deja.com>}
537\bibitem{idea} X. Lai, `On the Design and Security of Block Ciphers', ETH
538 Series in Informatics Processing, J. L. Massey (editor), vol. 1,
539 Hartung-Gorre Verlag Konstanz, Technische Hochschule (Zurich), 1992
540\bibitem{blowfish} B. Schneier, `The Blowfish Encryption Algorithm',
541 \textit{Dr Dobb's Journal}, vol. 19 no. 4, April 1994, pp. 38--40
542\bibitem{storin-tdiff} M. D. Wooding, `Yet another block cipher: Storin',
543 sci.crypt article, message-id
544 \texttt{<slrn8iqhaq.872.mdw@mull.ncipher.com>}
e6e0e332
MW
545\end{thebibliography}
546
547%%%----- That's all, folks --------------------------------------------------
548
549\end{document}
550
551%%% Local Variables:
552%%% mode: latex
553%%% TeX-master: t
554%%% End: