;;; -*-lisp-*- ;;; ;;; Test parser infrastructure ;;; ;;; (c) 2009 Straylight/Edgeware ;;; ;;;----- Licensing notice --------------------------------------------------- ;;; ;;; This file is part of the Sensible Object Design, an object system for C. ;;; ;;; SOD is free software; you can redistribute it and/or modify ;;; it under the terms of the GNU General Public License as published by ;;; the Free Software Foundation; either version 2 of the License, or ;;; (at your option) any later version. ;;; ;;; SOD is distributed in the hope that it will be useful, ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;;; GNU General Public License for more details. ;;; ;;; You should have received a copy of the GNU General Public License ;;; along with SOD; if not, write to the Free Software Foundation, ;;; Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. (cl:in-package #:sod-test) (defclass test-parser (test-case) ()) (add-test *sod-test-suite* (get-suite test-parser)) ;;;-------------------------------------------------------------------------- ;;; Utilities. (defmacro assert-parse ((string value winp consumedp &key (scanner (gensym "SCANNER-"))) &body parser) (once-only (string value winp consumedp) (with-gensyms (my-value my-winp my-consumedp label what) `(let ((,scanner (make-string-scanner ,string))) (declare (ignorable ,scanner)) (multiple-value-bind (,my-value ,my-winp ,my-consumedp) (with-parser-context (character-scanner-context :scanner ,scanner) (parse ,@parser)) (flet ((,label (,what) (format nil "~A; parsing ~S with ~S" ,what ,string ',@parser))) (cond (,winp (assert-true ,my-winp (,label "winp")) (if (eq ,value t) (assert-not-eql ,my-value nil (,label "parser result")) (assert-equal ,my-value ,value (,label "parser result")))) (t (assert-false ,my-winp (,label "winp")) (assert-true (and (null (set-difference ,my-value ,value :test #'equal)) (null (set-difference ,value ,my-value :test #'equal))) (,label "failure indicator")))) (if ,consumedp (assert-true ,my-consumedp (,label "consumedp")) (assert-false ,my-consumedp (,label "consumedp"))))))))) ;;;-------------------------------------------------------------------------- ;;; Simple parser tests. ;;; ;;; This lot causes SBCL to warn like a mad thing. It's too clever for us, ;;; and does half of the work at compile time! (def-test-method test-simple ((test test-parser) :run nil) "Test simple atomic parsers, because we rely on them later." ;; Characters match themselves. For a character known only at run-time, ;; use (char CH). (assert-parse ("abcd" #\a t t) #\a) (let ((ch #\b)) (assert-parse ("abcd" '(#\b) nil nil) (char ch))) ;; A character can't match at EOF. (assert-parse ("" '(#\z) nil nil) #\z) ;; All characters match :any; but EOF isn't a character. (assert-parse ("z" #\z t t) :any) (assert-parse ("" '(:any) nil nil) :any) ;; The parser (satisfies PREDICATE) succeeds if the PREDICATE returns ;; true when applied to the current character. (assert-parse ("a" #\a t t) (satisfies alpha-char-p)) (assert-parse ("0" '(alpha-char-p) nil nil) (satisfies alpha-char-p)) ;; The parser (not CHAR) matches a character other than CHAR; but it won't ;; match EOF. (assert-parse ("a" #\a t t) (not #\b)) (assert-parse ("b" '((not #\b)) nil nil) (not #\b)) (assert-parse ("" '((not #\b)) nil nil) (not #\b)) ;; But :eof matches only at EOF. (assert-parse ("" :eof t nil) :eof) (assert-parse ("abcd" '(:eof) nil nil) :eof) ;; Strings match themselves without consuming if they fail. (assert-parse ("abcd" "ab" t t) "ab") (assert-parse ("abcd" '("cd") nil nil) "cd")) (def-test-method test-sequence ((test test-parser) :run nil) ;; An empty sequence always succeeds and never consumes. And provokes ;; warnings: don't do this. (assert-parse ("" :win t nil) (seq () :win)) (assert-parse ("abcd" :win t nil) (seq () :win)) ;; A `seq' matches the individual parsers in order, and binds their results ;; to variables -- if given. The result is the value of the body. If any ;; parser fails having consumed input, then input stays consumed. There's ;; no backtracking. (assert-parse ("abcd" '(#\a . #\c) t t) (seq ((foo #\a) #\b (bar #\c)) (cons foo bar))) (assert-parse ("abcd" '(#\c) nil t) (seq ((foo #\a) (bar #\c)) (cons foo bar))) (assert-parse ("abcd" '(#\c) nil nil) (seq ((bar #\c) (foo #\a)) (cons foo bar)))) (def-test-method test-repeat ((test test-parser) :run nil) ;; A `many' matches a bunch of similar things in a row. You can compute a ;; result using `do'-like accumulation. (assert-parse ("aaaab" 4 t t) (many (acc 0 (1+ acc)) #\a)) ;; The default minimum is zero; so the parser always succeeds. (assert-parse ("aaaab" 0 t nil) (many (acc 0 (1+ acc)) #\b)) ;; You can provide an explicit minimum. Then the match might fail. (assert-parse ("aabb" 2 t t) (many (acc 0 (1+ acc) :min 2) #\a)) (assert-parse ("aabb" '(#\a) nil t) (many (acc 0 (1+ acc) :min 3) #\a)) ;; You can also provide an explicit maximum. This will cause the parser to ;; stop searching, but it can't make it fail. (assert-parse ("aaaab" 3 t t) (many (acc 0 (1+ acc) :max 3) #\a)) ;; You can provide both a maximum and a minimum at the same time. If ;; they're consistent, you won't be surprised. If they aren't, then the ;; maximum wins and the minimum is simply ignored (currently). (assert-parse ("aaaaab" 4 t t) (many (acc 0 (1+ acc) :min 3 :max 4) #\a)) (assert-parse ("aabbbb" '(#\a) nil t) (many (acc 0 (1+ acc) :min 3 :max 4) #\a)) (assert-parse ("aaabbb" 3 t t) (many (acc 0 (1+ acc) :min 3 :max 3) #\a)) (assert-parse ("aaabbb" 3 t t) (many (acc 0 (1+ acc) :min 17 :max 3) #\a)) ;; You can provide a separator. The `many' parser will look for the ;; separator between each of the main items, but will ignore the results. (assert-parse ("a,a,abc" 3 t t) (many (acc 0 (1+ acc)) #\a #\,)) (assert-parse ("a,a,abc" 2 t t) (many (acc 0 (1+ acc) :max 2) #\a #\,)) ;; If `many' sees a separator then by default it commits to finding another ;; item; so this can cause a parse to fail. (assert-parse ("a,a,bc" '(#\a) nil t) (many (acc 0 (1+ acc)) #\a #\,)) (assert-parse ("abc" 1 t t) (many (acc 0 (1+ acc)) #\a #\,)) ;; If you specify a separator then the default minimum number of ;; repetitions becomes 1 rather than 0. But you can override this ;; explicitly. (assert-parse ("bc" '(#\a) nil nil) (many (acc 0 (1+ acc)) #\a #\,)) (assert-parse ("bc" 0 t nil) (many (acc 0 (1+ acc) :min 0) #\a #\,)) ;; The parser will fail looking for a separator if there aren't enough ;; items. (assert-parse ("a,abc" '(#\,) nil t) (many (acc 0 (1+ acc) :min 3) #\a #\,)) ;; You can override the commit-on-separator behaviour by using :commit. ;; This makes a trailing separator legal (but optional), so it also affects ;; the behaviour regarding maximum and minimum repetitions. (Commitment is ;; irrelevant if you don't have a separator.) (assert-parse ("a,a,bc" 2 t t) (many (acc 0 (1+ acc) :commitp nil) #\a #\,)) (assert-parse ("a,a,abc" 3 t t) (many (acc 0 (1+ acc) :commitp nil) #\a #\,)) (assert-parse ("a,a,a,bc" 3 t t) (seq ((n (many (acc 0 (1+ acc) :max 3 :commitp t) #\a #\,)) #\,) n)) (assert-parse ("a,a,a,bc" 3 t t) (seq ((n (many (acc 0 (1+ acc) :max 3 :commitp nil) #\a #\,)) #\b) n)) (assert-parse ("a,a,bc" '(#\a) nil t) (many (acc 0 (1+ acc) :min 3 :commitp nil) #\a #\,)) ;; The `many' parser won't backtrack. The `many' eats as many `a's as ;; possible; asking for another one is sure to fail. (assert-parse ("aaaabc" '(#\a) nil t) (and (skip-many () #\a) #\a))) (def-test-method test-repeat-hairy ((test test-parser) :run nil) ;; The `many' expander is very hairy and does magical things if it notices ;; that some of its arguments are constants. So here we test a number of ;; the above things again, using variables so that it has to produce code ;; which makes decisions at run-time. (I've no doubt that SBCL will issue ;; an infinite number of notes explaining how clever it is and how it can ;; do it all at compile-time anyway. Of course, suppressing these notes is ;; the main reason `many' is so hairy anyway.) (let ((zero 0) (two 2) (three 3) (yes t) (no nil)) ;; Minima. (assert-parse ("aaaab" 4 t t) (many (acc 0 (1+ acc) :min zero) #\a)) (assert-parse ("aaaab" 0 t nil) (many (acc 0 (1+ acc) :min zero) #\b)) (assert-parse ("aabb" 2 t t) (many (acc 0 (1+ acc) :min two) #\a)) (assert-parse ("aabb" '(#\a) nil t) (many (acc 0 (1+ acc) :min three) #\a)) ;; Maxima. (assert-parse ("aaaab" 4 t t) (many (acc 0 (1+ acc) :max no) #\a)) (assert-parse ("aaaab" 3 t t) (many (acc 0 (1+ acc) :max three) #\a)) ;; And now together with separators and commitment. Oh, my. (assert-parse ("a,a,a,bc" 3 t t) (many (acc 0 (1+ acc) :commitp no) #\a #\,)) (assert-parse ("a,a,a,bc" '(#\a) nil t) (many (acc 0 (1+ acc) :commitp yes) #\a #\,)) (assert-parse ("a,a,bc" '(#\a) nil t) (many (acc 0 (1+ acc) :min three :commitp yes) #\a #\,)) (assert-parse ("a,a,bc" '(#\a) nil t) (many (acc 0 (1+ acc) :min 3 :commitp yes) #\a #\,)) (assert-parse ("a,a,bc" '(#\a) nil t) (many (acc 0 (1+ acc) :min three :commitp t) #\a #\,)) (assert-parse ("a,a,a,bc" 3 t t) (seq ((n (many (acc 0 (1+ acc) :max three :commitp no) #\a #\,)) #\b) n)) (assert-parse ("a,a,a,bc" 3 t t) (seq ((n (many (acc 0 (1+ acc) :max three :commitp yes) #\a #\,)) #\,) n)) (assert-parse ("a,a,a,bc" 3 t t) (seq ((n (many (acc 0 (1+ acc) :max 3 :commitp no) #\a #\,)) #\b) n)) (assert-parse ("a,a,a,bc" 3 t t) (seq ((n (many (acc 0 (1+ acc) :max 3 :commitp yes) #\a #\,)) #\,) n)) (assert-parse ("a,a,a,bc" 3 t t) (seq ((n (many (acc 0 (1+ acc) :max three :commitp nil) #\a #\,)) #\b) n)) (assert-parse ("a,a,a,bc" 3 t t) (seq ((n (many (acc 0 (1+ acc) :max three :commitp t) #\a #\,)) #\,) n)))) (def-test-method test-alternate ((test test-parser) :run nil) ;; An `or' matches the first parser that either succeeds or fails having ;; consumed input. (assert-parse ("abcd" #\a t t) (or #\a #\b)) (assert-parse ("abcd" #\a t t) (or #\b #\a)) (assert-parse ("abcd" '(#\b #\c) nil nil) (or #\b #\c)) ;; Strings don't consume if they fail. (assert-parse ("abcd" "ab" t t) (or "cd" "ab")) (assert-parse ("abcd" "ab" t t) (or "ad" "ab")) (assert-parse ("abcd" '("ad" "ac") nil nil) (or "ad" "ac")) ;; But `seq' will if some component consumes. (assert-parse ("abcd" '(#\d) nil t) (or (and #\a #\d) "ab")) (assert-parse ("abcd" "ab" t t) (or (and #\c #\d) "ab")) ;; We can tame this using `peek' which rewinds the source if its argument ;; fails, so as to hide consumption of input. (assert-parse ("abcd" "ab" t t) (or (peek (and #\a #\d)) "ab")) (assert-parse ("abcd" '(#\a #\b "cd") t t) (seq ((foo (peek (seq ((foo #\a) (bar #\b)) (list foo bar)))) (bar "cd")) (append foo (list bar)))) ;; Failure indicators are union'd if they all fail. (assert-parse ("abcd" '(#\q #\x #\z) nil nil) (or #\q (peek (and #\a (or #\x #\q))) #\z)) ;; But if any of them consumed input then you only get the indicators from ;; the consuming branch, because we committed to it when we consumed the ;; input. (assert-parse ("abcd" '(#\x #\q) nil t) (or #\q #\z (and #\a (or #\q #\x))))) ;;;-------------------------------------------------------------------------- ;;; Some tests with a simple recursive parser. (defstruct (node (:predicate nodep) (:constructor make-node (left data right))) "Structure type for a simple binary tree." left data right) (defun parse-tree (scanner) "Parse a textual representation into a simple binary tree. The syntax is simple: TREE ::= EMPTY | `(' TREE CHAR TREE `)' There's an ambiguity in this syntax, at least if you have limited lookahead: suppose you've just parsed the opening `(' of a TREE, and you see another `(' -- is it the start of the non-empty left sub-TREE, or is it the CHAR following an empty left sub-TREE? We opt for the first choice always." ;; This came from another project, although it isn't actually used there. ;; It exposed the weakness in an earlier design which prompted the addition ;; of the CONSUMEDP flags to the parser protocol. (with-parser-context (character-scanner-context :scanner scanner) (labels ((tree () (parse (or (seq (#\( (left (tree)) (data :any) (right (tree)) #\)) (make-node left data right)) (values nil t nil))))) (parse (seq ((tree (tree)) :eof) tree))))) (defun parse-tree-lookahead (scanner) "Parse a textual representation into a simple binary tree. The syntax is simple, and, indeed, the grammar's the same as for `sod-parse-tree': TREE ::= EMPTY | `(' TREE CHAR TREE `)' But the rules are different. Instead of resolving the `ambiguity' between TREE and CHAR when we find another `(' after the opening `(' of a TREE deterministically in favour of TREE as `parse-tree' does, we try that first, and backtrack if necessary." ;; Bison can do this, but you have to persuade it to use the scary GLR ;; parser algorithm (with-parser-context (character-scanner-context :scanner scanner) (labels ((tree () (parse (or (peek (seq (#\( (left (tree)) (data :any) (right (tree)) #\)) (make-node left data right))) (values nil t nil))))) (parse (seq ((tree (tree)) :eof) tree))))) (def-test-method test-simple-tree-parser ((test test-parser) :run nil) (assert-parse ("" nil t nil :scanner sc) (parse-tree sc)) (assert-parse ("((a)b((c)d(e)))" t t t :scanner sc) (parse-tree sc)) (assert-parse ("((a)b((c)d(e)))z" '(:eof) nil t :scanner sc) (parse-tree sc)) (assert-parse ("((a)b((c)d(e))" '(#\)) nil t :scanner sc) (parse-tree sc)) (assert-parse ("(([)*(]))" t t t :scanner sc) (parse-tree sc)) (assert-parse ("((()-()))" '(#\)) nil t :scanner sc) (parse-tree sc)) (assert-parse ("((()-()))" t t t :scanner sc) (parse-tree-lookahead sc))) ;;;-------------------------------------------------------------------------- ;;; Test expression parser. (eval-when (:compile-toplevel :load-toplevel :execute) (defparse token (:context (context character-parser-context) parser) (with-gensyms (value) (expand-parser-spec context `(seq ((,value ,parser) :whitespace) ,value))))) (let ((add (binop "+" (x y 5) `(+ ,x ,y))) (sub (binop "-" (x y 5) `(- ,x ,y))) (mul (binop "*" (x y 7) `(* ,x ,y))) (div (binop "/" (x y 7) `(/ ,x ,y))) (eq (binop "=" (x y 3 :assoc nil) `(= ,x ,y))) (ne (binop "/=" (x y 3 :assoc nil) `(/= ,x ,y))) (lt (binop "<" (x y 3 :assoc nil) `(< ,x ,y))) (gt (binop ">" (x y 3 :assoc nil) `(> ,x ,y))) (and (binop "&" (x y 2) `(and ,x ,y))) (or (binop "|" (x y 1) `(or ,x ,y))) (expt (binop "**" (x y 8 :assoc :right) `(** ,x ,y))) (neg (preop "-" (x 9) `(- ,x))) (not (preop "!" (x 2) `(not ,x))) (fact (postop "!" (x 10) `(! ,x))) (lp (lparen #\))) (rp (rparen #\))) (lb (lparen #\])) (rb (rparen #\]))) (defun test-parse-expr (string) (with-parser-context (string-parser :string string) (parse (seq (:whitespace (value (expr (:nestedp nestedp) (token (many (a 0 (+ (* a 10) it) :min 1) (filter digit-char-p))) (token (or (seq ("**") expt) (seq ("/=") ne) (seq (#\+) add) (seq (#\-) sub) (seq (#\*) mul) (seq (#\/) div) (seq (#\=) eq) (seq (#\<) lt) (seq (#\>) gt) (seq (#\&) and) (seq (#\|) or))) (token (or (seq (#\() lp) (seq (#\[) lb) (seq (#\-) neg) (seq (#\!) not))) (token (or (seq (#\!) fact) (when nestedp (or (seq (#\)) rp) (seq (#\]) rb))))))) (next (or :any (t :eof)))) (cons value next)))))) (defun assert-expr-parse (string value winp consumedp) (multiple-value-bind (v w c) (test-parse-expr string) (flet ((message (what) (format nil "expression ~S; ~A" string what))) (cond (winp (assert-true w (message "winp")) (assert-equal v value (message "value"))) (t (assert-false w (message "winp")) (assert-equal v value (message "expected")))) (assert-eql c consumedp (message "consumedp"))))) (def-test-method test-expression-parser ((test test-parser) :run nil) (assert-expr-parse "1 + 2 + 3" '((+ (+ 1 2) 3) . :eof) t t) (assert-expr-parse "1 + 2 * 3" '((+ 1 (* 2 3)) . :eof) t t) (assert-expr-parse "1 * 2 + 3" '((+ (* 1 2) 3) . :eof) t t) (assert-expr-parse "(1 + 2) * 3" '((* (+ 1 2) 3) . :eof) t t) (assert-expr-parse "1 ** 2 ** 3" '((** 1 (** 2 3)) . :eof) t t) (assert-expr-parse "1 + 2) * 3" '((+ 1 2) . #\)) t t) (assert-expr-parse "1 + 2 * 3" '((+ 1 (* 2 3)) . :eof) t t) (assert-expr-parse "! 1 + 2 = 3 | 6 - 3 /= 12/6" '((or (not (= (+ 1 2) 3)) (/= (- 6 3) (/ 12 6))) . :eof) t t) (assert-expr-parse "! 1 > 2 & ! 4 < 6 | 3 < 4 & 9 > 10" '((or (and (not (> 1 2)) (not (< 4 6))) (and (< 3 4) (> 9 10))) . :eof) t t) (assert-condition 'simple-error (test-parse-expr "(1 + 2")) (assert-condition 'simple-error (test-parse-expr "(1 + 2]")) (assert-condition 'simple-error (test-parse-expr "1 < 2 < 3"))) ;;;----- That's all, folks --------------------------------------------------