chiark / gitweb /
src/method-aggregate.lisp: Allow useful behaviour if no primary methods.
[sod] / doc / syntax.tex
... / ...
CommitLineData
1%%% -*-latex-*-
2%%%
3%%% Module syntax
4%%%
5%%% (c) 2015 Straylight/Edgeware
6%%%
7
8%%%----- Licensing notice ---------------------------------------------------
9%%%
10%%% This file is part of the Sensible Object Design, an object system for C.
11%%%
12%%% SOD is free software; you can redistribute it and/or modify
13%%% it under the terms of the GNU General Public License as published by
14%%% the Free Software Foundation; either version 2 of the License, or
15%%% (at your option) any later version.
16%%%
17%%% SOD is distributed in the hope that it will be useful,
18%%% but WITHOUT ANY WARRANTY; without even the implied warranty of
19%%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20%%% GNU General Public License for more details.
21%%%
22%%% You should have received a copy of the GNU General Public License
23%%% along with SOD; if not, write to the Free Software Foundation,
24%%% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25
26\chapter{Module syntax} \label{ch:syntax}
27
28%%%--------------------------------------------------------------------------
29\section{Lexical syntax} \label{sec:syntax.lex}
30
31Whitespace and comments are discarded. The remaining characters are
32collected into tokens according to the following syntax.
33
34\begin{grammar}
35<token> ::= <identifier>
36\alt <string-literal>
37\alt <char-literal>
38\alt <integer-literal>
39\alt <punctuation>
40\end{grammar}
41
42This syntax is slightly ambiguous, and is disambiguated by the \emph{maximal
43munch} rule: at each stage we take the longest sequence of characters which
44could be a token.
45
46
47\subsection{Identifiers} \label{sec:syntax.lex.id}
48
49\begin{grammar}
50<identifier> ::= <id-start-char> @<id-body-char>^*
51
52<id-start-char> ::= <alpha-char> | "_"
53
54<id-body-char> ::= <id-start-char> @! <digit-char>
55
56<alpha-char> ::= "A" | "B" | \dots\ | "Z"
57\alt "a" | "b" | \dots\ | "z"
58\alt <extended-alpha-char>
59
60<digit-char> ::= "0" | <nonzero-digit-char>
61
62<nonzero-digit-char> ::= "1" | "2" $| \cdots |$ "9"
63\end{grammar}
64
65The precise definition of @<alpha-char> is left to the function
66\textsf{alpha-char-p} in the hosting Lisp system. For portability,
67programmers are encouraged to limit themselves to the standard ASCII letters.
68
69There are no reserved words at the lexical level, but the higher-level syntax
70recognizes certain identifiers as \emph{keywords} in some contexts. There is
71also an ambiguity (inherited from C) in the declaration syntax which is
72settled by distinguishing type names from other identifiers at a lexical
73level.
74
75
76\subsection{String and character literals} \label{sec:syntax.lex.string}
77
78\begin{grammar}
79<string-literal> ::= "\"" @<string-literal-char>^* "\""
80
81<char-literal> ::= "'" <char-literal-char> "'"
82
83<string-literal-char> ::= any character other than "\\" or "\""
84\alt "\\" <char>
85
86<char-literal-char> ::= any character other than "\\" or "'"
87\alt "\\" <char>
88
89<char> ::= any single character
90\end{grammar}
91
92The syntax for string and character literals differs from~C. In particular,
93escape sequences such as @`\textbackslash n' are not recognized. The use
94of string and character literals in Sod, outside of C~fragments, is limited,
95and the simple syntax seems adequate. For the sake of future compatibility,
96the use of character sequences which resemble C escape sequences is
97discouraged.
98
99\subsubsection{Integer literals} \label{sec:syntax.lex.int}
100
101\begin{grammar}
102<integer-literal> ::= <decimal-integer>
103\alt <binary-integer>
104\alt <octal-integer>
105\alt <hex-integer>
106
107<decimal-integer> ::= "0" | <nonzero-digit-char> @<digit-char>^*
108
109<binary-integer> ::= "0" @("b"|"B"@) @<binary-digit-char>^+
110
111<binary-digit-char> ::= "0" | "1"
112
113<octal-integer> ::= "0" @["o"|"O"@] @<octal-digit-char>^+
114
115<octal-digit-char> ::= "0" | "1" $| \cdots |$ "7"
116
117<hex-integer> ::= "0" @("x"|"X"@) @<hex-digit-char>^+
118
119<hex-digit-char> ::= <digit-char>
120\alt "A" | "B" | "C" | "D" | "E" | "F"
121\alt "a" | "b" | "c" | "d" | "e" | "f"
122\end{grammar}
123
124Sod understands only integers, not floating-point numbers; its integer syntax
125goes slightly beyond C in allowing a @`0o' prefix for octal and @`0b' for
126binary. However, length and signedness indicators are not permitted.
127
128
129\subsection{Punctuation} \label{sec:syntax.lex.punct}
130
131\begin{grammar}
132<punctuation> ::= any nonalphanumeric character other than "_", "\"" or "'"
133\end{grammar}
134
135
136\subsection{Comments} \label{sec:syntax.lex.comment}
137
138\begin{grammar}
139<comment> ::= <block-comment>
140\alt <line-comment>
141
142<block-comment> ::=
143 "/*"
144 @<not-star>^* @(@<star>^+ <not-star-or-slash> @<not-star>^*@)^*
145 @<star>^*
146 "*/"
147
148<star> ::= "*"
149
150<not-star> ::= any character other than "*"
151
152<not-star-or-slash> ::= any character other than "*" or "/"
153
154<line-comment> ::= "/\,/" @<not-newline>^* <newline>
155
156<newline> ::= a newline character
157
158<not-newline> ::= any character other than newline
159\end{grammar}
160
161Comments are exactly as in C99: both traditional block comments `@|/*| \dots\
162@|*/|' and \Cplusplus-style `@|/\,/| \dots' comments are permitted and
163ignored.
164
165
166\subsection{Special nonterminals} \label{sec:syntax.lex.special}
167
168Aside from the lexical syntax presented above (\xref{sec:lexical-syntax}),
169two special nonterminals occur in the module syntax.
170
171\subsubsection{S-expressions}
172\begin{grammar}
173<s-expression> ::= an S-expression, as parsed by the Lisp reader
174\end{grammar}
175
176When an S-expression is expected, the Sod parser simply calls the host Lisp
177system's @|read| function. Sod modules are permitted to modify the read
178table to extend the S-expression syntax.
179
180S-expressions are self-delimiting, so no end-marker is needed.
181
182\subsubsection{C fragments}
183\begin{grammar}
184<c-fragment> ::= a sequence of C tokens, with matching brackets
185\end{grammar}
186
187Sequences of C code are simply stored and written to the output unchanged
188during translation. They are read using a simple scanner which nonetheless
189understands C comments and string and character literals.
190
191A C fragment is terminated by one of a small number of delimiter characters
192determined by the immediately surrounding context -- usually a closing brace
193or bracket. The first such delimiter character which is not enclosed in
194brackets, braces or parenthesis ends the fragment.
195
196%%%--------------------------------------------------------------------------
197\section{Module syntax} \label{sec:syntax.module}
198
199\begin{grammar}
200<module> ::= @<definition>^*
201
202<definition> ::= <import-definition>
203\alt <load-definition>
204\alt <lisp-definition>
205\alt <code-definition>
206\alt <typename-definition>
207\alt <class-definition>
208\end{grammar}
209
210A @<module> is the top-level syntactic item. A module consists of a sequence
211of definitions.
212
213[FIXME]
214Properties:
215\begin{description}
216\item[@"module_class"] A symbol naming the Lisp class to use to
217 represent the module.
218\item[@"guard"] An identifier to use as the guard symbol used to prevent
219 multiple inclusion in the header file.
220\end{description}
221
222
223\subsection{Simple definitions} \label{sec:syntax.module.simple}
224
225\subsubsection{Importing modules}
226\begin{grammar}
227<import-definition> ::= "import" <string> ";"
228\end{grammar}
229
230The module named @<string> is processed and its definitions made available.
231
232A search is made for a module source file as follows.
233\begin{itemize}
234\item The module name @<string> is converted into a filename by appending
235 @`.sod', if it has no extension already.\footnote{%
236 Technically, what happens is \textsf{(merge-pathnames name (make-pathname
237 :type "SOD" :case :common))}, so exactly what this means varies
238 according to the host system.} %
239\item The file is looked for relative to the directory containing the
240 importing module.
241\item If that fails, then the file is looked for in each directory on the
242 module search path in turn.
243\item If the file still isn't found, an error is reported and the import
244 fails.
245\end{itemize}
246At this point, if the file has previously been imported, nothing further
247happens.\footnote{%
248 This check is done using \textsf{truename}, so it should see through simple
249 tricks like symbolic links. However, it may be confused by fancy things
250 like bind mounts and so on.} %
251
252Recursive imports, either direct or indirect, are an error.
253
254\subsubsection{Loading extensions}
255\begin{grammar}
256<load-definition> ::= "load" <string> ";"
257\end{grammar}
258
259The Lisp file named @<string> is loaded and evaluated.
260
261A search is made for a Lisp source file as follows.
262\begin{itemize}
263\item The name @<string> is converted into a filename by appending @`.lisp',
264 if it has no extension already.\footnote{%
265 Technically, what happens is \textsf{(merge-pathnames name (make-pathname
266 :type "LISP" :case :common))}, so exactly what this means varies
267 according to the host system.} %
268\item A search is then made in the same manner as for module imports
269 (\xref{sec:syntax-module}).
270\end{itemize}
271If the file is found, it is loaded using the host Lisp's \textsf{load}
272function.
273
274Note that Sod doesn't attempt to compile Lisp files, or even to look for
275existing compiled files. The right way to package a substantial extension to
276the Sod translator is to provide the extension as a standard ASDF system (or
277similar) and leave a dropping @"foo-extension.lisp" in the module path saying
278something like
279\begin{quote}
280 \textsf{(asdf:load-system :foo-extension)}
281\end{quote}
282which will arrange for the extension to be compiled if necessary.
283
284(This approach means that the language doesn't need to depend on any
285particular system definition facility. It's bad enough already that it
286depends on Common Lisp.)
287
288\subsubsection{Lisp escapes}
289\begin{grammar}
290<lisp-definition> ::= "lisp" <s-expression> ";"
291\end{grammar}
292
293The @<s-expression> is evaluated immediately. It can do anything it likes.
294
295\begin{boxy}[Warning!]
296 This means that hostile Sod modules are a security hazard. Lisp code can
297 read and write files, start other programs, and make network connections.
298 Don't install Sod modules from sources that you don't trust.\footnote{%
299 Presumably you were going to run the corresponding code at some point, so
300 this isn't as unusually scary as it sounds. But please be careful.} %
301\end{boxy}
302
303\subsubsection{Declaring type names}
304\begin{grammar}
305<typename-definition> ::=
306 "typename" <list>$[\mbox{@<identifier>}]$ ";"
307\end{grammar}
308
309Each @<identifier> is declared as naming a C type. This is important because
310the C type syntax -- which Sod uses -- is ambiguous, and disambiguation is
311done by distinguishing type names from other identifiers.
312
313Don't declare class names using @"typename"; use @"class" forward
314declarations instead.
315
316
317\subsection{Literal code} \label{sec:syntax.module.literal}
318
319\begin{grammar}
320<code-definition> ::=
321 "code" <identifier> ":" <item-name> @[<constraints>@]
322 "{" <c-fragment> "}"
323
324<constraints> ::= "[" <list>$[\mbox{@<constraint>}]$ "]"
325
326<constraint> ::= @<item-name>^+
327
328<item-name> ::= <identifier> @! "(" @<identifier>^+ ")"
329\end{grammar}
330
331The @<c-fragment> will be output unchanged to one of the output files.
332
333The first @<identifier> is the symbolic name of an output file. Predefined
334output file names are @"c" and @"h", which are the implementation code and
335header file respectively; other output files can be defined by extensions.
336
337Output items are named with a sequence of identifiers, separated by
338whitespace, and enclosed in parentheses. As an abbreviation, a name
339consisting of a single identifier may be written as just that identifier,
340without the parentheses.
341
342The @<constraints> provide a means for specifying where in the output file
343the output item should appear. (Note the two kinds of square brackets shown
344in the syntax: square brackets must appear around the constraints if they are
345present, but that they may be omitted.) Each comma-separated @<constraint>
346is a sequence of names of output items, and indicates that the output items
347must appear in the order given -- though the translator is free to insert
348additional items in between them. (The particular output items needn't be
349defined already -- indeed, they needn't be defined ever.)
350
351There is a predefined output item @"includes" in both the @"c" and @"h"
352output files which is a suitable place for inserting @"\#include"
353preprocessor directives in order to declare types and functions for use
354elsewhere in the generated output files.
355
356
357\subsection{Property sets} \label{sec:syntax.module.properties}
358\begin{grammar}
359<properties> ::= "[" <list>$[\mbox{@<property>}]$ "]"
360
361<property> ::= <identifier> "=" <expression>
362\end{grammar}
363
364Property sets are a means for associating miscellaneous information with
365classes and related items. By using property sets, additional information
366can be passed to extensions without the need to introduce idiosyncratic
367syntax.
368
369A property has a name, given as an @<identifier>, and a value computed by
370evaluating an @<expression>. The value can be one of a number of types,
371though the only operators currently defined act on integer values only.
372
373\subsubsection{The expression evaluator}
374\begin{grammar}
375<expression> ::= <term> | <expression> "+" <term> | <expression> "--" <term>
376
377<term> ::= <factor> | <term> "*" <factor> | <term> "/" <factor>
378
379<factor> ::= <primary> | "+" <factor> | "--" <factor>
380
381<primary> ::=
382 <integer-literal> | <string-literal> | <char-literal> | <identifier>
383\alt "<" <plain-type> ">"
384\alt "?" <s-expression>
385\alt "(" <expression> ")"
386\end{grammar}
387
388The arithmetic expression syntax is simple and standard; there are currently
389no bitwise, logical, or comparison operators.
390
391A @<primary> expression may be a literal or an identifier. Note that
392identifiers stand for themselves: they \emph{do not} denote values. For more
393fancy expressions, the syntax
394\begin{quote}
395 @"?" @<s-expression>
396\end{quote}
397causes the @<s-expression> to be evaluated using the Lisp \textsf{eval}
398function.
399%%% FIXME crossref to extension docs
400
401
402\subsection{C types} \label{sec:syntax.module.types}
403
404Sod's syntax for C types closely mirrors the standard C syntax. A C type has
405two parts: a sequence of @<declaration-specifier>s and a @<declarator>. In
406Sod, a type must contain at least one @<declaration-specifier> (i.e.,
407`implicit @"int"' is forbidden), and storage-class specifiers are not
408recognized.
409
410\subsubsection{Declaration specifiers}
411\begin{grammar}
412<declaration-specifier> ::= <type-name>
413\alt "struct" <identifier> | "union" <identifier> | "enum" <identifier>
414\alt "void" | "char" | "int" | "float" | "double"
415\alt "short" | "long"
416\alt "signed" | "unsigned"
417\alt "bool" | "_Bool"
418\alt "imaginary" | "_Imaginary" | "complex" | "_Complex"
419\alt <qualifier>
420\alt <storage-specifier>
421\alt <atomic-type>
422
423<qualifier> ::= <atomic> | "const" | "volatile" | "restrict"
424
425<plain-type> ::= @<declaration-specifier>^+ <abstract-declarator>
426
427<atomic-type> ::=
428 <atomic> "(" <plain-type> ")"
429
430<atomic> ::= "atomic" | "_Atomic"
431
432<storage-specifier> ::= <alignas> "(" <c-fragment> ")"
433
434<alignas> ::= "alignas" "_Alignas"
435
436<type-name> ::= <identifier>
437\end{grammar}
438
439A @<type-name> is an identifier which has been declared as being a type name,
440using the @"typename" or @"class" definitions. The following type names are
441defined in the built-in module.
442\begin{itemize}
443\item @"va_list"
444\item @"size_t"
445\item @"ptrdiff_t"
446\item @"wchar_t"
447\end{itemize}
448
449Declaration specifiers may appear in any order. However, not all
450combinations are permitted. A declaration specifier must consist of zero or
451more @<qualifier>s, zero or more @<storage-specifier>s, and one of the
452following, up to reordering.
453\begin{itemize}
454\item @<type-name>
455\item @<atomic-type>
456\item @"struct" @<identifier>, @"union" @<identifier>, @"enum" @<identifier>
457\item @"void"
458\item @"_Bool", @"bool"
459\item @"char", @"unsigned char", @"signed char"
460\item @"short", @"unsigned short", @"signed short"
461\item @"short int", @"unsigned short int", @"signed short int"
462\item @"int", @"unsigned int", @"signed int", @"unsigned", @"signed"
463\item @"long", @"unsigned long", @"signed long"
464\item @"long int", @"unsigned long int", @"signed long int"
465\item @"long long", @"unsigned long long", @"signed long long"
466\item @"long long int", @"unsigned long long int", @"signed long long int"
467\item @"float", @"double", @"long double"
468\item @"float _Imaginary", @"double _Imaginary", @"long double _Imaginary"
469\item @"float imaginary", @"double imaginary", @"long double imaginary"
470\item @"float _Complex", @"double _Complex", @"long double _Complex"
471\item @"float complex", @"double complex", @"long double complex"
472\end{itemize}
473All of these have their usual C meanings.
474
475\subsubsection{Declarators}
476\begin{grammar}
477<declarator>$[k, a]$ ::= @<pointer>^* <primary-declarator>$[k, a]$
478
479<primary-declarator>$[k, a]$ ::= $k$
480\alt "(" <primary-declarator>$[k, a]$ ")"
481\alt <primary-declarator>$[k, a]$ @<declarator-suffix>$[a]$
482
483<pointer> ::= "*" @<qualifier>^*
484
485<declarator-suffix>$[a]$ ::= "[" <c-fragment> "]"
486\alt "(" $a$ ")"
487
488<argument-list> ::= $\epsilon$ | "\dots"
489\alt <list>$[\mbox{@<argument>}]$ @["," "\dots"@]
490
491<argument> ::= @<declaration-specifier>^+ <argument-declarator>
492
493<abstract-declarator> ::= <declarator>$[\epsilon, \mbox{@<argument-list>}]$
494
495<argument-declarator> ::= <declarator>$[\mbox{@<identifier> @! $\epsilon$}]$
496
497<argument-declarator> ::=
498 <declarator>$[\mbox{@<identifier> @! $\epsilon$}, \mbox{@<argument-list>}]$
499
500<simple-declarator> ::=
501 <declarator>$[\mbox{@<identifier>}, \mbox{@<argument-list>}]$
502\end{grammar}
503
504The declarator syntax is taken from C, but with some differences.
505\begin{itemize}
506\item Array dimensions are uninterpreted @<c-fragments>, terminated by a
507 closing square bracket. This allows array dimensions to contain arbitrary
508 constant expressions.
509\item A declarator may have either a single @<identifier> at its centre or a
510 pair of @<identifier>s separated by a @`.'; this is used to refer to
511 slots or messages defined in superclasses.
512\end{itemize}
513The remaining differences are (I hope) a matter of presentation rather than
514substance.
515
516There is additional syntax to support messages and methods which accept
517keyword arguments.
518
519\begin{grammar}
520<keyword-argument> ::= <argument> @["=" <c-fragment>@]
521
522<keyword-argument-list> ::=
523 @[<list>$[\mbox{@<argument>}]$@]
524 "?" @[<list>$[\mbox{@<keyword-argument>}]$@]
525
526<method-argument-list> ::= <argument-list> @! <keyword-argument-list>
527
528<dotted-name> ::= <identifier> "." <identifier>
529
530<keyword-declarator>$[k]$ ::=
531 <declarator>$[k, \mbox{@<method-argument-list>}]$
532\end{grammar}
533
534
535\subsection{Class definitions} \label{sec:syntax.module.class}
536
537\begin{grammar}
538<class-definition> ::= <class-forward-declaration>
539\alt <full-class-definition>
540\end{grammar}
541
542\subsubsection{Forward declarations}
543\begin{grammar}
544<class-forward-declaration> ::= "class" <identifier> ";"
545\end{grammar}
546
547A @<class-forward-declaration> informs Sod that an @<identifier> will be used
548to name a class which is currently undefined. Forward declarations are
549necessary in order to resolve certain kinds of circularity. For example,
550\begin{prog}
551class Sub; \\+
552
553class Super: SodObject \{ \\ \ind
554 Sub *sub; \-\\
555\}; \\+
556
557class Sub: Super \{ \\ \ind
558 /* \dots\ */ \-\\
559\};
560\end{prog}
561
562\subsubsection{Full class definitions}
563\begin{grammar}
564<full-class-definition> ::=
565 @[<properties>@]
566 "class" <identifier> ":" <list>$[\mbox{@<identifier>}]$
567 "{" @<properties-class-item>^* "}"
568
569<properties-class-item> ::= @[<properties>@] <class-item>
570
571<class-item> ::= <slot-item>
572\alt <initializer-item>
573\alt <initarg-item>
574\alt <fragment-item>
575\alt <message-item>
576\alt <method-item>
577\end{grammar}
578
579A full class definition provides a complete description of a class.
580
581The first @<identifier> gives the name of the class. It is an error to
582give the name of an existing class (other than a forward-referenced class),
583or an existing type name. It is conventional to give classes `MixedCase'
584names, to distinguish them from other kinds of identifiers.
585
586The @<list>$[\mbox{@<identifier>}]$ names the direct superclasses for the new
587class. It is an error if any of these @<identifier>s does not name a defined
588class. The superclass list is required, and must not be empty; listing
589@|SodObject| as your class's superclass is a good choice if nothing else
590seems suitable. It's not possible to define a \emph{root class} in the Sod
591language: you must use Lisp to do this, and it's quite involved.
592
593The @<properties> provide additional information. The standard class
594properties are as follows.
595\begin{description}
596\item[@"lisp_class"] The name of the Lisp class to use within the translator
597 to represent this class. The property value must be an identifier; the
598 default is @"sod_class". Extensions may define classes with additional
599 behaviour, and may recognize additional class properties.
600\item[@"metaclass"] The name of the Sod metaclass for this class. In the
601 generated code, a class is itself an instance of another class -- its
602 \emph{metaclass}. The metaclass defines which slots the class will have,
603 which messages it will respond to, and what its behaviour will be when it
604 receives them. The property value must be an identifier naming a defined
605 subclass of @"SodClass". The default metaclass is @"SodClass".
606 See \xref{sec:concepts.metaclasses} for more details.
607\item[@"nick"] A nickname for the class, to be used to distinguish it from
608 other classes in various limited contexts. The property value must be an
609 identifier; the default is constructed by forcing the class name to
610 lower-case.
611\end{description}
612
613The class body consists of a sequence of @<class-item>s enclosed in braces.
614These items are discussed on the following sections.
615
616\subsubsection{Slot items}
617\begin{grammar}
618<slot-item> ::=
619 @<declaration-specifier>^+ <list>$[\mbox{@<init-declarator>}]$ ";"
620
621<init-declarator> ::= <simple-declarator> @["=" <initializer>@]
622\end{grammar}
623
624A @<slot-item> defines one or more slots. All instances of the class and any
625subclass will contain these slot, with the names and types given by the
626@<declaration-specifiers> and the @<declarators>. Slot declarators may not
627contain dotted names.
628
629It is not possible to declare a slot with function type: such an item is
630interpreted as being a @<message-item> or @<method-item>. Pointers to
631functions are fine.
632
633Properties:
634\begin{description}
635\item[@"slot_class"] A symbol naming the Lisp class to use to represent the
636 direct slot.
637\item[@"initarg"] An identifier naming an initialization argument which can
638 be used to provide a value for the slot. See
639 \xref{sec:concepts.lifecycle.birth} for the details.
640\end{description}
641
642An @<initializer>, if present, is treated as if a separate
643@<initializer-item> containing the slot name and initializer were present.
644For example,
645\begin{prog}
646[nick = eg] \\
647class Example: Super \{ \\ \ind
648 int foo = 17; \-\\
649\};
650\end{prog}
651means the same as
652\begin{prog}
653[nick = eg] \\
654class Example: Super \{ \\ \ind
655 int foo; \\
656 eg.foo = 17; \-\\
657\};
658\end{prog}
659
660\subsubsection{Initializer items}
661\begin{grammar}
662<initializer-item> ::= @["class"@] <list>$[\mbox{@<slot-initializer>}]$ ";"
663
664<slot-initializer> ::= <dotted-name> @["=" <initializer>@]
665
666<initializer> :: <c-fragment>
667\end{grammar}
668
669An @<initializer-item> provides an initial value for one or more slots. If
670prefixed by @"class", then the initial values are for class slots (i.e.,
671slots of the class object itself); otherwise they are for instance slots.
672
673The first component of the @<dotted-name> must be the nickname of one of the
674class's superclasses (including itself); the second must be the name of a
675slot defined in that superclass.
676
677Properties:
678\begin{description}
679\item[@"initializer_class"] A symbol naming the Lisp class to use to
680 represent the initializer.
681\item[@"initarg"] An identifier naming an initialization argument which can
682 be used to provide a value for the slot. See
683 \xref{sec:concepts.lifecycle.birth} for the details. An initializer item
684 must have either an @|initarg| property, or an initializer expression, or
685 both.
686\item[@"initarg_class"] A symbol naming the Lisp class to use to represent
687 the initarg. Only permitted if @"initarg" is also set.
688\end{description}
689
690Each class may define at most one initializer item with an explicit
691initializer expression for a given slot.
692
693\subsubsection{Initarg items}
694\begin{grammar}
695<initarg-item> ::=
696 "initarg"
697 @<declaration-specifier>^+
698 <list>$[\mbox{@<init-declarator>}]$ ";"
699\end{grammar}
700Properties:
701\begin{description}
702\item[@"initarg_class"] A symbol naming the Lisp class to use to represent
703 the initarg.
704\end{description}
705
706\subsubsection{Fragment items}
707\begin{grammar}
708<fragment-item> ::= <fragment-kind> "{" <c-fragment> "}"
709
710<fragment-kind> ::= "init" | "teardown"
711\end{grammar}
712
713\subsubsection{Message items}
714\begin{grammar}
715<message-item> ::=
716 @<declaration-specifier>^+
717 <keyword-declarator>$[\mbox{@<identifier>}]$
718 @[<method-body>@]
719\end{grammar}
720Properties:
721\begin{description}
722\item[@"message_class"] A symbol naming the Lisp class to use to represent
723 the message.
724\item[@"combination"] A keyword naming the aggregating method combination to
725 use.
726\item[@"most_specific"] A keyword, either @`first' or @`last', according to
727 whether the most specific applicable method should be invoked first or
728 last.
729\end{description}
730
731Properties for the @|custom| aggregating method combination:
732\begin{description}
733\item[@"retvar"] An identifier for the return value from the effective
734 method. The default is @|sod__ret|. Only permitted if the message return
735 type is not @|void|.
736\item[@"valvar"] An identifier holding each return value from a direct method
737 in the effective method. The default is @|sod__val|. Only permitted if
738 the method return type (see @"methty" below) is not @|void|.
739\item[@"methty"] A C type, which is the return type for direct methods of
740 this message.
741\item[@"decls"] A code fragment containing declarations to be inserted at the
742 head of the effective method body. The default is to insert nothing.
743\item[@"before"] A code fragment containing initialization to be performed at
744 the beginning of the effective method body. The default is to insert
745 nothing.
746\item[@"empty"] A code fragment executed if there are no primary methods;
747 it should usually store a suitable (identity) value in @<retvar>. The
748 default is not to emit an effective method at all if there are no primary
749 methods.
750\item[@"first"] A code fragment to set the return value after calling the
751 first applicable direct method. The default is to use the @"each"
752 fragment.
753\item[@"each"] A code fragment to set the return value after calling a direct
754 method. If @"first" is also set, then it is used after the first direct
755 method instead of this. The default is to insert nothing, which is
756 probably not what you want.
757\item[@"after"] A code fragment inserted at the end of the effective method
758 body. The default is to insert nothing.
759\item[@"count"] An identifier naming a variable to be declared in the
760 effective method body, of type @|size_t|, holding the number of applicable
761 methods. The default is not to provide such a variable.
762\end{description}
763
764\subsubsection{Method items}
765\begin{grammar}
766<method-item> ::=
767 @<declaration-specifier>^+
768 <keyword-declarator>$[\mbox{@<dotted-name>}]$
769 <method-body>
770
771<method-body> ::= "{" <c-fragment> "}" | "extern" ";"
772\end{grammar}
773Properties:
774\begin{description}
775\item[@"method_class"] A symbol naming the Lisp class to use to represent
776 the direct method.
777\item[@"role"] A keyword naming the direct method's rôle. For the built-in
778 `simple' message classes, the acceptable rôle names are @|before|,
779 @|after|, and @|around|. By default, a primary method is constructed.
780\end{description}
781
782%%%----- That's all, folks --------------------------------------------------
783
784%%% Local variables:
785%%% mode: LaTeX
786%%% TeX-master: "sod.tex"
787%%% TeX-PDF-mode: t
788%%% End: