chiark / gitweb /
doc/structures.tex, lib/sod-structs.3: Define variable `M'.
[sod] / doc / clang.tex
CommitLineData
dea4d055
MW
1%%% -*-latex-*-
2%%%
1f7d590d 3%%% C language utilities
dea4d055 4%%%
1f7d590d 5%%% (c) 2015 Straylight/Edgeware
dea4d055
MW
6%%%
7
8%%%----- Licensing notice ---------------------------------------------------
9%%%
e0808c47 10%%% This file is part of the Sensible Object Design, an object system for C.
dea4d055
MW
11%%%
12%%% SOD is free software; you can redistribute it and/or modify
13%%% it under the terms of the GNU General Public License as published by
14%%% the Free Software Foundation; either version 2 of the License, or
15%%% (at your option) any later version.
16%%%
17%%% SOD is distributed in the hope that it will be useful,
18%%% but WITHOUT ANY WARRANTY; without even the implied warranty of
19%%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20%%% GNU General Public License for more details.
21%%%
22%%% You should have received a copy of the GNU General Public License
23%%% along with SOD; if not, write to the Free Software Foundation,
24%%% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25
1f7d590d 26\chapter{C language utilities} \label{ch:clang}
dea4d055
MW
27
28%%%--------------------------------------------------------------------------
1f7d590d 29\section{C type representation} \label{sec:clang.c-types}
dea4d055 30
1f7d590d 31\subsection{Overview} \label{sec:clang.c-types.over}
dea4d055
MW
32
33The Sod translator represents C types in a fairly simple and direct way.
34However, because it spends a fair amount of its time dealing with C types, it
35provides a number of useful operations and macros.
36
64d1ecf7 37The class hierarchy is shown in~\xref{fig:codegen.c-types.classes}.
dea4d055
MW
38
39\begin{figure} \centering
40 \parbox{10pt}{\begin{tabbing}
020b9e2b
MW
41 @|c-type| \\ \ind
42 @|qualifiable-c-type| \\ \ind
43 @|simple-c-type| \\ \ind
44 @|c-class-type| \-\\
45 @|tagged-c-type| \\ \ind
46 @|c-struct-type| \\
47 @|c-union-type| \\
48 @|c-enum-type| \-\\
49 @|c-atomic-type| \\
50 @|c-pointer-type| \-\\
51 @|c-array-type| \\
52 @|c-function-type| \\ \ind
53 @|c-keyword-function-type| \-
dea4d055
MW
54 \end{tabbing}}
55 \caption{Classes representing C types}
64d1ecf7 56\label{fig:codegen.c-types.classes}
dea4d055
MW
57\end{figure}
58
59C type objects are immutable unless otherwise specified.
60
61\subsubsection{Constructing C type objects}
62There is a constructor function for each non-abstract class of C type object.
63Note, however, that constructor functions need not generate a fresh type
64object if a previously existing type object is suitable. In this case, we
65say that the objects are \emph{interned}. Some constructor functions are
66specified to return interned objects: programs may rely on receiving the same
67(@|eq|) type object for similar (possibly merely @|equal|) arguments. Where
68not specified, clients may still not rely on receiving fresh objects.
69
58f9b400
MW
70A convenient S-expression notation is provided by the
71\descref{c-type}[macro]{mac}. Use of this macro is merely an abbreviation
72for corresponding use of the various constructor functions, and therefore
73interns type objects in the same manner. The syntax accepted by the macro
74can be extended in order to support new classes: see \descref{defctype}{mac},
75\descref{c-type-alias}{mac} and \descref{define-c-type-syntax}{mac}.
dea4d055
MW
76
77The descriptions of each of the various classes include descriptions of the
78initargs which may be passed to @|make-instance| when constructing a new
79instance of the class. However, the constructor functions and S-expression
80syntax are strongly recommended over direct use of @|make-instance|.
81
82\subsubsection{Printing}
83There are two protocols for printing C types. Unfortunately they have
84similar names.
85\begin{itemize}
58f9b400
MW
86\item The \descref{print-c-type}[function]{gf} prints a C type value using
87 the S-expression notation. It is mainly useful for diagnostic purposes.
88\item The \descref{pprint-c-type}[function]{gf} prints a C type as a
89 C-syntax declaration.
dea4d055
MW
90\end{itemize}
91Neither generic function defines a default primary method; subclasses of
92@|c-type| must define their own methods in order to print correctly.
93
31d4431b 94
1f7d590d 95\subsection{The C type root class} \label{sec:clang.c-types.root}
dea4d055
MW
96
97\begin{describe}{cls}{c-type ()}
98 The class @|c-type| marks the root of the built-in C type hierarchy.
99
100 Users may define subclasses of @|c-type|. All non-abstract subclasses must
101 have a primary method defined on @|pprint-c-type|; unless instances of the
102 subclass are interned, a method on @|c-type-equal-p| is also required.
103
104 The class @|c-type| is abstract.
105\end{describe}
106
31d4431b 107
1f7d590d 108\subsection{C type S-expression notation} \label{sec:clang.c-types.sexp}
dea4d055
MW
109
110The S-expression representation of a type is described syntactically as a
111type specifier. Type specifiers fit into two syntactic categories.
112\begin{itemize}
113\item A \emph{symbolic type specifier} consists of a symbol. It has a
114 single, fixed meaning: if @<name> is a symbolic type specifier, then each
115 use of @<name> in a type specifier evaluates to the same (@|eq|) type
116 object, until the @<name> is redefined.
117\item A \emph{type operator} is a symbol; the corresponding specifier is a
118 list whose @|car| is the operator. The remaining items in the list are
119 arguments to the type operator.
120\end{itemize}
121
1f7d590d 122\begin{describe}{mac}{c-type @<type-spec> @> @<c-type>}
dea4d055
MW
123 Evaluates to a C type object, as described by the type specifier
124 @<type-spec>.
125\end{describe}
126
1f7d590d 127\begin{describe}{mac}
020b9e2b
MW
128 {defctype \=@{ @<name> @! (@<name>^+) @} @<type-spec> \+\\
129 @[[ @|:export| @<export-flag> @]]^*
130 \-\nlret @<names>}
dea4d055
MW
131 Defines a new symbolic type specifier @<name>; if a list of @<name>s is
132 given, then all are defined in the same way. The type constructed by using
133 any of the @<name>s is as described by the type specifier @<type-spec>.
134
135 The resulting type object is constructed once, at the time that the macro
136 expansion is evaluated; the same (@|eq|) value is used each time any
137 @<name> is used in a type specifier.
e43d3532
MW
138
139 A variable named @|c-type-@<name>|, for the first @<name> only, is defined
140 and initialized to contain the C type object so constructed. Altering or
141 binding this name is discouraged.
142
143 If @<export-flag> is true, then the variable name, and all of the @<name>s,
144 are exported from the current package.
dea4d055
MW
145\end{describe}
146
1f7d590d 147\begin{describe}{mac}{c-type-alias @<original> @<alias>^* @> @<aliases>}
dea4d055
MW
148 Defines each @<alias> as being a type operator identical in behaviour to
149 @<original>. If @<original> is later redefined then the behaviour of the
150 @<alias>es changes too.
151\end{describe}
152
1f7d590d 153\begin{describe}{mac}
020b9e2b
MW
154 {define-c-type-syntax @<name> @<lambda-list> \\ \ind
155 @[[ @<declaration>^* @! @<doc-string> @]] \\
156 @<form>^*
157 \-\nlret @<name>}
dea4d055
MW
158 Defines the symbol @<name> as a new type operator. When a list of the form
159 @|(@<name> @<argument>^*)| is used as a type specifier, the @<argument>s
160 are bound to fresh variables according to @<lambda-list> (a destructuring
161 lambda-list) and the @<form>s evaluated in order in the resulting lexical
162 environment as an implicit @|progn|. The value should be a Lisp form which
163 will evaluate to the type specified by the arguments.
164
165 The @<form>s may call @|expand-c-type-spec| in order to recursively expand
166 type specifiers among its arguments.
167\end{describe}
168
e07fb83c 169\begin{describe}{gf}{expand-c-type-spec @<type-spec> @> @<form>}
dea4d055 170 Returns the Lisp form that @|(c-type @<type-spec>)| would expand into.
e07fb83c
MW
171
172 If @<type-spec> is a list, then \descref{expand-c-type-form}{fun} is
173 invoked.
174\end{describe}
175
176\begin{describe}{gf}{expand-c-type-form @<head> @<tail> @> @<form>}
177 Returns the Lisp form that @|(c-type (@<head> . @<tail>)| would expand
178 into.
dea4d055
MW
179\end{describe}
180
1f7d590d
MW
181\begin{describe}{gf}
182 {print-c-type @<stream> @<type> \&optional @<colon> @<atsign>}
dea4d055
MW
183 Print the C type object @<type> to @<stream> in S-expression form. The
184 @<colon> and @<atsign> arguments may be interpreted in any way which seems
185 appropriate: they are provided so that @|print-c-type| may be called via
186 @|format|'s @|\char`\~/\dots/| command; they are not set when
187 @|print-c-type| is called by Sod functions.
188
189 There should be a method defined for every C type class; there is no
190 default method.
191\end{describe}
192
31d4431b 193
1f7d590d 194\subsection{Comparing C types} \label{sec:clang.c-types.cmp}
dea4d055
MW
195
196It is necessary to compare C types for equality, for example when checking
197argument lists for methods. This is done by @|c-type-equal-p|.
198
1f7d590d
MW
199\begin{describe}{gf}
200 {c-type-equal-p @<c-type>_1 @<c-type>_2 @> @<generalized-boolean>}
201 The generic function @|c-type-equal-p| compares two C types @<c-type>_1 and
202 @<c-type>_2 for equality; it returns true if the two types are equal and
dea4d055
MW
203 false if they are not.
204
205 Two types are equal if they are structurally similar, where this property
206 is defined by methods for each individual class; see the descriptions of
207 the classes for the details.
208
209 The generic function @|c-type-equal-p| uses the @|and| method combination.
210
1f7d590d 211 \begin{describe}{meth}{c-type-equal-p @<c-type>_1 @<c-type>_2}
dea4d055
MW
212 A default primary method for @|c-type-equal-p| is defined. It simply
213 returns @|nil|. This way, methods can specialize on both arguments
214 without fear that a call will fail because no methods are applicable.
215 \end{describe}
1f7d590d 216 \begin{describe}{ar-meth}{c-type-equal-p @<c-type>_1 @<c-type>_2}
dea4d055 217 A default around-method for @|c-type-equal-p| is defined. It returns
1f7d590d
MW
218 true if @<c-type>_1 and @<c-type>_2 are @|eql|; otherwise it delegates to
219 the primary methods. Since several common kinds of C types are interned,
dea4d055
MW
220 this is a common case worth optimizing.
221 \end{describe}
222\end{describe}
223
31d4431b 224
1f7d590d 225\subsection{Outputting C types} \label{sec:clang.c-types.output}
dea4d055 226
1f7d590d 227\begin{describe}{gf}{pprint-c-type @<c-type> @<stream> @<kernel>}
dea4d055 228 The generic function @|pprint-c-type| pretty-prints to @<stream> a C-syntax
1f7d590d 229 declaration of an object or function of type @<c-type>. The result is
dea4d055
MW
230 written to @<stream>.
231
232 A C declaration has two parts: a sequence of \emph{declaration specifiers}
233 and a \emph{declarator}. The declarator syntax involves parentheses and
234 operators, in order to reflect the operators applicable to the declared
235 variable. For example, the name of a pointer variable is preceded by @`*';
236 the name of an array is followed by dimensions enclosed in @`['\dots @`]'.
237
238 The @<kernel> argument must be a function designator (though see the
239 standard around-method); it is invoked as
240 \begin{quote} \codeface
241 (funcall @<kernel> @<stream> @<priority> @<spacep>)
242 \end{quote}
243 It should write to @<stream> -- which may not be the same stream originally
244 passed into the generic function -- the `kernel' of the declarator, i.e.,
245 the part to which prefix and/or postfix operators are attached to form the
246 full declarator.
247
248 The methods on @|pprint-c-type| specialized for compound types work by
249 recursively calling @|pprint-c-type| on the subtype, passing down a closure
250 which prints the necessary additional declarator operators before calling
251 the original @<kernel> function. The additional arguments @<priority> and
252 @<spacep> support this implementation technique.
253
254 The @<priority> argument describes the surrounding operator context. It is
255 zero if no type operators are directly attached to the kernel (i.e., there
256 are no operators at all, or the kernel is enclosed in parentheses), one if
257 a prefix operator is directly attached, or two if a postfix operator is
258 directly attached. If the @<kernel> function intends to provide its own
259 additional declarator operators, it should check the @<priority> in order
260 to determine whether parentheses are necessary. See also the
58f9b400 261 \descref{maybe-in-parens}[macro]{mac}.
dea4d055
MW
262
263 The @<spacep> argument indicates whether a space needs to be printed in
264 order to separate the declarator from the declaration specifiers. A kernel
265 which contains an identifier should insert a space before the identifier
266 when @<spacep> is non-nil. An `empty' kernel, as found in an abstract
267 declarator (one that specifies no name), looks more pleasing without a
58f9b400 268 trailing space. See also the \descref{c-type-space}[function]{fun}.
dea4d055
MW
269
270 Every concrete subclass of @|c-type| is expected to provide a primary
271 method on this function. There is no default primary method.
272
1f7d590d 273 \begin{describe}{ar-meth}{pprint-c-type @<c-type> @<stream> @<kernel>}
dea4d055
MW
274 A default around method is defined on @|pprint-c-type| which `canonifies'
275 non-function @<kernel> arguments. In particular:
276 \begin{itemize}
277 \item if @<kernel> is nil, then @|pprint-c-type| is called recursively
278 with a @<kernel> function that does nothing; and
279 \item if @<kernel> is any other kind of object, then @|pprint-c-type| is
280 called recursively with a @<kernel> function that prints the object as
281 if by @|princ|, preceded if necessary by space using @|c-type-space|.
282 \end{itemize}
283 \end{describe}
284\end{describe}
285
286\begin{describe}{fun}{c-type-space @<stream>}
287 Writes a space and other pretty-printing instructions to @<stream> in order
288 visually to separate a declarator from the preceding declaration
289 specifiers. The precise details are subject to change.
290\end{describe}
291
1f7d590d 292\begin{describe}{mac}
cac85e0b
MW
293 {maybe-in-parens (@<stream-var> @<guard-form>)
294 @<declaration>^*
295 @<form>^*}
dea4d055
MW
296 The @<guard-form> is evaluated, and then the @<form>s are evaluated in
297 sequence within a pretty-printer logical block writing to the stream named
298 by the symbol @<stream-var>. If the @<guard-form> evaluates to nil, then
299 the logical block has empty prefix and suffix strings; if it evaluates to a
300 non-nil value, then the logical block has prefix and suffix @`(' and @`)'
301 respectively.
302
303 Note that this may cause @<stream> to be bound to a different stream object
304 within the @<form>s.
305\end{describe}
306
31d4431b 307
dea4d055 308\subsection{Type qualifiers and qualifiable types}
1f7d590d 309\label{sec:clang.ctypes.qual}
dea4d055 310
ae0f15ee
MW
311Qualifiers -- @|const|, @|volatile|, and so on -- are represented as lists of
312keywords attached to types. Not all C types can carry qualifiers: notably,
313function and array types cannot be qualified.
314
315For the most part, the C qualifier keywords correspond to like-named Lisp
316keywords, only the Lisp keyword names are in uppercase. The correspondence
317is shown in \xref{tab:clang.ctypes.qual}.
318
319\begin{table}
320 \begin{tabular}[C]{*2{>{\codeface}l}l} \hlx*{hv}
321 \thd{\textbf{C name}} & \thd{\textbf{Lisp name}} \\ \hlx{vhv}
322 _Atomic & :atomic \\
323 const & :const \\
324 restrict & :restrict \\
325 volatile & :volatile \\ \hlx*{vh}
326 \end{tabular}
327 \caption{C and Lisp qualifier names} \label{tab:clang.ctypes.qual}
328\end{table}
329
330The default behaviour, on output, is to convert keywords to lowercase and
331hope for the best: special cases can be dealt with by adding appropriate
332methods to \descref{c-qualifier-keyword}{gf}.
333
dea4d055
MW
334\begin{describe}{cls}{qualifiable-c-type (c-type) \&key :qualifiers}
335 The class @|qualifiable-c-type| describes C types which can bear
336 `qualifiers' (\Cplusplus\ calls them `cv-qualifiers'): @|const|,
337 @|restrict| and @|volatile|.
338
339 The @<qualifiers> are a list of keyword symbols @|:const|, @|:restrict| and
340 @|:volatile|. There is no built-in limitation to these particular
341 qualifiers; others keywords may be used, though this isn't recommended.
342
343 Two qualifiable types are equal only if they have \emph{matching
31d4431b
MW
344 qualifiers}: i.e., every qualifier attached to one is also attached to the
345 other: order is not significant, and neither is multiplicity.
dea4d055
MW
346
347 The class @|qualifiable-c-type| is abstract.
348\end{describe}
349
1f7d590d
MW
350\begin{describe}{gf}{c-type-qualifiers @<c-type> @> @<list>}
351 Returns the qualifiers of the @|qualifiable-c-type| instance @<c-type> as
352 an immutable list.
dea4d055
MW
353\end{describe}
354
1f7d590d
MW
355\begin{describe}{fun}{qualify-type @<c-type> @<qualifiers> @> @<c-type>}
356 The argument @<c-type> must be an instance of @|qualifiable-c-type|,
dea4d055
MW
357 currently bearing no qualifiers, and @<qualifiers> a list of qualifier
358 keywords. The result is a C type object like @<c-type> except that it
359 bears the given @<qualifiers>.
360
1f7d590d 361 The @<c-type> is not modified. If @<c-type> is interned, then the returned
dea4d055
MW
362 type will be interned.
363\end{describe}
364
0b80399d 365\begin{describe}{fun}{format-qualifiers @<qualifiers> @> @<string>}
dea4d055
MW
366 Returns a string containing the qualifiers listed in @<qualifiers> in C
367 syntax, with a space after each. In particular, if @<qualifiers> is
368 non-null then the final character of the returned string will be a space.
369\end{describe}
370
ff4e398b
MW
371\begin{describe}{gf}{c-qualifier-keyword @<qualifier> @> @<string>}
372 Return, as a string, the C keyword corresponding to the Lisp @<qualifier>.
373
374 There is a standard method, which deals with many qualifiers. Additional
375 methods exist for qualifier keywords which need special handling, such as
376 @|:atomic|; they are not listed here explicitly.
377
378 \begin{describe}{meth}{c-qualifier-keyword @<keyword> @> @<string>}
379 Returns the @<keyword>'s print-name, in lower case. This is sufficient
380 for the standard qualifiers @|:const|, @|:restrict|, and @|:volatile|.
381 \end{describe}
382\end{describe}
383
384\begin{describe}{fun}{c-type-qualifier-keywords @<c-type> @> @<list>}
385 Return the @<c-type>'s qualifiers, as a list of C keyword names.
386\end{describe}
387
31d4431b 388
b7fcf941
MW
389\subsection{Storage specifiers} \label{sec:clang.ctypes.specs}
390
391Some declaration specifiers, mostly to do with how to store the specific
392object in question, are determinedly `top level', and, unlike qualifiers,
393don't stay attached to the base type when acted on by declarator operators.
394Sod calls these `storage specifiers', though no such category exists in the C
395standard. They have their own protocol, which is similar in many ways to
396that of C types.
397
398Every Lisp keyword is potentially a storage specifier, which simply maps to
399its lower-case print name in C; but other storage specifiers may be more
400complicated objects.
401
402\begin{describe}{cls}
403 {c-storage-specifiers-type (c-type) \&key :subtype :specifiers}
404 A type which carries storage specifiers. The @<subtype> is the actual
405 type, and may be any C type; the @<specifiers> are a list of
406 storage-specifier objects.
407
408 The type specifier @|(specs @<subtype> @<specifier>^*)| wraps the
409 @<subtype> in a @|c-storage-specifiers-type|, carrying the @<specifier>s,
410 which are a list of storage specifiers in S-expression notation.
411\end{describe}
412
413\begin{describe}{fun}{c-type-specifiers @<type> @> @<list>}
414 Returns the list of type specifiers attached to the @<type> object, which
415 must be a @|c-storage-specifiers-type|.
416\end{describe}
417
418\begin{describe}{mac}
419 {define-c-storage-specifier-syntax @<name> @<lambda-list> \\ \ind
420 @[[ @<declaration>^* @! @<doc-string> @]] \\
421 @<form>^* \-
422 \nlret @<name>}
423
424 Defines the symbol @<name> as a new storage-specifier operator. When a
425 list of the form @|(@<name> @<argument>^*)| is used as a storage specifier,
426 the @<argument>s are bound to fresh variables according to the
427 @<lambda-list> (a destructuring lambda-list) and the @<form>s evaluated in
428 order in the resulting lexical environment as an implicit @<progn>. The
429 value should be a Lisp form which will evaluate to the storage-specifier
430 object described by the arguments.
431
432 The @<form>s may call @|expand-c-storage-specifier| in order to recursively
433 expand storage specifiers among its arguments.
434\end{describe}
435
436\begin{describe}{gf}{expand-c-storage-specifier @<spec> @> @<form>}
437 Returns the Lisp form that @<spec> expands to within @|(c-type (specs
438 @<subtype> @<spec>))|.
439
440 If @<spec> is a list, then \descref{expand-c-storage-specifier-form} is
441 invoked.
442\end{describe}
443
444\begin{describe}{gf}{expand-c-storage-specifier-form @<spec> @> @<form>}
445 Returns the Lisp form that @|(@<head> . @<tail>)| expands to within
446 @|(c-type (specs @<subtype> (@<head> . @<tail>)))|.
447\end{describe}
448
449\begin{describe}{gf}{pprint-c-storage-specifier @<spec> @<stream>}
450\end{describe}
451
452\begin{describe}{gf}
453 {print-c-storage-specifier @<stream> @<spec>
454 \&optional @<colon> @<atsign>}
455\end{describe}
456
457\begin{describe}{fun}{wrap-c-type @<func> @<base-type> @> @<c-type>}
458 Apply @<func> to the underlying C type of @<base-type> to create a new
459 `wrapped' type, and attach the storage specifiers of @<base-type> to the
460 wrapped type.
461
462 If @<base-type> is \emph{not} a @|c-storage-specifiers-type|, then return
463 @|(funcall @<func> @<base-type>)|. Otherwise, return a new
464 @|c-storage-specifiers-type|, with the same specifiers, but whose subtype
465 is the result of applying @<func> to the subtype of the original
466 @<base-type>.
467\end{describe}
468
db56b1d3
MW
469\begin{describe}{cls}{alignas-storage-specifier () \&key :alignment}
470 The class of @|_Alignas| storage specifiers; an instance denotes the
471 specifier @|_Alignas(@<alignment>)|. The @<alignment> parameter may be any
472 printable object, but is usually a string or C fragment.
473
474 The storage specifier form @|(alignas @<alignment>)| returns a storage
475 specifier @|_Alignas(@<alignment>)|, where @<alignment> is evaluated.
476\end{describe}
477
31d4431b 478
1f7d590d 479\subsection{Leaf types} \label{sec:clang.c-types.leaf}
dea4d055
MW
480
481A \emph{leaf type} is a type which is not defined in terms of another type.
482In Sod, the leaf types are
483\begin{itemize}
484\item \emph{simple types}, including builtin types like @|int| and @|char|,
485 as well as type names introduced by @|typename|, because Sod isn't
486 interested in what the type name means, merely that it names a type; and
487\item \emph{tagged types}, i.e., enum, struct and union types which are named
488 by a keyword identifying the kind of type, and a \emph{tag}.
489\end{itemize}
490
491\begin{describe}{cls}{simple-c-type (qualifiable-c-type)
492 \&key :qualifiers :name}
493 The class of `simple types'; an instance denotes the type @<qualifiers>
494 @<name>.
495
496 A simple type object maintains a \emph{name}, which is a string whose
497 contents are the C name for the type. The initarg @|:name| may be used to
498 provide this name when calling @|make-instance|.
499
500 Two simple type objects are equal if and only if they have @|string=| names
501 and matching qualifiers.
502
503 A number of symbolic type specifiers for builtin types are predefined as
64d1ecf7 504 shown in \xref{tab:codegen.c-types.simple}. These are all defined as if by
dea4d055
MW
505 @|define-simple-c-type|, so can be used to construct qualified types.
506\end{describe}
507
508\begin{table}
fcb6c0fb
MW
509 \begin{tabular}[C]{ll} \hlx*{hv}
510 \thd{C type} & \thd{Specifiers} \\ \hlx{vhv}
511 @|void| & @|void| \\ \hlx{v}
a4434457
MW
512 @|_Bool| & @|bool| \\ \hlx{v}
513 @|char| & @|char| \\ \hlx{}
a4434457 514 @|wchar_t| & @|wchar-t| \\ \hlx{v}
d21ac4d9
MW
515 @|signed char| & @|signed-char|, @|schar| \\ \hlx{}
516 @|unsigned char| & @|unsigned-char|, @|uchar| \\ \hlx{v}
dea4d055 517 @|short| & @|short|, @|signed-short|, @|short-int|,
fcb6c0fb 518 @|signed-short-int| @|sshort| \\ \hlx{}
dea4d055 519 @|unsigned short| & @|unsigned-short|, @|unsigned-short-int|,
fcb6c0fb 520 @|ushort| \\ \hlx{v}
dea4d055 521 @|int| & @|int|, @|signed|, @|signed-int|,
fcb6c0fb
MW
522 @|sint| \\ \hlx{}
523 @|unsigned int| & @|unsigned|, @|unsigned-int|, @|uint| \\ \hlx{v}
dea4d055 524 @|long| & @|long|, @|signed-long|, @|long-int|,
fcb6c0fb 525 @|signed-long-int|, @|slong| \\ \hlx{}
dea4d055 526 @|unsigned long| & @|unsigned-long|, @|unsigned-long-int|,
fcb6c0fb 527 @|ulong| \\ \hlx{v}
dea4d055 528 @|long long| & @|long-long|, @|signed-long-long|,
d21ac4d9 529 @|long-long-int|, \\ \hlx{}
dea4d055
MW
530 & \qquad @|signed-long-long-int|,
531 @|llong|, @|sllong| \\ \hlx{v}
532 @|unsigned long long|
533 & @|unsigned-long-long|, @|unsigned-long-long-int|,
fcb6c0fb 534 @|ullong| \\ \hlx{v}
d21ac4d9
MW
535 @|size_t| & @|size-t| \\ \hlx{}
536 @|ptrdiff_t| & @|ptrdiff-t| \\ \hlx{v}
fcb6c0fb 537 @|float| & @|float| \\ \hlx{}
a4434457
MW
538 @|double| & @|double| \\ \hlx{}
539 @|long double| & @|long-double| \\ \hlx{v}
540 @|float _Imaginary| & @|float-imaginary| \\ \hlx{}
a4434457 541 @|double _Imaginary|& @|double-imaginary| \\ \hlx{}
a4434457 542 @|long double _Imaginary|
d21ac4d9
MW
543 & @|long-double-imaginary| \\ \hlx{v}
544 @|float _Complex| & @|float-complex| \\ \hlx{}
545 @|double _Complex| & @|double-complex| \\ \hlx{}
a4434457 546 @|long double _Complex|
d21ac4d9
MW
547 & @|long-double-complex| \\ \hlx{v}
548 @|va_list| & @|va-list| \\ \hlx*{vh}
dea4d055
MW
549 \end{tabular}
550 \caption{Builtin symbolic type specifiers for simple C types}
64d1ecf7 551 \label{tab:codegen.c-types.simple}
dea4d055
MW
552\end{table}
553
1f7d590d
MW
554\begin{describe}{fun}
555 {make-simple-type @<name> \&optional @<qualifiers> @> @<c-type>}
dea4d055
MW
556 Return the (unique interned) simple C type object for the C type whose name
557 is @<name> (a string) and which has the given @<qualifiers> (a list of
558 keywords).
559\end{describe}
560
1f7d590d
MW
561\begin{describe}{gf}{c-type-name @<c-type> @> @<string>}
562 Returns the name of a @|simple-c-type| instance @<c-type> as an immutable
dea4d055
MW
563 string.
564\end{describe}
565
1f7d590d 566\begin{describe}{mac}
020b9e2b
MW
567 {define-simple-c-type
568 \=@{ @<name> @! (@<name>^+) @} @<string> \+\\
569 @[[ @|:export| @<export-flag> @]]
570 \-\nlret @<name>}
dea4d055
MW
571 Define type specifiers for a new simple C type. Each symbol @<name> is
572 defined as a symbolic type specifier for the (unique interned) simple C
573 type whose name is the value of @<string>. Further, each @<name> is
574 defined to be a type operator: the type specifier @|(@<name>
575 @<qualifier>^*)| evaluates to the (unique interned) simple C type whose
576 name is @<string> and which has the @<qualifiers> (which are evaluated).
e43d3532
MW
577
578 Furthermore, a variable @|c-type-@<name>| is defined, for the first @<name>
579 only, and initialized with the newly constructed C type object.
580
581 If @<export-flag> is true, then the @|c-type-@<name>| variable name, and
582 all of the @<name>s, are exported from the current package.
dea4d055
MW
583\end{describe}
584
585\begin{describe}{cls}{tagged-c-type (qualifiable-c-type)
586 \&key :qualifiers :tag}
587 Provides common behaviour for C tagged types. A @<tag> is a string
588 containing a C identifier.
589
590 Two tagged types are equal if and only if they have the same class, their
591 @<tag>s are @|string=|, and they have matching qualifiers. (User-defined
592 subclasses may have additional methods on @|c-type-equal-p| which impose
593 further restrictions.)
594\end{describe}
595\begin{boxy}[Bug]
596 Sod maintains distinct namespaces for the three kinds of tagged types. In
597 C, there is only one namespace for tags which is shared between enums,
598 structs and unions.
599\end{boxy}
600
1f7d590d
MW
601\begin{describe}{gf}{c-tagged-type-kind @<c-type> @> @<keyword>}
602 Returns a keyword classifying the tagged @<c-type>: one of @|:enum|,
603 @|:struct| or @|:union|. User-defined subclasses of @|tagged-c-type|
604 should return their own classification symbols. It is intended that
605 @|(string-downcase (c-tagged-type-kind @<c-type>))| be valid C
606 syntax.\footnote{%
dea4d055
MW
607 Alas, C doesn't provide a syntactic category for these keywords;
608 \Cplusplus\ calls them a @<class-key>.} %
1f7d590d
MW
609 There is a method defined for each of the built-in tagged type classes
610 @|c-struct-type|, @|c-union-type| and @|c-enum-type|.
611\end{describe}
612
613\begin{describe}{gf}{kind-c-tagged-type @<keyword> @> @<symbol>}
614 This is not quite the inverse of @|c-tagged-type-kind|. Given a keyword
615 naming a kind of tagged type, return the name of the corresponding C
616 type class as a symbol.
dea4d055
MW
617\end{describe}
618
619\begin{describe}{cls}{c-enum-type (tagged-c-type) \&key :qualifiers :tag}
620 Represents a C enumerated type. An instance denotes the C type @|enum|
621 @<tag>. See the direct superclass @|tagged-c-type| for details.
622
623 The type specifier @|(enum @<tag> @<qualifier>^*)| returns the (unique
624 interned) enumerated type with the given @<tag> and @<qualifier>s (all
625 evaluated).
626\end{describe}
1f7d590d
MW
627\begin{describe}{fun}
628 {make-enum-type @<tag> \&optional @<qualifiers> @> @<c-enum-type>}
dea4d055
MW
629 Return the (unique interned) C type object for the enumerated C type whose
630 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
631 keywords).
632\end{describe}
633
634\begin{describe}{cls}{c-struct-type (tagged-c-type) \&key :qualifiers :tag}
635 Represents a C structured type. An instance denotes the C type @|struct|
636 @<tag>. See the direct superclass @|tagged-c-type| for details.
637
638 The type specifier @|(struct @<tag> @<qualifier>^*)| returns the (unique
639 interned) structured type with the given @<tag> and @<qualifier>s (all
640 evaluated).
641\end{describe}
1f7d590d
MW
642\begin{describe}{fun}
643 {make-struct-type @<tag> \&optional @<qualifiers> @> @<c-struct-type>}
dea4d055
MW
644 Return the (unique interned) C type object for the structured C type whose
645 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
646 keywords).
647\end{describe}
648
649\begin{describe}{cls}{c-union-type (tagged-c-type) \&key :qualifiers :tag}
650 Represents a C union type. An instance denotes the C type @|union|
651 @<tag>. See the direct superclass @|tagged-c-type|
652 for details.
653
654 The type specifier @|(union @<tag> @<qualifier>^*)| returns the (unique
655 interned) union type with the given @<tag> and @<qualifier>s (all
656 evaluated).
657\end{describe}
1f7d590d
MW
658\begin{describe}{fun}
659 {make-union-type @<tag> \&optional @<qualifiers> @> @<c-union-type>}
dea4d055
MW
660 Return the (unique interned) C type object for the union C type whose tag
661 is @<tag> (a string) and which has the given @<qualifiers> (a list of
662 keywords).
663\end{describe}
664
31d4431b 665
1f7d590d
MW
666\subsection{Compound C types} \label{sec:code.c-types.compound}
667
668Some C types are \emph{compound types}: they're defined in terms of existing
669types. The classes which represent compound types implement a common
670protocol.
dea4d055 671
1f7d590d
MW
672\begin{describe}{gf}{c-type-subtype @<c-type> @> @<subtype>}
673 Returns the underlying type of a compound type @<c-type>. Precisely what
674 this means depends on the class of @<c-type>.
dea4d055
MW
675\end{describe}
676
31d4431b 677
ae0f15ee
MW
678\subsection{Atomic types} \label{sec:clang.c-types.atomic}
679
680Atomic types are compound types. The subtype of an atomic type is simply the
681underlying type of the object. Note that, as far as Sod is concerned, atomic
682types are not the same as atomic-qualified types: you must be consistent
683about which you use.
684
685\begin{describe}{cls}
686 {c-atomic-type (qualifiable-c-type) \&key :qualifiers :subtype}
687 Represents an atomic type. An instance denotes the C type
688 @|_Atomic(@<subtype>)|.
689
690 The @<subtype> may be any C type.\footnote{%
691 C does not permit atomic function or array types.} %
692 Two atomic types are equal if and only if their subtypes are equal and they
693 have matching qualifiers. It is possible, though probably not useful, to
694 have an atomic-qualified atomic type.
695
696 The type specifier @|(atomic @<type-spec> @<qualifier>^*)| returns a type
697 qualified atomic @<subtype>, where @<subtype> is the type specified by
698 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
699 evaluated).
700\end{describe}
701
702\begin{describe}{fun}
703 {make-atomic-type @<c-type> \&optional @<qualifiers> @> @<c-atomic-type>}
704 Return an object describing the type qualified atomic @<subtype>. If
705 @<subtype> is interned, then the returned atomic type object is interned
706 also.
707\end{describe}
708
709
1f7d590d
MW
710\subsection{Pointer types} \label{sec:clang.c-types.pointer}
711
cf7f1f46
MW
712Pointers are compound types. The subtype of a pointer type is the type it
713points to.
1f7d590d
MW
714
715\begin{describe}{cls}
716 {c-pointer-type (qualifiable-c-type) \&key :qualifiers :subtype}
dea4d055
MW
717 Represents a C pointer type. An instance denotes the C type @<subtype>
718 @|*|@<qualifiers>.
719
720 The @<subtype> may be any C type. Two pointer types are equal if and only
721 if their subtypes are equal and they have matching qualifiers.
722
723 The type specifier @|(* @<type-spec> @<qualifier>^*)| returns a type
724 qualified pointer-to-@<subtype>, where @<subtype> is the type specified by
725 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
726 evaluated). The synonyms @|ptr| and @|pointer| may be used in place of the
727 star @`*'.
728
fcb6c0fb 729 The symbol @|string| is a type specifier for the type pointer to
dea4d055
MW
730 characters; the symbol @|const-string| is a type specifier for the type
731 pointer to constant characters.
732\end{describe}
1f7d590d
MW
733
734\begin{describe}{fun}
735 {make-pointer-type @<c-type> \&optional @<qualifiers>
736 @> @<c-pointer-type>}
fcb6c0fb 737 Return an object describing the type qualified pointer to @<subtype>.
dea4d055
MW
738 If @<subtype> is interned, then the returned pointer type object is
739 interned also.
740\end{describe}
741
31d4431b 742
1f7d590d
MW
743\subsection{Array types} \label{sec:clang.c-types.array}
744
fcb6c0fb
MW
745Arrays implement the compound-type protocol. The subtype of an array type is
746the array element type.
1f7d590d 747
dea4d055
MW
748\begin{describe}{cls}{c-array-type (c-type) \&key :subtype :dimensions}
749 Represents a multidimensional C array type. The @<dimensions> are a list
750 of dimension specifiers $d_0$, $d_1$, \ldots, $d_{n-1}$; an instance then
751 denotes the C type @<subtype> @|[$d_0$][$d_1$]$\ldots$[$d_{n-1}$]|. An
752 individual dimension specifier is either a string containing a C integral
753 constant expression, or nil which is equivalent to an empty string. Only
754 the first (outermost) dimension $d_0$ should be empty.
755
756 C doesn't actually have multidimensional arrays as a primitive notion;
757 rather, it permits an array (with known extent) to be the element type of
758 an array, which achieves an equivalent effect. C arrays are stored in
759 row-major order: i.e., if we write down the indices of the elements of an
760 array in order of ascending address, the rightmost index varies fastest;
761 hence, the type constructed is more accurately an array of $d_0$ arrays of
762 $d_1$ of \ldots\ arrays of $d_{n-1}$ elements of type @<subtype>. We shall
763 continue to abuse terminology and refer to multidimensional arrays.
764
765 The type specifier @|([] @<type-spec> @<dimension>^*)| constructs a
766 multidimensional array with the given @<dimension>s whose elements have the
767 type specified by @<type-spec>. If no dimensions are given then a
768 single-dimensional array with unspecified extent. The synonyms @|array|
769 and @|vector| may be used in place of the brackets @`[]'.
770\end{describe}
1f7d590d
MW
771
772\begin{describe}{fun}
773 {make-array-type @<subtype> @<dimensions> @> @<c-array-type>}
dea4d055
MW
774 Return an object describing the type of arrays with given @<dimensions> and
775 with element type @<subtype> (an instance of @|c-type|). The @<dimensions>
776 argument is a list whose elements are strings or nil; see the description
777 of the class @|c-array-type| above for details.
778\end{describe}
1f7d590d
MW
779
780\begin{describe}{gf}{c-array-dimensions @<c-type> @> @<list>}
781 Returns the dimensions of @<c-type>, an array type, as an immutable list.
782\end{describe}
783
31d4431b 784
1f7d590d
MW
785\subsection{Function types} \label{sec:clang.c-types.fun}
786
fcb6c0fb
MW
787Function types implement the compound-type protocol. The subtype of a
788function type is the type of the function's return value.
789
1f7d590d 790\begin{describe}{cls}{argument}
fcb6c0fb 791 Represents an ordinary function argument.
1f7d590d
MW
792\end{describe}
793
794\begin{describe}{fun}{argumentp @<value> @> @<generalized-boolean>}
fcb6c0fb
MW
795 Decide whether @<value> is an @<argument> object: if so, return non-nil; if
796 not return nil.
1f7d590d
MW
797\end{describe}
798
ced609b8
MW
799\begin{describe}{fun}
800 {make-argument @<name> @<c-type> \&optional @<default> @> @<argument>}
fcb6c0fb
MW
801 Construct and a return a new @<argument> object. The argument has type
802 @<c-type>, which must be a @|c-type| object, and is named @<name>.
803
804 The @<name> may be nil to indicate that the argument has no name: in this
805 case the argument will be formatted as an abstract declarator, which is not
806 suitable for function definitions. If @<name> is not nil, then the
807 @<name>'s print representation, with @|*print-escape*| nil, is used as the
808 argument name.
ced609b8
MW
809
810 A @<default> may be supplied. If the argument is used in a
811 keyword-argument list (e.g., in a \descref{c-keyword-function-type}
812 [object]{cls}), and the @<default> value is provided and non-nil, then its
813 (unescaped) printed representation is used to provide a default value if
814 the keyword argument is not supplied by the caller.
1f7d590d
MW
815\end{describe}
816
52e2a70f 817\begin{describe*}
31d4431b 818 {\dhead{fun}{argument-name @<argument> @> @<name>}
ced609b8
MW
819 \dhead{fun}{argument-type @<argument> @> @<c-type>}
820 \dhead{fun}{argument-default @<argument> @> @<default>}}
821 Accessor functions for @|argument| objects. They return the appropriate
822 component of the object, as set by to @|make-argument|. The @<default> is
823 nil if no default was provided to @|make-argument|.
52e2a70f 824\end{describe*}
dea4d055 825
fcb6c0fb 826\begin{describe}{gf}
1f7d590d 827 {commentify-argument-name @<name> @> @<commentified-name>}
fcb6c0fb
MW
828 Convert the argument name @<name> so that it's suitable to declare the
829 function in a header file.
dea4d055 830
fcb6c0fb
MW
831 Robust header files shouldn't include literal argument names in
832 declarations of functions or function types, since this restricts the
833 including file from defining such names as macros. This generic function
834 is used to convert names into a safe form.
835
836 \begin{describe}{meth}{commentify-argument-name (@<name> null) @> nil}
837 Returns nil: if the argument name is already omitted, it's safe for use
838 in a header file.
839 \end{describe}
840 \begin{describe}{meth}{commentify-argument-name (@<name> t) @> @<string>}
841 Returns the print form of @<name> wrapped in a C comment, as
842 @`/*@<name>*/'.
843 \end{describe}
1f7d590d
MW
844\end{describe}
845
846\begin{describe}{fun}
fcb6c0fb
MW
847 {commentify-argument-names @<arguments> @> @<commentified-arguments>}
848 Convert the @<arguments> list so that it's suitable for use in a header
849 file.
850
851 The @<arguments> list should be a list whose items are @|argument| objects
852 or the keyword @|:ellipsis|. The return value is a list constructed as
853 follows. For each @|argument| object in the input list, there is a
854 corresponding @|argument| object in the returned list, with the same type,
855 and whose name is the result of @|commentify-argument-name| applied to the
856 input argument name; an @|:ellipsis| in the input list is passed through
857 unchanged.
1f7d590d
MW
858\end{describe}
859
fcb6c0fb
MW
860\begin{describe}{cls}{c-function-type (c-type) \&key :subtype :arguments}
861 Represents C function types. An instance denotes the type of a C
862 function which accepts the @<arguments> and returns @<subtype>.
863
864 The @<arguments> are a possibly empty list. All but the last element of
865 the list must be @|argument| objects; the final element may instead be the
866 keyword @|:ellipsis|, which denotes a variable argument list.
867
868 An @<arguments> list consisting of a single argument with type @|void| is
869 converted into an empty list. On output as C code, an empty argument list
870 is written as @|void|. It is not possible to represent a pre-ANSI C
871 function without prototypes.
872
873 Two function types are considered to be the same if their return types are
874 the same, and their argument lists consist of arguments with the same type,
875 in the same order, and either both or neither argument list ends with
876 @|:ellipsis|; argument names are not compared.
877
ed76585e
MW
878 The type specifier
879 \begin{prog}
880 (fun @<return-type>
881 @{ (@<arg-name> @<arg-type>) @}^*
882 @[:ellipsis @! . @<form>@])
883 \end{prog}
884 constructs a function type. The function has the subtype @<return-type>.
885 The remaining items in the type-specifier list are used to construct the
886 argument list. The argument items are a possibly improper list, beginning
887 with zero or more \emph{explicit arguments}: two-item
888 @<arg-name>/@<arg-type> lists. For each such list, an @|argument| object
889 is constructed with the given name (evaluated) and type. Following the
890 explicit arguments, there may be
fcb6c0fb
MW
891 \begin{itemize}
892 \item nothing, in which case the function's argument list consists only of
893 the explicit arguments;
894 \item the keyword @|:ellipsis|, as the final item in the type-specifier
895 list, indicating a variable argument list may follow the explicit
896 arguments; or
897 \item a possibly-improper list tail, beginning with an atom either as a
898 list item or as the final list cdr, indicating that the entire list tail
899 is Lisp expression which is to be evaluated to compute the remaining
900 arguments.
901 \end{itemize}
902 A tail expression may return a list of @|argument| objects, optionally
903 followed by an @|:ellipsis|.
904
905 For example,
906 \begin{prog}
020b9e2b 907 (c-type (fun \=(lisp (c-type-subtype other-func)) \+\\
fcb6c0fb
MW
908 ("first" int) . (c-function-arguments other-func))
909 \end{prog}
910 evaluates to a function type like @|other-func|, only with an additional
911 argument of type @|int| added to the front of its argument list. This
912 could also have been written
913 \begin{prog}
020b9e2b
MW
914 (let (\=(args (c-function-arguments other-func)) \+\\
915 (ret (c-type-subtype other-func))) \-\\ \ind
fcb6c0fb
MW
916 (c-type (fun \=(lisp ret) ("first" int) . args)
917 \end{prog}
1f7d590d
MW
918\end{describe}
919
ced609b8
MW
920\begin{describe}{cls}
921 {c-keyword-function-type (c-function-type)
922 \&key :subtype :arguments :keywords}
923 Represents `functions' which accept keyword arguments. Of course, actual C
924 functions can't accept keyword arguments directly, but this type is useful
925 for describing messages and methods which deal with keyword arguments.
926
927 An instance denotes the type of C function which accepts the position
928 argument list @<arguments>, and keyword arguments from the @<keywords>
929 list, and returns @<subtype>. Either or both of the @<arguments> and
930 @<keywords> lists may be empty. (It is important to note the distinction
931 between a function which doesn't accept keyword arguments, and one which
932 does but for which no keyword arguments are defined. In particular, the
933 latter function can be changed later to accept a keyword argument without
934 breaking compatibility with old code.) The @<arguments> and @<keywords>
935 lists must \emph{not} contain @|:ellipsis| markers: a function can accept
936 keywords, or a variable-length argument tail, but not both.
937
938 Keyword arguments may (but need not) have a \emph{default value} which is
939 supplied to the function body if the keyword is omitted.
940
941 Keyword functions are never considered to be the same as ordinary
942 functions. Two keyword function types are considered to be the same if
943 their return types are the same, and their positional argument lists consist of
944 arguments with the same type, in the same order: the keyword arguments
945 accepted by the functions is not significant.
946
947 Keyword functions are constructed using an extended version of the @|fun|
948 specifier used for ordinary C function types. The extended syntax is as
949 follows.
950 \begin{prog}
951 (fun \=@<return-type>
020b9e2b 952 @{ (@<arg-name> @<arg-type>) @}^* \+\\
ced609b8 953 @{ \=:keys @{ (@<kw-name> @<kw-type> @[@<kw-default>@]) @}^*
020b9e2b 954 @[. @<form>@] @! \+\\
ced609b8
MW
955 . @<form> @}
956 \end{prog}
957 where either the symbol @|:keys| appears literally in the specifier, or the
958 @<form> evaluates to a list containing the symbol @|:keys|. (If neither of
959 these circumstances obtains, then the specifier constructs an ordinary
960 function type.)
961
962 See the description of \descref{c-function-type}{cls} for how a trailing
963 @<form> is handled.
964
965 The list of @<arg-name>s and @<arg-type>s describes the positional
966 arguments. The list of @<kw-name>s, @<kw-type>s and @<kw-defaults>s
967 describes the keyword arguments.
968\end{describe}
969
1f7d590d 970\begin{describe}{fun}
fcb6c0fb
MW
971 {make-function-type @<subtype> @<arguments> @> @<c-function-type>}
972 Construct and return a new function type, returning @<subtype> and
973 accepting the @<arguments>.
ced609b8
MW
974
975 If the @<arguments> list contains a @|:keys| marker, then a
976 \descref{c-keyword-function-type}[object]{cls} is returned: those arguments
977 preceding the @|:keys| marker form the positional argument list, and those
978 following the marker form the list of keyword arguments.
979\end{describe}
980
981\begin{describe}{fun}
982 {make-keyword-function-type @<subtype> @<arguments> @<keywords>
983 \nlret @<c-keyword-function-type>}
984 Construct and return a new keyword-function type, returning @<subtype> and
985 accepting the @<arguments> and @<keywords>.
fcb6c0fb
MW
986\end{describe}
987
988\begin{describe}{gf}
989 {c-function-arguments @<c-function-type> @> @<arguments>}
990 Return the arguments list of the @<c-function-type>.
1f7d590d
MW
991\end{describe}
992
993\begin{describe}{fun}
fcb6c0fb
MW
994 {commentify-function-type @<c-function-type> @> @<commentified-c-type>}
995 Return a commentified version of the @<c-function-type>.
996
997 The returned type has the same subtype as the given type, and the argument
998 list of the returned type is the result of applying
999 @|commentify-argument-names| to the argument list of the given type.
dea4d055
MW
1000\end{describe}
1001
074650bc
MW
1002\begin{describe}{fun}{reify-variable-argument-tail @<arguments> @> @<list>}
1003 If the @<argument> list contains an @|:ellipsis| marker, then replace it
1004 with a @|va_list|. The name for the new argument, if any, is taken from
1005 the \descref{*sod-ap*}[variable]{var}. The new list is returned; the
1006 original list is not modified, but may share structure with the new list.
1007\end{describe}
1008
ced609b8
MW
1009\begin{describe}{fun}{merge-keyword-lists @<lists> @> @<list>}
1010 Merge a number of keyword-argument lists together and return the result.
1011
1012 The @<lists> parameter is a list consisting of a number of @|(@<args>
1013 . @<origin>)| pairs: in each pair, @<args> is a list of
1014 \descref{argument}{cls} objects, and @<origin> is either nil or an object
1015 whose printed representation describes the origin of the corresponding
1016 @<args> list, suitable for inclusion in an error message.
1017
1018 The resulting list contains exactly one argument for each distinct argument
1019 name appearing in the input @<lists>; this argument will contain the
1020 default value from the earliest occurrence in the input @<lists> of an
1021 argument with that name.
1022
1023 If the same name appears multiple times with different types, an error is
1024 signalled quoting the name, conflicting types, and (if non-nil) the origins
1025 of the offending argument objects.
1026\end{describe}
1027
678b6c0f
MW
1028\begin{describe}{fun}
1029 {pprint-c-function-type @<return-type> @<stream>
1030 @<print-args> @<print-kernel>}
1031 Provides the top-level structure for printing C function types.
1032
1033 Output is written to @<stream> to describe a function type returning
1034 @<return-type>, whose declarator kernel (containing the name, and any
1035 further type operands) will be printed by @<print-kernel>, and whose
1036 arguments, if any, will be printed by @<print-args>.
1037
1038 The @<print-kernel> function is a standard kernel-printing function
1039 following the \descref{pprint-c-type}[protocol]{gf}.
1040
1041 The @<print-args> function is given a single argument, which is the
1042 @<stream> to print on. It should not print the surrounding parentheses.
1043
1044 The output written to @<stream> looks approximately like
1045 \begin{prog}
1046 @<return-type> @<kernel>(@<args>)
1047 \end{prog}
1048\end{describe}
1049
1050\begin{describe}{fun}{pprint-argument-list @<args> @<stream> @> @<flag>}
1051 Print an argument list to @<stream>.
1052
1053 The @<args> is a list of \descref{argument}[objects]{cls}, optionally
1054 containing an @|:ellipsis| marker. The function returns true if any
1055 arguments were actually printed.
1056\end{describe}
1057
31d4431b 1058
1f7d590d
MW
1059\subsection{Parsing C types} \label{sec:clang.c-types.parsing}
1060
756f4928
MW
1061\begin{describe}{fun}
1062 {parse-c-type @<scanner>
1063 @> @<result> @<success-flag> @<consumed-flag>}
1064\end{describe}
1065
1066\begin{describe}{fun}
1067 {parse-declarator @<scanner> @<base-type> \&key :kernel :abstractp
1068 \nlret @<result> @<success-flag> @<consumed-flag>}
1069\end{describe}
1070
31d4431b 1071
756f4928
MW
1072\subsection{Class types} \label{sec:clang.c-types.class}
1073
1074\begin{describe}{cls}
1075 {c-class-type (simple-c-type) \&key :class :tag :qualifiers :name}
1076\end{describe}
1077
1078\begin{describe*}
1079 {\dhead{gf}{c-type-class @<class-type> @> @<class>}
1080 \dhead{gf}{setf (c-type-class @<class-type>) @<class>}}
1081\end{describe*}
1082
1083\begin{describe}{fun}{find-class-type @<name> @> @<class-type-or-nil>}
1084\end{describe}
1085
1086\begin{describe}{fun}
1087 {make-class-type @<name> \&optional @<qualifiers> @> @<class-type>}
1088\end{describe}
1089
1090\begin{describe}{fun}
1091 {make-class-type @<name> \&optional @<qualifiers> @> @<class-type>}
1092\end{describe}
1093
1094\begin{describe}{fun}{find-sod-class @<name> @> @<class>}
1095\end{describe}
1096
1097\begin{describe}{fun}{record-sod-class @<class>}
1098\end{describe}
1099
1f7d590d
MW
1100%%%--------------------------------------------------------------------------
1101\section{Generating C code} \label{sec:clang.codegen}
1102
fcb6c0fb
MW
1103This section deals with Sod's facilities for constructing and manipulating C
1104expressions, declarations, instructions and definitions.
1105
31d4431b 1106
fcb6c0fb
MW
1107\subsection{Temporary names} \label{sec:clang.codegen.temporaries}
1108
1109Many C-level objects, especially ones with external linkage or inclusion in a
1110header file, are assigned names which are simple strings, perhaps fixed ones,
1111perhaps constructed. Other objects don't need meaningful names, and
1112suitably unique constructed names would be tedious and most likely rather
1113opaque. Therefore Sod has an ability to construct \emph{temporary names}.
1114
1115These aren't temporary in the sense that they name C objects which have
1116limited lifetimes at runtime. Rather, the idea is that the names be
1117significant only to small pieces of Lisp code, which will soon forget about
1118them.
1119
1120\subsubsection{The temporary name protocol}
1121Temporary names are represented by objects which implement a simple protocol.
1122
1123\begin{describe}{gf}{format-temporary-name @<var> @<stream>}
1124\end{describe}
1125
1126\begin{describe*}
1127 {\dhead{gf}{var-in-use-p @<var> @> @<generalized-boolean>}
1128 \dhead[setf var-in-use-p]
1129 {gf}{setf (var-in-use-p @<var>) @<generalized-boolean>}}
1130\end{describe*}
1131
1132\subsubsection{Temporary name objects}
1133
1134\begin{describe}{cls}{temporary-name () \&key :tag}
1135 A temporary name object. This is the root of a small collection of
1136 subclasses, but is also usable on its own.
1137\end{describe}
1138
1139\begin{describe}{meth}
1140 {commentify-argument-name (@<name> temporary-name) @> nil}
1141\end{describe}
1142
1143\begin{table}
1144 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
1145 \thd{\textbf{Class}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
1146 temporary-name & @<tag> \\
1147 temporary-argument & sod__a@<tag> \\
1148 temporary-function & sod__f@<tag> \\
1149 temporary-variable & sod__v@<tag> \\ \hlx*{vh}
1150 \end{tabular}
1151 \caption{Temporary name formats}
1152 \label{tab:codegen.codegen.temps-format}
1153\end{table}
1154
1155\begin{describe}{cls}{temporary-argument (temporary-name) \&key :tag}
1156\end{describe}
1157
1158\begin{describe}{cls}{temporary-function (temporary-name) \&key :tag}
1159\end{describe}
1160
1161\begin{describe}{fun}{temporary-function @> @<name>}
1162\end{describe}
1163
1164\begin{describe}{cls}
1165 {temporary-variable (temporary-name) \&key :tag :in-use-p}
1166\end{describe}
1167
1168\subsubsection{Well-known `temporary' names}
1169
1170\begin{table}
1171 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
1172 \thd{\textbf{Variable}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
1173 {}*sod-ap* & sod__ap \\
944caf84
MW
1174 {}*sod-master-ap* & sod__master_ap \\
1175 {}*null-pointer* & NULL \\ \hlx*{vh}
fcb6c0fb
MW
1176 \end{tabular}
1177 \caption{Well-known temporary names}
1178 \label{tab:codegen.codegen.well-known-temps}
1179\end{table}
1180
31d4431b 1181
fcb6c0fb
MW
1182\subsection{Instructions} \label{sec:clang.codegen.insts}
1183
1184\begin{describe}{cls}{inst () \&key}
1185\end{describe}
1186
1187\begin{describe}{gf}{inst-metric @<inst>}
1188\end{describe}
1189
1190\begin{describe}{mac}
020b9e2b
MW
1191 {definst @<code> (@<streamvar> \&key @<export>) (@<arg>^*) \\ \ind
1192 @[[ @<declaration>^* @! @<doc-string> @]] \\
1193 @<form>^*
1194 \-\nlret @<code>}
fcb6c0fb
MW
1195\end{describe}
1196
1197\begin{describe}{mac}
cac85e0b 1198 {format-compound-statement
020b9e2b
MW
1199 (@<stream> @<child> \&optional @<morep>) \\ \ind
1200 @<declaration>^* \\
cac85e0b 1201 @<form>^*}
fcb6c0fb
MW
1202\end{describe}
1203
7de8c666
MW
1204\begin{describe}{fun}
1205 {format-banner-comment @<stream> @<control> \&rest @<args>}
1206\end{describe}
1207
fcb6c0fb
MW
1208\begin{table}
1209 \begin{tabular}[C]{ll>{\codeface}l} \hlx*{hv}
1210 \thd{Class name} &
1211 \thd{Arguments} &
1212 \thd{Output format} \\ \hlx{vhv}
167524b5
MW
1213 @|var| & @<name> @<type> @|\&optional| @<init>
1214 & @<type> @<name> @[= @<init>@];
fcb6c0fb
MW
1215 \\ \hlx{v}
1216 @|set| & @<var> @<expr> & @<var> = @<expr>; \\ \hlx{v}
1217 @|update| & @<var> @<op> @<expr> & @<var> @<op>= @<expr>;
1218 \\ \hlx{v}
2d8d81c5
MW
1219 @|cond| & @<cond> @<conseq> @<alt> & @<cond> ? @<conseq> : @<alt>
1220 \\ \hlx{v}
fcb6c0fb
MW
1221 @|return| & @<expr> & return @[@<expr>@];
1222 \\ \hlx{v}
1223 @|break| & --- & break; \\ \hlx{v}
1224 @|continue| & --- & continue; \\ \hlx{v}
1225 @|expr| & @<expr> & @<expr>; \\ \hlx{v}
167524b5
MW
1226 @|call| & @<func> @|\&rest| @<args>
1227 & @<func>(@<arg>_1,
fcb6c0fb 1228 $\ldots$,
7de8c666
MW
1229 @<arg>_n) \\ \hlx{v}
1230 @|banner| & @<control> @|\&rest| @<args>
1231 & /* @<banner> */ \\ \hlx{vhv}
fcb6c0fb
MW
1232 @|block| & @<decls> @<body> & \{ @[@<decls>@] @<body> \}
1233 \\ \hlx{v}
167524b5
MW
1234 @|if| & @<cond> @<conseq> @|\&optional| @<alt>
1235 & if (@<cond>) @<conseq>
fcb6c0fb 1236 @[else @<alt>@] \\ \hlx{v}
2d8d81c5
MW
1237 @|for| & @<init> @<cond> @<update> @<body> &
1238 for (@<init>; @<cond>; @<update>) @<body> \\ \hlx{v}
fcb6c0fb
MW
1239 @|while| & @<cond> @<body> & while (@<cond>) @<body>
1240 \\ \hlx{v}
1241 @|do-while| & @<body> @<cond> & do @<body> while (@<cond>);
1242 \\ \hlx{v}
7de8c666
MW
1243 @|function| &
1244 \vtop{\hbox{\strut @<name> @<type> @<body>}
1245 \hbox{\strut \quad @|\&optional @<banner>|}
1246 \hbox{\strut \quad @|\&rest| @<banner-args>}} &
1247 \vtop{\hbox{\strut @[/* @<banner> */@]}
1248 \hbox{\strut @<type>_0 @<name>(@<type>_1 @<arg>_1, $\ldots$,
167524b5
MW
1249 @<type>_n @<arg>_n @[, \dots@])}
1250 \hbox{\strut \quad @<body>}} \\ \hlx*{vh}
fcb6c0fb
MW
1251 \end{tabular}
1252 \caption{Instruction classes}
1253 \label{tab:codegen.codegen.insts}
1254\end{table}
1255
31d4431b 1256
fcb6c0fb
MW
1257\subsection{Code generation} \label{sec:clang.codegen.codegen}
1258
1259\begin{describe}{gf}{codegen-functions @<codegen> @> @<list>}
1260\end{describe}
1261
1262\begin{describe}{gf}
1263 {ensure-var @<codegen> @<name> @<type> \&optional @<init>}
1264\end{describe}
1265
1266\begin{describe}{gf}{emit-inst @<codegen> @<inst>}
1267\end{describe}
1268
1269\begin{describe}{gf}{emit-insts @<codegen> @<insts>}
1270\end{describe}
1271
1272\begin{describe}{gf}{emit-decl @<codegen> @<decl>}
1273\end{describe}
1274
7c3f8ae6 1275\begin{describe}{gf}{emit-decls @<codegen> @<decls>}
fcb6c0fb
MW
1276\end{describe}
1277
7de8c666
MW
1278\begin{describe}{fun}{emit-banner @<codegen> @<control> \&rest @<args>}
1279\end{describe}
1280
fcb6c0fb
MW
1281\begin{describe}{gf}{codegen-push @<codegen>}
1282\end{describe}
1283
1284\begin{describe}{gf}{codegen-pop @<codegen> @> @<decls> @<insts>}
1285\end{describe}
1286
1287\begin{describe}{gf}{codegen-pop-block @<codegen> @> @<block-inst>}
1288\end{describe}
1289
1290\begin{describe}{gf}
1291 {codegen-pop-function @<codegen> @<name> @<type> @> @<name>}
1292\end{describe}
1293
1294\begin{describe}{gf}{codegen-add-function @<codegen> @<function>}
1295\end{describe}
1296
1297\begin{describe}{fun}
1298 {codegen-build-function @<codegen> @<name> @<type> @<vars> @<insts>
1299 @> @<name>}
1300\end{describe}
1301
1302\begin{describe}{gf}{temporary-var @<codegen> @<type> @> @<name>}
1303\end{describe}
1304
1305\begin{describe}{mac}
020b9e2b
MW
1306 {with-temporary-var (@<codegen> @<var> @<type>) \\ \ind
1307 @<declaration>^* \\
1308 @<form>^*
1309 \-\nlret @<value>^*}
fcb6c0fb
MW
1310\end{describe}
1311
1312\begin{describe}{fun}{deliver-expr @<codegen> @<target> @<expr>}
1313\end{describe}
1314
357885be
MW
1315\begin{describe}{fun}
1316 {deliver-call @<codegen> @<target> @<func> \&rest @<args>}
1317\end{describe}
1318
fcb6c0fb
MW
1319\begin{describe}{fun}{convert-stmts @<codegen> @<target> @<type> @<func>}
1320\end{describe}
1321
1322\begin{describe}{cls}{codegen () \&key :vars :insts (:temp-index 0)}
1323\end{describe}
1324
2c7465ac
MW
1325%%%--------------------------------------------------------------------------
1326\section{Literal C code fragments} \label{sec:clang.fragment}
1327
1328\begin{describe}{cls}{c-fragment () \&key :location :text}
1329\end{describe}
1330
1331\begin{describe}{gf}{c-fragment-text @<fragment> @> @<string>}
1332\end{describe}
1333
1334\begin{describe}{fun}
1335 {scan-c-fragment @<scanner> @<end-chars>
1336 @> @<result> @<success-flag> @<consumed-flag>}
1337\end{describe}
1338
1339\begin{describe}{fun}
1340 {parse-delimited-fragment @<scanner> @<begin> @<end> \&key :keep-end
1341 \nlret @<result> @<success-flag> @<consumed-flag>}
1342\end{describe}
1343
dea4d055
MW
1344%%%----- That's all, folks --------------------------------------------------
1345
1346%%% Local variables:
1347%%% mode: LaTeX
1348%%% TeX-master: "sod.tex"
1349%%% TeX-PDF-mode: t
1350%%% End: