chiark / gitweb /
doc/list-exports.lisp, doc/SYMBOLS: Mark methods with their qualifiers.
[sod] / doc / clang.tex
CommitLineData
dea4d055
MW
1%%% -*-latex-*-
2%%%
1f7d590d 3%%% C language utilities
dea4d055 4%%%
1f7d590d 5%%% (c) 2015 Straylight/Edgeware
dea4d055
MW
6%%%
7
8%%%----- Licensing notice ---------------------------------------------------
9%%%
e0808c47 10%%% This file is part of the Sensible Object Design, an object system for C.
dea4d055
MW
11%%%
12%%% SOD is free software; you can redistribute it and/or modify
13%%% it under the terms of the GNU General Public License as published by
14%%% the Free Software Foundation; either version 2 of the License, or
15%%% (at your option) any later version.
16%%%
17%%% SOD is distributed in the hope that it will be useful,
18%%% but WITHOUT ANY WARRANTY; without even the implied warranty of
19%%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20%%% GNU General Public License for more details.
21%%%
22%%% You should have received a copy of the GNU General Public License
23%%% along with SOD; if not, write to the Free Software Foundation,
24%%% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25
1f7d590d 26\chapter{C language utilities} \label{ch:clang}
dea4d055
MW
27
28%%%--------------------------------------------------------------------------
1f7d590d 29\section{C type representation} \label{sec:clang.c-types}
dea4d055 30
1f7d590d 31\subsection{Overview} \label{sec:clang.c-types.over}
dea4d055
MW
32
33The Sod translator represents C types in a fairly simple and direct way.
34However, because it spends a fair amount of its time dealing with C types, it
35provides a number of useful operations and macros.
36
64d1ecf7 37The class hierarchy is shown in~\xref{fig:codegen.c-types.classes}.
dea4d055
MW
38
39\begin{figure} \centering
40 \parbox{10pt}{\begin{tabbing}
1f7d590d
MW
41 @|c-type| \\ \ind
42 @|qualifiable-c-type| \\ \ind
43 @|simple-c-type| \\ \ind
dea4d055 44 @|c-class-type| \- \\
1f7d590d 45 @|tagged-c-type| \\ \ind
dea4d055
MW
46 @|c-struct-type| \\
47 @|c-union-type| \\
48 @|c-enum-type| \- \\
ae0f15ee 49 @|c-atomic-type| \\
dea4d055
MW
50 @|c-pointer-type| \- \\
51 @|c-array-type| \\
ced609b8
MW
52 @|c-function-type| \\ \ind
53 @|c-keyword-function-type| \-
dea4d055
MW
54 \end{tabbing}}
55 \caption{Classes representing C types}
64d1ecf7 56\label{fig:codegen.c-types.classes}
dea4d055
MW
57\end{figure}
58
59C type objects are immutable unless otherwise specified.
60
61\subsubsection{Constructing C type objects}
62There is a constructor function for each non-abstract class of C type object.
63Note, however, that constructor functions need not generate a fresh type
64object if a previously existing type object is suitable. In this case, we
65say that the objects are \emph{interned}. Some constructor functions are
66specified to return interned objects: programs may rely on receiving the same
67(@|eq|) type object for similar (possibly merely @|equal|) arguments. Where
68not specified, clients may still not rely on receiving fresh objects.
69
58f9b400
MW
70A convenient S-expression notation is provided by the
71\descref{c-type}[macro]{mac}. Use of this macro is merely an abbreviation
72for corresponding use of the various constructor functions, and therefore
73interns type objects in the same manner. The syntax accepted by the macro
74can be extended in order to support new classes: see \descref{defctype}{mac},
75\descref{c-type-alias}{mac} and \descref{define-c-type-syntax}{mac}.
dea4d055
MW
76
77The descriptions of each of the various classes include descriptions of the
78initargs which may be passed to @|make-instance| when constructing a new
79instance of the class. However, the constructor functions and S-expression
80syntax are strongly recommended over direct use of @|make-instance|.
81
82\subsubsection{Printing}
83There are two protocols for printing C types. Unfortunately they have
84similar names.
85\begin{itemize}
58f9b400
MW
86\item The \descref{print-c-type}[function]{gf} prints a C type value using
87 the S-expression notation. It is mainly useful for diagnostic purposes.
88\item The \descref{pprint-c-type}[function]{gf} prints a C type as a
89 C-syntax declaration.
dea4d055
MW
90\end{itemize}
91Neither generic function defines a default primary method; subclasses of
92@|c-type| must define their own methods in order to print correctly.
93
31d4431b 94
1f7d590d 95\subsection{The C type root class} \label{sec:clang.c-types.root}
dea4d055
MW
96
97\begin{describe}{cls}{c-type ()}
98 The class @|c-type| marks the root of the built-in C type hierarchy.
99
100 Users may define subclasses of @|c-type|. All non-abstract subclasses must
101 have a primary method defined on @|pprint-c-type|; unless instances of the
102 subclass are interned, a method on @|c-type-equal-p| is also required.
103
104 The class @|c-type| is abstract.
105\end{describe}
106
31d4431b 107
1f7d590d 108\subsection{C type S-expression notation} \label{sec:clang.c-types.sexp}
dea4d055
MW
109
110The S-expression representation of a type is described syntactically as a
111type specifier. Type specifiers fit into two syntactic categories.
112\begin{itemize}
113\item A \emph{symbolic type specifier} consists of a symbol. It has a
114 single, fixed meaning: if @<name> is a symbolic type specifier, then each
115 use of @<name> in a type specifier evaluates to the same (@|eq|) type
116 object, until the @<name> is redefined.
117\item A \emph{type operator} is a symbol; the corresponding specifier is a
118 list whose @|car| is the operator. The remaining items in the list are
119 arguments to the type operator.
120\end{itemize}
121
1f7d590d 122\begin{describe}{mac}{c-type @<type-spec> @> @<c-type>}
dea4d055
MW
123 Evaluates to a C type object, as described by the type specifier
124 @<type-spec>.
125\end{describe}
126
1f7d590d 127\begin{describe}{mac}
e43d3532
MW
128 {defctype \=@{ @<name> @! (@<name>^+) @} @<type-spec> \+ \\
129 @[[ @|:export| @<export-flag> @]]^* \-
130 \nlret @<names>}
dea4d055
MW
131 Defines a new symbolic type specifier @<name>; if a list of @<name>s is
132 given, then all are defined in the same way. The type constructed by using
133 any of the @<name>s is as described by the type specifier @<type-spec>.
134
135 The resulting type object is constructed once, at the time that the macro
136 expansion is evaluated; the same (@|eq|) value is used each time any
137 @<name> is used in a type specifier.
e43d3532
MW
138
139 A variable named @|c-type-@<name>|, for the first @<name> only, is defined
140 and initialized to contain the C type object so constructed. Altering or
141 binding this name is discouraged.
142
143 If @<export-flag> is true, then the variable name, and all of the @<name>s,
144 are exported from the current package.
dea4d055
MW
145\end{describe}
146
1f7d590d 147\begin{describe}{mac}{c-type-alias @<original> @<alias>^* @> @<aliases>}
dea4d055
MW
148 Defines each @<alias> as being a type operator identical in behaviour to
149 @<original>. If @<original> is later redefined then the behaviour of the
150 @<alias>es changes too.
151\end{describe}
152
1f7d590d 153\begin{describe}{mac}
cac85e0b
MW
154 {define-c-type-syntax @<name> @<lambda-list> \\ \ind
155 @[[ @<declaration>^* @! @<doc-string> @]] \\
156 @<form>^* \-
157 \nlret @<name>}
dea4d055
MW
158 Defines the symbol @<name> as a new type operator. When a list of the form
159 @|(@<name> @<argument>^*)| is used as a type specifier, the @<argument>s
160 are bound to fresh variables according to @<lambda-list> (a destructuring
161 lambda-list) and the @<form>s evaluated in order in the resulting lexical
162 environment as an implicit @|progn|. The value should be a Lisp form which
163 will evaluate to the type specified by the arguments.
164
165 The @<form>s may call @|expand-c-type-spec| in order to recursively expand
166 type specifiers among its arguments.
167\end{describe}
168
e07fb83c 169\begin{describe}{gf}{expand-c-type-spec @<type-spec> @> @<form>}
dea4d055 170 Returns the Lisp form that @|(c-type @<type-spec>)| would expand into.
e07fb83c
MW
171
172 If @<type-spec> is a list, then \descref{expand-c-type-form}{fun} is
173 invoked.
174\end{describe}
175
176\begin{describe}{gf}{expand-c-type-form @<head> @<tail> @> @<form>}
177 Returns the Lisp form that @|(c-type (@<head> . @<tail>)| would expand
178 into.
dea4d055
MW
179\end{describe}
180
1f7d590d
MW
181\begin{describe}{gf}
182 {print-c-type @<stream> @<type> \&optional @<colon> @<atsign>}
dea4d055
MW
183 Print the C type object @<type> to @<stream> in S-expression form. The
184 @<colon> and @<atsign> arguments may be interpreted in any way which seems
185 appropriate: they are provided so that @|print-c-type| may be called via
186 @|format|'s @|\char`\~/\dots/| command; they are not set when
187 @|print-c-type| is called by Sod functions.
188
189 There should be a method defined for every C type class; there is no
190 default method.
191\end{describe}
192
31d4431b 193
1f7d590d 194\subsection{Comparing C types} \label{sec:clang.c-types.cmp}
dea4d055
MW
195
196It is necessary to compare C types for equality, for example when checking
197argument lists for methods. This is done by @|c-type-equal-p|.
198
1f7d590d
MW
199\begin{describe}{gf}
200 {c-type-equal-p @<c-type>_1 @<c-type>_2 @> @<generalized-boolean>}
201 The generic function @|c-type-equal-p| compares two C types @<c-type>_1 and
202 @<c-type>_2 for equality; it returns true if the two types are equal and
dea4d055
MW
203 false if they are not.
204
205 Two types are equal if they are structurally similar, where this property
206 is defined by methods for each individual class; see the descriptions of
207 the classes for the details.
208
209 The generic function @|c-type-equal-p| uses the @|and| method combination.
210
1f7d590d 211 \begin{describe}{meth}{c-type-equal-p @<c-type>_1 @<c-type>_2}
dea4d055
MW
212 A default primary method for @|c-type-equal-p| is defined. It simply
213 returns @|nil|. This way, methods can specialize on both arguments
214 without fear that a call will fail because no methods are applicable.
215 \end{describe}
1f7d590d 216 \begin{describe}{ar-meth}{c-type-equal-p @<c-type>_1 @<c-type>_2}
dea4d055 217 A default around-method for @|c-type-equal-p| is defined. It returns
1f7d590d
MW
218 true if @<c-type>_1 and @<c-type>_2 are @|eql|; otherwise it delegates to
219 the primary methods. Since several common kinds of C types are interned,
dea4d055
MW
220 this is a common case worth optimizing.
221 \end{describe}
222\end{describe}
223
31d4431b 224
1f7d590d 225\subsection{Outputting C types} \label{sec:clang.c-types.output}
dea4d055 226
1f7d590d 227\begin{describe}{gf}{pprint-c-type @<c-type> @<stream> @<kernel>}
dea4d055 228 The generic function @|pprint-c-type| pretty-prints to @<stream> a C-syntax
1f7d590d 229 declaration of an object or function of type @<c-type>. The result is
dea4d055
MW
230 written to @<stream>.
231
232 A C declaration has two parts: a sequence of \emph{declaration specifiers}
233 and a \emph{declarator}. The declarator syntax involves parentheses and
234 operators, in order to reflect the operators applicable to the declared
235 variable. For example, the name of a pointer variable is preceded by @`*';
236 the name of an array is followed by dimensions enclosed in @`['\dots @`]'.
237
238 The @<kernel> argument must be a function designator (though see the
239 standard around-method); it is invoked as
240 \begin{quote} \codeface
241 (funcall @<kernel> @<stream> @<priority> @<spacep>)
242 \end{quote}
243 It should write to @<stream> -- which may not be the same stream originally
244 passed into the generic function -- the `kernel' of the declarator, i.e.,
245 the part to which prefix and/or postfix operators are attached to form the
246 full declarator.
247
248 The methods on @|pprint-c-type| specialized for compound types work by
249 recursively calling @|pprint-c-type| on the subtype, passing down a closure
250 which prints the necessary additional declarator operators before calling
251 the original @<kernel> function. The additional arguments @<priority> and
252 @<spacep> support this implementation technique.
253
254 The @<priority> argument describes the surrounding operator context. It is
255 zero if no type operators are directly attached to the kernel (i.e., there
256 are no operators at all, or the kernel is enclosed in parentheses), one if
257 a prefix operator is directly attached, or two if a postfix operator is
258 directly attached. If the @<kernel> function intends to provide its own
259 additional declarator operators, it should check the @<priority> in order
260 to determine whether parentheses are necessary. See also the
58f9b400 261 \descref{maybe-in-parens}[macro]{mac}.
dea4d055
MW
262
263 The @<spacep> argument indicates whether a space needs to be printed in
264 order to separate the declarator from the declaration specifiers. A kernel
265 which contains an identifier should insert a space before the identifier
266 when @<spacep> is non-nil. An `empty' kernel, as found in an abstract
267 declarator (one that specifies no name), looks more pleasing without a
58f9b400 268 trailing space. See also the \descref{c-type-space}[function]{fun}.
dea4d055
MW
269
270 Every concrete subclass of @|c-type| is expected to provide a primary
271 method on this function. There is no default primary method.
272
1f7d590d 273 \begin{describe}{ar-meth}{pprint-c-type @<c-type> @<stream> @<kernel>}
dea4d055
MW
274 A default around method is defined on @|pprint-c-type| which `canonifies'
275 non-function @<kernel> arguments. In particular:
276 \begin{itemize}
277 \item if @<kernel> is nil, then @|pprint-c-type| is called recursively
278 with a @<kernel> function that does nothing; and
279 \item if @<kernel> is any other kind of object, then @|pprint-c-type| is
280 called recursively with a @<kernel> function that prints the object as
281 if by @|princ|, preceded if necessary by space using @|c-type-space|.
282 \end{itemize}
283 \end{describe}
284\end{describe}
285
286\begin{describe}{fun}{c-type-space @<stream>}
287 Writes a space and other pretty-printing instructions to @<stream> in order
288 visually to separate a declarator from the preceding declaration
289 specifiers. The precise details are subject to change.
290\end{describe}
291
1f7d590d 292\begin{describe}{mac}
cac85e0b
MW
293 {maybe-in-parens (@<stream-var> @<guard-form>)
294 @<declaration>^*
295 @<form>^*}
dea4d055
MW
296 The @<guard-form> is evaluated, and then the @<form>s are evaluated in
297 sequence within a pretty-printer logical block writing to the stream named
298 by the symbol @<stream-var>. If the @<guard-form> evaluates to nil, then
299 the logical block has empty prefix and suffix strings; if it evaluates to a
300 non-nil value, then the logical block has prefix and suffix @`(' and @`)'
301 respectively.
302
303 Note that this may cause @<stream> to be bound to a different stream object
304 within the @<form>s.
305\end{describe}
306
31d4431b 307
dea4d055 308\subsection{Type qualifiers and qualifiable types}
1f7d590d 309\label{sec:clang.ctypes.qual}
dea4d055 310
ae0f15ee
MW
311Qualifiers -- @|const|, @|volatile|, and so on -- are represented as lists of
312keywords attached to types. Not all C types can carry qualifiers: notably,
313function and array types cannot be qualified.
314
315For the most part, the C qualifier keywords correspond to like-named Lisp
316keywords, only the Lisp keyword names are in uppercase. The correspondence
317is shown in \xref{tab:clang.ctypes.qual}.
318
319\begin{table}
320 \begin{tabular}[C]{*2{>{\codeface}l}l} \hlx*{hv}
321 \thd{\textbf{C name}} & \thd{\textbf{Lisp name}} \\ \hlx{vhv}
322 _Atomic & :atomic \\
323 const & :const \\
324 restrict & :restrict \\
325 volatile & :volatile \\ \hlx*{vh}
326 \end{tabular}
327 \caption{C and Lisp qualifier names} \label{tab:clang.ctypes.qual}
328\end{table}
329
330The default behaviour, on output, is to convert keywords to lowercase and
331hope for the best: special cases can be dealt with by adding appropriate
332methods to \descref{c-qualifier-keyword}{gf}.
333
dea4d055
MW
334\begin{describe}{cls}{qualifiable-c-type (c-type) \&key :qualifiers}
335 The class @|qualifiable-c-type| describes C types which can bear
336 `qualifiers' (\Cplusplus\ calls them `cv-qualifiers'): @|const|,
337 @|restrict| and @|volatile|.
338
339 The @<qualifiers> are a list of keyword symbols @|:const|, @|:restrict| and
340 @|:volatile|. There is no built-in limitation to these particular
341 qualifiers; others keywords may be used, though this isn't recommended.
342
343 Two qualifiable types are equal only if they have \emph{matching
31d4431b
MW
344 qualifiers}: i.e., every qualifier attached to one is also attached to the
345 other: order is not significant, and neither is multiplicity.
dea4d055
MW
346
347 The class @|qualifiable-c-type| is abstract.
348\end{describe}
349
1f7d590d
MW
350\begin{describe}{gf}{c-type-qualifiers @<c-type> @> @<list>}
351 Returns the qualifiers of the @|qualifiable-c-type| instance @<c-type> as
352 an immutable list.
dea4d055
MW
353\end{describe}
354
1f7d590d
MW
355\begin{describe}{fun}{qualify-type @<c-type> @<qualifiers> @> @<c-type>}
356 The argument @<c-type> must be an instance of @|qualifiable-c-type|,
dea4d055
MW
357 currently bearing no qualifiers, and @<qualifiers> a list of qualifier
358 keywords. The result is a C type object like @<c-type> except that it
359 bears the given @<qualifiers>.
360
1f7d590d 361 The @<c-type> is not modified. If @<c-type> is interned, then the returned
dea4d055
MW
362 type will be interned.
363\end{describe}
364
0b80399d 365\begin{describe}{fun}{format-qualifiers @<qualifiers> @> @<string>}
dea4d055
MW
366 Returns a string containing the qualifiers listed in @<qualifiers> in C
367 syntax, with a space after each. In particular, if @<qualifiers> is
368 non-null then the final character of the returned string will be a space.
369\end{describe}
370
ff4e398b
MW
371\begin{describe}{gf}{c-qualifier-keyword @<qualifier> @> @<string>}
372 Return, as a string, the C keyword corresponding to the Lisp @<qualifier>.
373
374 There is a standard method, which deals with many qualifiers. Additional
375 methods exist for qualifier keywords which need special handling, such as
376 @|:atomic|; they are not listed here explicitly.
377
378 \begin{describe}{meth}{c-qualifier-keyword @<keyword> @> @<string>}
379 Returns the @<keyword>'s print-name, in lower case. This is sufficient
380 for the standard qualifiers @|:const|, @|:restrict|, and @|:volatile|.
381 \end{describe}
382\end{describe}
383
384\begin{describe}{fun}{c-type-qualifier-keywords @<c-type> @> @<list>}
385 Return the @<c-type>'s qualifiers, as a list of C keyword names.
386\end{describe}
387
31d4431b 388
b7fcf941
MW
389\subsection{Storage specifiers} \label{sec:clang.ctypes.specs}
390
391Some declaration specifiers, mostly to do with how to store the specific
392object in question, are determinedly `top level', and, unlike qualifiers,
393don't stay attached to the base type when acted on by declarator operators.
394Sod calls these `storage specifiers', though no such category exists in the C
395standard. They have their own protocol, which is similar in many ways to
396that of C types.
397
398Every Lisp keyword is potentially a storage specifier, which simply maps to
399its lower-case print name in C; but other storage specifiers may be more
400complicated objects.
401
402\begin{describe}{cls}
403 {c-storage-specifiers-type (c-type) \&key :subtype :specifiers}
404 A type which carries storage specifiers. The @<subtype> is the actual
405 type, and may be any C type; the @<specifiers> are a list of
406 storage-specifier objects.
407
408 The type specifier @|(specs @<subtype> @<specifier>^*)| wraps the
409 @<subtype> in a @|c-storage-specifiers-type|, carrying the @<specifier>s,
410 which are a list of storage specifiers in S-expression notation.
411\end{describe}
412
413\begin{describe}{fun}{c-type-specifiers @<type> @> @<list>}
414 Returns the list of type specifiers attached to the @<type> object, which
415 must be a @|c-storage-specifiers-type|.
416\end{describe}
417
418\begin{describe}{mac}
419 {define-c-storage-specifier-syntax @<name> @<lambda-list> \\ \ind
420 @[[ @<declaration>^* @! @<doc-string> @]] \\
421 @<form>^* \-
422 \nlret @<name>}
423
424 Defines the symbol @<name> as a new storage-specifier operator. When a
425 list of the form @|(@<name> @<argument>^*)| is used as a storage specifier,
426 the @<argument>s are bound to fresh variables according to the
427 @<lambda-list> (a destructuring lambda-list) and the @<form>s evaluated in
428 order in the resulting lexical environment as an implicit @<progn>. The
429 value should be a Lisp form which will evaluate to the storage-specifier
430 object described by the arguments.
431
432 The @<form>s may call @|expand-c-storage-specifier| in order to recursively
433 expand storage specifiers among its arguments.
434\end{describe}
435
436\begin{describe}{gf}{expand-c-storage-specifier @<spec> @> @<form>}
437 Returns the Lisp form that @<spec> expands to within @|(c-type (specs
438 @<subtype> @<spec>))|.
439
440 If @<spec> is a list, then \descref{expand-c-storage-specifier-form} is
441 invoked.
442\end{describe}
443
444\begin{describe}{gf}{expand-c-storage-specifier-form @<spec> @> @<form>}
445 Returns the Lisp form that @|(@<head> . @<tail>)| expands to within
446 @|(c-type (specs @<subtype> (@<head> . @<tail>)))|.
447\end{describe}
448
449\begin{describe}{gf}{pprint-c-storage-specifier @<spec> @<stream>}
450\end{describe}
451
452\begin{describe}{gf}
453 {print-c-storage-specifier @<stream> @<spec>
454 \&optional @<colon> @<atsign>}
455\end{describe}
456
457\begin{describe}{fun}{wrap-c-type @<func> @<base-type> @> @<c-type>}
458 Apply @<func> to the underlying C type of @<base-type> to create a new
459 `wrapped' type, and attach the storage specifiers of @<base-type> to the
460 wrapped type.
461
462 If @<base-type> is \emph{not} a @|c-storage-specifiers-type|, then return
463 @|(funcall @<func> @<base-type>)|. Otherwise, return a new
464 @|c-storage-specifiers-type|, with the same specifiers, but whose subtype
465 is the result of applying @<func> to the subtype of the original
466 @<base-type>.
467\end{describe}
468
db56b1d3
MW
469\begin{describe}{cls}{alignas-storage-specifier () \&key :alignment}
470 The class of @|_Alignas| storage specifiers; an instance denotes the
471 specifier @|_Alignas(@<alignment>)|. The @<alignment> parameter may be any
472 printable object, but is usually a string or C fragment.
473
474 The storage specifier form @|(alignas @<alignment>)| returns a storage
475 specifier @|_Alignas(@<alignment>)|, where @<alignment> is evaluated.
476\end{describe}
477
31d4431b 478
1f7d590d 479\subsection{Leaf types} \label{sec:clang.c-types.leaf}
dea4d055
MW
480
481A \emph{leaf type} is a type which is not defined in terms of another type.
482In Sod, the leaf types are
483\begin{itemize}
484\item \emph{simple types}, including builtin types like @|int| and @|char|,
485 as well as type names introduced by @|typename|, because Sod isn't
486 interested in what the type name means, merely that it names a type; and
487\item \emph{tagged types}, i.e., enum, struct and union types which are named
488 by a keyword identifying the kind of type, and a \emph{tag}.
489\end{itemize}
490
491\begin{describe}{cls}{simple-c-type (qualifiable-c-type)
492 \&key :qualifiers :name}
493 The class of `simple types'; an instance denotes the type @<qualifiers>
494 @<name>.
495
496 A simple type object maintains a \emph{name}, which is a string whose
497 contents are the C name for the type. The initarg @|:name| may be used to
498 provide this name when calling @|make-instance|.
499
500 Two simple type objects are equal if and only if they have @|string=| names
501 and matching qualifiers.
502
503 A number of symbolic type specifiers for builtin types are predefined as
64d1ecf7 504 shown in \xref{tab:codegen.c-types.simple}. These are all defined as if by
dea4d055
MW
505 @|define-simple-c-type|, so can be used to construct qualified types.
506\end{describe}
507
508\begin{table}
fcb6c0fb
MW
509 \begin{tabular}[C]{ll} \hlx*{hv}
510 \thd{C type} & \thd{Specifiers} \\ \hlx{vhv}
511 @|void| & @|void| \\ \hlx{v}
a4434457
MW
512 @|_Bool| & @|bool| \\ \hlx{v}
513 @|char| & @|char| \\ \hlx{}
a4434457 514 @|wchar_t| & @|wchar-t| \\ \hlx{v}
d21ac4d9
MW
515 @|signed char| & @|signed-char|, @|schar| \\ \hlx{}
516 @|unsigned char| & @|unsigned-char|, @|uchar| \\ \hlx{v}
dea4d055 517 @|short| & @|short|, @|signed-short|, @|short-int|,
fcb6c0fb 518 @|signed-short-int| @|sshort| \\ \hlx{}
dea4d055 519 @|unsigned short| & @|unsigned-short|, @|unsigned-short-int|,
fcb6c0fb 520 @|ushort| \\ \hlx{v}
dea4d055 521 @|int| & @|int|, @|signed|, @|signed-int|,
fcb6c0fb
MW
522 @|sint| \\ \hlx{}
523 @|unsigned int| & @|unsigned|, @|unsigned-int|, @|uint| \\ \hlx{v}
dea4d055 524 @|long| & @|long|, @|signed-long|, @|long-int|,
fcb6c0fb 525 @|signed-long-int|, @|slong| \\ \hlx{}
dea4d055 526 @|unsigned long| & @|unsigned-long|, @|unsigned-long-int|,
fcb6c0fb 527 @|ulong| \\ \hlx{v}
dea4d055 528 @|long long| & @|long-long|, @|signed-long-long|,
d21ac4d9 529 @|long-long-int|, \\ \hlx{}
dea4d055
MW
530 & \qquad @|signed-long-long-int|,
531 @|llong|, @|sllong| \\ \hlx{v}
532 @|unsigned long long|
533 & @|unsigned-long-long|, @|unsigned-long-long-int|,
fcb6c0fb 534 @|ullong| \\ \hlx{v}
d21ac4d9
MW
535 @|size_t| & @|size-t| \\ \hlx{}
536 @|ptrdiff_t| & @|ptrdiff-t| \\ \hlx{v}
fcb6c0fb 537 @|float| & @|float| \\ \hlx{}
a4434457
MW
538 @|double| & @|double| \\ \hlx{}
539 @|long double| & @|long-double| \\ \hlx{v}
540 @|float _Imaginary| & @|float-imaginary| \\ \hlx{}
a4434457 541 @|double _Imaginary|& @|double-imaginary| \\ \hlx{}
a4434457 542 @|long double _Imaginary|
d21ac4d9
MW
543 & @|long-double-imaginary| \\ \hlx{v}
544 @|float _Complex| & @|float-complex| \\ \hlx{}
545 @|double _Complex| & @|double-complex| \\ \hlx{}
a4434457 546 @|long double _Complex|
d21ac4d9
MW
547 & @|long-double-complex| \\ \hlx{v}
548 @|va_list| & @|va-list| \\ \hlx*{vh}
dea4d055
MW
549 \end{tabular}
550 \caption{Builtin symbolic type specifiers for simple C types}
64d1ecf7 551 \label{tab:codegen.c-types.simple}
dea4d055
MW
552\end{table}
553
1f7d590d
MW
554\begin{describe}{fun}
555 {make-simple-type @<name> \&optional @<qualifiers> @> @<c-type>}
dea4d055
MW
556 Return the (unique interned) simple C type object for the C type whose name
557 is @<name> (a string) and which has the given @<qualifiers> (a list of
558 keywords).
559\end{describe}
560
1f7d590d
MW
561\begin{describe}{gf}{c-type-name @<c-type> @> @<string>}
562 Returns the name of a @|simple-c-type| instance @<c-type> as an immutable
dea4d055
MW
563 string.
564\end{describe}
565
1f7d590d 566\begin{describe}{mac}
e43d3532
MW
567 {define-simple-c-type \=@{ @<name> @! (@<name>^+) @} @<string> \+ \\
568 @[[ @|:export| @<export-flag> @]] \-
569 \nlret @<name>}
dea4d055
MW
570 Define type specifiers for a new simple C type. Each symbol @<name> is
571 defined as a symbolic type specifier for the (unique interned) simple C
572 type whose name is the value of @<string>. Further, each @<name> is
573 defined to be a type operator: the type specifier @|(@<name>
574 @<qualifier>^*)| evaluates to the (unique interned) simple C type whose
575 name is @<string> and which has the @<qualifiers> (which are evaluated).
e43d3532
MW
576
577 Furthermore, a variable @|c-type-@<name>| is defined, for the first @<name>
578 only, and initialized with the newly constructed C type object.
579
580 If @<export-flag> is true, then the @|c-type-@<name>| variable name, and
581 all of the @<name>s, are exported from the current package.
dea4d055
MW
582\end{describe}
583
584\begin{describe}{cls}{tagged-c-type (qualifiable-c-type)
585 \&key :qualifiers :tag}
586 Provides common behaviour for C tagged types. A @<tag> is a string
587 containing a C identifier.
588
589 Two tagged types are equal if and only if they have the same class, their
590 @<tag>s are @|string=|, and they have matching qualifiers. (User-defined
591 subclasses may have additional methods on @|c-type-equal-p| which impose
592 further restrictions.)
593\end{describe}
594\begin{boxy}[Bug]
595 Sod maintains distinct namespaces for the three kinds of tagged types. In
596 C, there is only one namespace for tags which is shared between enums,
597 structs and unions.
598\end{boxy}
599
1f7d590d
MW
600\begin{describe}{gf}{c-tagged-type-kind @<c-type> @> @<keyword>}
601 Returns a keyword classifying the tagged @<c-type>: one of @|:enum|,
602 @|:struct| or @|:union|. User-defined subclasses of @|tagged-c-type|
603 should return their own classification symbols. It is intended that
604 @|(string-downcase (c-tagged-type-kind @<c-type>))| be valid C
605 syntax.\footnote{%
dea4d055
MW
606 Alas, C doesn't provide a syntactic category for these keywords;
607 \Cplusplus\ calls them a @<class-key>.} %
1f7d590d
MW
608 There is a method defined for each of the built-in tagged type classes
609 @|c-struct-type|, @|c-union-type| and @|c-enum-type|.
610\end{describe}
611
612\begin{describe}{gf}{kind-c-tagged-type @<keyword> @> @<symbol>}
613 This is not quite the inverse of @|c-tagged-type-kind|. Given a keyword
614 naming a kind of tagged type, return the name of the corresponding C
615 type class as a symbol.
dea4d055
MW
616\end{describe}
617
618\begin{describe}{cls}{c-enum-type (tagged-c-type) \&key :qualifiers :tag}
619 Represents a C enumerated type. An instance denotes the C type @|enum|
620 @<tag>. See the direct superclass @|tagged-c-type| for details.
621
622 The type specifier @|(enum @<tag> @<qualifier>^*)| returns the (unique
623 interned) enumerated type with the given @<tag> and @<qualifier>s (all
624 evaluated).
625\end{describe}
1f7d590d
MW
626\begin{describe}{fun}
627 {make-enum-type @<tag> \&optional @<qualifiers> @> @<c-enum-type>}
dea4d055
MW
628 Return the (unique interned) C type object for the enumerated C type whose
629 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
630 keywords).
631\end{describe}
632
633\begin{describe}{cls}{c-struct-type (tagged-c-type) \&key :qualifiers :tag}
634 Represents a C structured type. An instance denotes the C type @|struct|
635 @<tag>. See the direct superclass @|tagged-c-type| for details.
636
637 The type specifier @|(struct @<tag> @<qualifier>^*)| returns the (unique
638 interned) structured type with the given @<tag> and @<qualifier>s (all
639 evaluated).
640\end{describe}
1f7d590d
MW
641\begin{describe}{fun}
642 {make-struct-type @<tag> \&optional @<qualifiers> @> @<c-struct-type>}
dea4d055
MW
643 Return the (unique interned) C type object for the structured C type whose
644 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
645 keywords).
646\end{describe}
647
648\begin{describe}{cls}{c-union-type (tagged-c-type) \&key :qualifiers :tag}
649 Represents a C union type. An instance denotes the C type @|union|
650 @<tag>. See the direct superclass @|tagged-c-type|
651 for details.
652
653 The type specifier @|(union @<tag> @<qualifier>^*)| returns the (unique
654 interned) union type with the given @<tag> and @<qualifier>s (all
655 evaluated).
656\end{describe}
1f7d590d
MW
657\begin{describe}{fun}
658 {make-union-type @<tag> \&optional @<qualifiers> @> @<c-union-type>}
dea4d055
MW
659 Return the (unique interned) C type object for the union C type whose tag
660 is @<tag> (a string) and which has the given @<qualifiers> (a list of
661 keywords).
662\end{describe}
663
31d4431b 664
1f7d590d
MW
665\subsection{Compound C types} \label{sec:code.c-types.compound}
666
667Some C types are \emph{compound types}: they're defined in terms of existing
668types. The classes which represent compound types implement a common
669protocol.
dea4d055 670
1f7d590d
MW
671\begin{describe}{gf}{c-type-subtype @<c-type> @> @<subtype>}
672 Returns the underlying type of a compound type @<c-type>. Precisely what
673 this means depends on the class of @<c-type>.
dea4d055
MW
674\end{describe}
675
31d4431b 676
ae0f15ee
MW
677\subsection{Atomic types} \label{sec:clang.c-types.atomic}
678
679Atomic types are compound types. The subtype of an atomic type is simply the
680underlying type of the object. Note that, as far as Sod is concerned, atomic
681types are not the same as atomic-qualified types: you must be consistent
682about which you use.
683
684\begin{describe}{cls}
685 {c-atomic-type (qualifiable-c-type) \&key :qualifiers :subtype}
686 Represents an atomic type. An instance denotes the C type
687 @|_Atomic(@<subtype>)|.
688
689 The @<subtype> may be any C type.\footnote{%
690 C does not permit atomic function or array types.} %
691 Two atomic types are equal if and only if their subtypes are equal and they
692 have matching qualifiers. It is possible, though probably not useful, to
693 have an atomic-qualified atomic type.
694
695 The type specifier @|(atomic @<type-spec> @<qualifier>^*)| returns a type
696 qualified atomic @<subtype>, where @<subtype> is the type specified by
697 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
698 evaluated).
699\end{describe}
700
701\begin{describe}{fun}
702 {make-atomic-type @<c-type> \&optional @<qualifiers> @> @<c-atomic-type>}
703 Return an object describing the type qualified atomic @<subtype>. If
704 @<subtype> is interned, then the returned atomic type object is interned
705 also.
706\end{describe}
707
708
1f7d590d
MW
709\subsection{Pointer types} \label{sec:clang.c-types.pointer}
710
cf7f1f46
MW
711Pointers are compound types. The subtype of a pointer type is the type it
712points to.
1f7d590d
MW
713
714\begin{describe}{cls}
715 {c-pointer-type (qualifiable-c-type) \&key :qualifiers :subtype}
dea4d055
MW
716 Represents a C pointer type. An instance denotes the C type @<subtype>
717 @|*|@<qualifiers>.
718
719 The @<subtype> may be any C type. Two pointer types are equal if and only
720 if their subtypes are equal and they have matching qualifiers.
721
722 The type specifier @|(* @<type-spec> @<qualifier>^*)| returns a type
723 qualified pointer-to-@<subtype>, where @<subtype> is the type specified by
724 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
725 evaluated). The synonyms @|ptr| and @|pointer| may be used in place of the
726 star @`*'.
727
fcb6c0fb 728 The symbol @|string| is a type specifier for the type pointer to
dea4d055
MW
729 characters; the symbol @|const-string| is a type specifier for the type
730 pointer to constant characters.
731\end{describe}
1f7d590d
MW
732
733\begin{describe}{fun}
734 {make-pointer-type @<c-type> \&optional @<qualifiers>
735 @> @<c-pointer-type>}
fcb6c0fb 736 Return an object describing the type qualified pointer to @<subtype>.
dea4d055
MW
737 If @<subtype> is interned, then the returned pointer type object is
738 interned also.
739\end{describe}
740
31d4431b 741
1f7d590d
MW
742\subsection{Array types} \label{sec:clang.c-types.array}
743
fcb6c0fb
MW
744Arrays implement the compound-type protocol. The subtype of an array type is
745the array element type.
1f7d590d 746
dea4d055
MW
747\begin{describe}{cls}{c-array-type (c-type) \&key :subtype :dimensions}
748 Represents a multidimensional C array type. The @<dimensions> are a list
749 of dimension specifiers $d_0$, $d_1$, \ldots, $d_{n-1}$; an instance then
750 denotes the C type @<subtype> @|[$d_0$][$d_1$]$\ldots$[$d_{n-1}$]|. An
751 individual dimension specifier is either a string containing a C integral
752 constant expression, or nil which is equivalent to an empty string. Only
753 the first (outermost) dimension $d_0$ should be empty.
754
755 C doesn't actually have multidimensional arrays as a primitive notion;
756 rather, it permits an array (with known extent) to be the element type of
757 an array, which achieves an equivalent effect. C arrays are stored in
758 row-major order: i.e., if we write down the indices of the elements of an
759 array in order of ascending address, the rightmost index varies fastest;
760 hence, the type constructed is more accurately an array of $d_0$ arrays of
761 $d_1$ of \ldots\ arrays of $d_{n-1}$ elements of type @<subtype>. We shall
762 continue to abuse terminology and refer to multidimensional arrays.
763
764 The type specifier @|([] @<type-spec> @<dimension>^*)| constructs a
765 multidimensional array with the given @<dimension>s whose elements have the
766 type specified by @<type-spec>. If no dimensions are given then a
767 single-dimensional array with unspecified extent. The synonyms @|array|
768 and @|vector| may be used in place of the brackets @`[]'.
769\end{describe}
1f7d590d
MW
770
771\begin{describe}{fun}
772 {make-array-type @<subtype> @<dimensions> @> @<c-array-type>}
dea4d055
MW
773 Return an object describing the type of arrays with given @<dimensions> and
774 with element type @<subtype> (an instance of @|c-type|). The @<dimensions>
775 argument is a list whose elements are strings or nil; see the description
776 of the class @|c-array-type| above for details.
777\end{describe}
1f7d590d
MW
778
779\begin{describe}{gf}{c-array-dimensions @<c-type> @> @<list>}
780 Returns the dimensions of @<c-type>, an array type, as an immutable list.
781\end{describe}
782
31d4431b 783
1f7d590d
MW
784\subsection{Function types} \label{sec:clang.c-types.fun}
785
fcb6c0fb
MW
786Function types implement the compound-type protocol. The subtype of a
787function type is the type of the function's return value.
788
1f7d590d 789\begin{describe}{cls}{argument}
fcb6c0fb 790 Represents an ordinary function argument.
1f7d590d
MW
791\end{describe}
792
793\begin{describe}{fun}{argumentp @<value> @> @<generalized-boolean>}
fcb6c0fb
MW
794 Decide whether @<value> is an @<argument> object: if so, return non-nil; if
795 not return nil.
1f7d590d
MW
796\end{describe}
797
ced609b8
MW
798\begin{describe}{fun}
799 {make-argument @<name> @<c-type> \&optional @<default> @> @<argument>}
fcb6c0fb
MW
800 Construct and a return a new @<argument> object. The argument has type
801 @<c-type>, which must be a @|c-type| object, and is named @<name>.
802
803 The @<name> may be nil to indicate that the argument has no name: in this
804 case the argument will be formatted as an abstract declarator, which is not
805 suitable for function definitions. If @<name> is not nil, then the
806 @<name>'s print representation, with @|*print-escape*| nil, is used as the
807 argument name.
ced609b8
MW
808
809 A @<default> may be supplied. If the argument is used in a
810 keyword-argument list (e.g., in a \descref{c-keyword-function-type}
811 [object]{cls}), and the @<default> value is provided and non-nil, then its
812 (unescaped) printed representation is used to provide a default value if
813 the keyword argument is not supplied by the caller.
1f7d590d
MW
814\end{describe}
815
52e2a70f 816\begin{describe*}
31d4431b 817 {\dhead{fun}{argument-name @<argument> @> @<name>}
ced609b8
MW
818 \dhead{fun}{argument-type @<argument> @> @<c-type>}
819 \dhead{fun}{argument-default @<argument> @> @<default>}}
820 Accessor functions for @|argument| objects. They return the appropriate
821 component of the object, as set by to @|make-argument|. The @<default> is
822 nil if no default was provided to @|make-argument|.
52e2a70f 823\end{describe*}
dea4d055 824
fcb6c0fb 825\begin{describe}{gf}
1f7d590d 826 {commentify-argument-name @<name> @> @<commentified-name>}
fcb6c0fb
MW
827 Convert the argument name @<name> so that it's suitable to declare the
828 function in a header file.
dea4d055 829
fcb6c0fb
MW
830 Robust header files shouldn't include literal argument names in
831 declarations of functions or function types, since this restricts the
832 including file from defining such names as macros. This generic function
833 is used to convert names into a safe form.
834
835 \begin{describe}{meth}{commentify-argument-name (@<name> null) @> nil}
836 Returns nil: if the argument name is already omitted, it's safe for use
837 in a header file.
838 \end{describe}
839 \begin{describe}{meth}{commentify-argument-name (@<name> t) @> @<string>}
840 Returns the print form of @<name> wrapped in a C comment, as
841 @`/*@<name>*/'.
842 \end{describe}
1f7d590d
MW
843\end{describe}
844
845\begin{describe}{fun}
fcb6c0fb
MW
846 {commentify-argument-names @<arguments> @> @<commentified-arguments>}
847 Convert the @<arguments> list so that it's suitable for use in a header
848 file.
849
850 The @<arguments> list should be a list whose items are @|argument| objects
851 or the keyword @|:ellipsis|. The return value is a list constructed as
852 follows. For each @|argument| object in the input list, there is a
853 corresponding @|argument| object in the returned list, with the same type,
854 and whose name is the result of @|commentify-argument-name| applied to the
855 input argument name; an @|:ellipsis| in the input list is passed through
856 unchanged.
1f7d590d
MW
857\end{describe}
858
fcb6c0fb
MW
859\begin{describe}{cls}{c-function-type (c-type) \&key :subtype :arguments}
860 Represents C function types. An instance denotes the type of a C
861 function which accepts the @<arguments> and returns @<subtype>.
862
863 The @<arguments> are a possibly empty list. All but the last element of
864 the list must be @|argument| objects; the final element may instead be the
865 keyword @|:ellipsis|, which denotes a variable argument list.
866
867 An @<arguments> list consisting of a single argument with type @|void| is
868 converted into an empty list. On output as C code, an empty argument list
869 is written as @|void|. It is not possible to represent a pre-ANSI C
870 function without prototypes.
871
872 Two function types are considered to be the same if their return types are
873 the same, and their argument lists consist of arguments with the same type,
874 in the same order, and either both or neither argument list ends with
875 @|:ellipsis|; argument names are not compared.
876
ed76585e
MW
877 The type specifier
878 \begin{prog}
879 (fun @<return-type>
880 @{ (@<arg-name> @<arg-type>) @}^*
881 @[:ellipsis @! . @<form>@])
882 \end{prog}
883 constructs a function type. The function has the subtype @<return-type>.
884 The remaining items in the type-specifier list are used to construct the
885 argument list. The argument items are a possibly improper list, beginning
886 with zero or more \emph{explicit arguments}: two-item
887 @<arg-name>/@<arg-type> lists. For each such list, an @|argument| object
888 is constructed with the given name (evaluated) and type. Following the
889 explicit arguments, there may be
fcb6c0fb
MW
890 \begin{itemize}
891 \item nothing, in which case the function's argument list consists only of
892 the explicit arguments;
893 \item the keyword @|:ellipsis|, as the final item in the type-specifier
894 list, indicating a variable argument list may follow the explicit
895 arguments; or
896 \item a possibly-improper list tail, beginning with an atom either as a
897 list item or as the final list cdr, indicating that the entire list tail
898 is Lisp expression which is to be evaluated to compute the remaining
899 arguments.
900 \end{itemize}
901 A tail expression may return a list of @|argument| objects, optionally
902 followed by an @|:ellipsis|.
903
904 For example,
905 \begin{prog}
906 (c-type (fun \=(lisp (c-type-subtype other-func)) \+ \\
907 ("first" int) . (c-function-arguments other-func))
908 \end{prog}
909 evaluates to a function type like @|other-func|, only with an additional
910 argument of type @|int| added to the front of its argument list. This
911 could also have been written
912 \begin{prog}
913 (let (\=(args (c-function-arguments other-func)) \+ \\
914 (ret (c-type-subtype other-func))) \- \\ \ind
915 (c-type (fun \=(lisp ret) ("first" int) . args)
916 \end{prog}
1f7d590d
MW
917\end{describe}
918
ced609b8
MW
919\begin{describe}{cls}
920 {c-keyword-function-type (c-function-type)
921 \&key :subtype :arguments :keywords}
922 Represents `functions' which accept keyword arguments. Of course, actual C
923 functions can't accept keyword arguments directly, but this type is useful
924 for describing messages and methods which deal with keyword arguments.
925
926 An instance denotes the type of C function which accepts the position
927 argument list @<arguments>, and keyword arguments from the @<keywords>
928 list, and returns @<subtype>. Either or both of the @<arguments> and
929 @<keywords> lists may be empty. (It is important to note the distinction
930 between a function which doesn't accept keyword arguments, and one which
931 does but for which no keyword arguments are defined. In particular, the
932 latter function can be changed later to accept a keyword argument without
933 breaking compatibility with old code.) The @<arguments> and @<keywords>
934 lists must \emph{not} contain @|:ellipsis| markers: a function can accept
935 keywords, or a variable-length argument tail, but not both.
936
937 Keyword arguments may (but need not) have a \emph{default value} which is
938 supplied to the function body if the keyword is omitted.
939
940 Keyword functions are never considered to be the same as ordinary
941 functions. Two keyword function types are considered to be the same if
942 their return types are the same, and their positional argument lists consist of
943 arguments with the same type, in the same order: the keyword arguments
944 accepted by the functions is not significant.
945
946 Keyword functions are constructed using an extended version of the @|fun|
947 specifier used for ordinary C function types. The extended syntax is as
948 follows.
949 \begin{prog}
950 (fun \=@<return-type>
951 @{ (@<arg-name> @<arg-type>) @}^* \+ \\
952 @{ \=:keys @{ (@<kw-name> @<kw-type> @[@<kw-default>@]) @}^*
953 @[. @<form>@] @! \+ \\
954 . @<form> @}
955 \end{prog}
956 where either the symbol @|:keys| appears literally in the specifier, or the
957 @<form> evaluates to a list containing the symbol @|:keys|. (If neither of
958 these circumstances obtains, then the specifier constructs an ordinary
959 function type.)
960
961 See the description of \descref{c-function-type}{cls} for how a trailing
962 @<form> is handled.
963
964 The list of @<arg-name>s and @<arg-type>s describes the positional
965 arguments. The list of @<kw-name>s, @<kw-type>s and @<kw-defaults>s
966 describes the keyword arguments.
967\end{describe}
968
1f7d590d 969\begin{describe}{fun}
fcb6c0fb
MW
970 {make-function-type @<subtype> @<arguments> @> @<c-function-type>}
971 Construct and return a new function type, returning @<subtype> and
972 accepting the @<arguments>.
ced609b8
MW
973
974 If the @<arguments> list contains a @|:keys| marker, then a
975 \descref{c-keyword-function-type}[object]{cls} is returned: those arguments
976 preceding the @|:keys| marker form the positional argument list, and those
977 following the marker form the list of keyword arguments.
978\end{describe}
979
980\begin{describe}{fun}
981 {make-keyword-function-type @<subtype> @<arguments> @<keywords>
982 \nlret @<c-keyword-function-type>}
983 Construct and return a new keyword-function type, returning @<subtype> and
984 accepting the @<arguments> and @<keywords>.
fcb6c0fb
MW
985\end{describe}
986
987\begin{describe}{gf}
988 {c-function-arguments @<c-function-type> @> @<arguments>}
989 Return the arguments list of the @<c-function-type>.
1f7d590d
MW
990\end{describe}
991
992\begin{describe}{fun}
fcb6c0fb
MW
993 {commentify-function-type @<c-function-type> @> @<commentified-c-type>}
994 Return a commentified version of the @<c-function-type>.
995
996 The returned type has the same subtype as the given type, and the argument
997 list of the returned type is the result of applying
998 @|commentify-argument-names| to the argument list of the given type.
dea4d055
MW
999\end{describe}
1000
074650bc
MW
1001\begin{describe}{fun}{reify-variable-argument-tail @<arguments> @> @<list>}
1002 If the @<argument> list contains an @|:ellipsis| marker, then replace it
1003 with a @|va_list|. The name for the new argument, if any, is taken from
1004 the \descref{*sod-ap*}[variable]{var}. The new list is returned; the
1005 original list is not modified, but may share structure with the new list.
1006\end{describe}
1007
ced609b8
MW
1008\begin{describe}{fun}{merge-keyword-lists @<lists> @> @<list>}
1009 Merge a number of keyword-argument lists together and return the result.
1010
1011 The @<lists> parameter is a list consisting of a number of @|(@<args>
1012 . @<origin>)| pairs: in each pair, @<args> is a list of
1013 \descref{argument}{cls} objects, and @<origin> is either nil or an object
1014 whose printed representation describes the origin of the corresponding
1015 @<args> list, suitable for inclusion in an error message.
1016
1017 The resulting list contains exactly one argument for each distinct argument
1018 name appearing in the input @<lists>; this argument will contain the
1019 default value from the earliest occurrence in the input @<lists> of an
1020 argument with that name.
1021
1022 If the same name appears multiple times with different types, an error is
1023 signalled quoting the name, conflicting types, and (if non-nil) the origins
1024 of the offending argument objects.
1025\end{describe}
1026
678b6c0f
MW
1027\begin{describe}{fun}
1028 {pprint-c-function-type @<return-type> @<stream>
1029 @<print-args> @<print-kernel>}
1030 Provides the top-level structure for printing C function types.
1031
1032 Output is written to @<stream> to describe a function type returning
1033 @<return-type>, whose declarator kernel (containing the name, and any
1034 further type operands) will be printed by @<print-kernel>, and whose
1035 arguments, if any, will be printed by @<print-args>.
1036
1037 The @<print-kernel> function is a standard kernel-printing function
1038 following the \descref{pprint-c-type}[protocol]{gf}.
1039
1040 The @<print-args> function is given a single argument, which is the
1041 @<stream> to print on. It should not print the surrounding parentheses.
1042
1043 The output written to @<stream> looks approximately like
1044 \begin{prog}
1045 @<return-type> @<kernel>(@<args>)
1046 \end{prog}
1047\end{describe}
1048
1049\begin{describe}{fun}{pprint-argument-list @<args> @<stream> @> @<flag>}
1050 Print an argument list to @<stream>.
1051
1052 The @<args> is a list of \descref{argument}[objects]{cls}, optionally
1053 containing an @|:ellipsis| marker. The function returns true if any
1054 arguments were actually printed.
1055\end{describe}
1056
31d4431b 1057
1f7d590d
MW
1058\subsection{Parsing C types} \label{sec:clang.c-types.parsing}
1059
756f4928
MW
1060\begin{describe}{fun}
1061 {parse-c-type @<scanner>
1062 @> @<result> @<success-flag> @<consumed-flag>}
1063\end{describe}
1064
1065\begin{describe}{fun}
1066 {parse-declarator @<scanner> @<base-type> \&key :kernel :abstractp
1067 \nlret @<result> @<success-flag> @<consumed-flag>}
1068\end{describe}
1069
31d4431b 1070
756f4928
MW
1071\subsection{Class types} \label{sec:clang.c-types.class}
1072
1073\begin{describe}{cls}
1074 {c-class-type (simple-c-type) \&key :class :tag :qualifiers :name}
1075\end{describe}
1076
1077\begin{describe*}
1078 {\dhead{gf}{c-type-class @<class-type> @> @<class>}
1079 \dhead{gf}{setf (c-type-class @<class-type>) @<class>}}
1080\end{describe*}
1081
1082\begin{describe}{fun}{find-class-type @<name> @> @<class-type-or-nil>}
1083\end{describe}
1084
1085\begin{describe}{fun}
1086 {make-class-type @<name> \&optional @<qualifiers> @> @<class-type>}
1087\end{describe}
1088
1089\begin{describe}{fun}
1090 {make-class-type @<name> \&optional @<qualifiers> @> @<class-type>}
1091\end{describe}
1092
1093\begin{describe}{fun}{find-sod-class @<name> @> @<class>}
1094\end{describe}
1095
1096\begin{describe}{fun}{record-sod-class @<class>}
1097\end{describe}
1098
1f7d590d
MW
1099%%%--------------------------------------------------------------------------
1100\section{Generating C code} \label{sec:clang.codegen}
1101
fcb6c0fb
MW
1102This section deals with Sod's facilities for constructing and manipulating C
1103expressions, declarations, instructions and definitions.
1104
31d4431b 1105
fcb6c0fb
MW
1106\subsection{Temporary names} \label{sec:clang.codegen.temporaries}
1107
1108Many C-level objects, especially ones with external linkage or inclusion in a
1109header file, are assigned names which are simple strings, perhaps fixed ones,
1110perhaps constructed. Other objects don't need meaningful names, and
1111suitably unique constructed names would be tedious and most likely rather
1112opaque. Therefore Sod has an ability to construct \emph{temporary names}.
1113
1114These aren't temporary in the sense that they name C objects which have
1115limited lifetimes at runtime. Rather, the idea is that the names be
1116significant only to small pieces of Lisp code, which will soon forget about
1117them.
1118
1119\subsubsection{The temporary name protocol}
1120Temporary names are represented by objects which implement a simple protocol.
1121
1122\begin{describe}{gf}{format-temporary-name @<var> @<stream>}
1123\end{describe}
1124
1125\begin{describe*}
1126 {\dhead{gf}{var-in-use-p @<var> @> @<generalized-boolean>}
1127 \dhead[setf var-in-use-p]
1128 {gf}{setf (var-in-use-p @<var>) @<generalized-boolean>}}
1129\end{describe*}
1130
1131\subsubsection{Temporary name objects}
1132
1133\begin{describe}{cls}{temporary-name () \&key :tag}
1134 A temporary name object. This is the root of a small collection of
1135 subclasses, but is also usable on its own.
1136\end{describe}
1137
1138\begin{describe}{meth}
1139 {commentify-argument-name (@<name> temporary-name) @> nil}
1140\end{describe}
1141
1142\begin{table}
1143 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
1144 \thd{\textbf{Class}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
1145 temporary-name & @<tag> \\
1146 temporary-argument & sod__a@<tag> \\
1147 temporary-function & sod__f@<tag> \\
1148 temporary-variable & sod__v@<tag> \\ \hlx*{vh}
1149 \end{tabular}
1150 \caption{Temporary name formats}
1151 \label{tab:codegen.codegen.temps-format}
1152\end{table}
1153
1154\begin{describe}{cls}{temporary-argument (temporary-name) \&key :tag}
1155\end{describe}
1156
1157\begin{describe}{cls}{temporary-function (temporary-name) \&key :tag}
1158\end{describe}
1159
1160\begin{describe}{fun}{temporary-function @> @<name>}
1161\end{describe}
1162
1163\begin{describe}{cls}
1164 {temporary-variable (temporary-name) \&key :tag :in-use-p}
1165\end{describe}
1166
1167\subsubsection{Well-known `temporary' names}
1168
1169\begin{table}
1170 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
1171 \thd{\textbf{Variable}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
1172 {}*sod-ap* & sod__ap \\
944caf84
MW
1173 {}*sod-master-ap* & sod__master_ap \\
1174 {}*null-pointer* & NULL \\ \hlx*{vh}
fcb6c0fb
MW
1175 \end{tabular}
1176 \caption{Well-known temporary names}
1177 \label{tab:codegen.codegen.well-known-temps}
1178\end{table}
1179
31d4431b 1180
fcb6c0fb
MW
1181\subsection{Instructions} \label{sec:clang.codegen.insts}
1182
1183\begin{describe}{cls}{inst () \&key}
1184\end{describe}
1185
1186\begin{describe}{gf}{inst-metric @<inst>}
1187\end{describe}
1188
1189\begin{describe}{mac}
cac85e0b
MW
1190 {definst @<code> (@<streamvar> \&key @<export>) (@<arg>^*) \\ \ind
1191 @[[ @<declaration>^* @! @<doc-string> @]] \\
1192 @<form>^* \-
1193 \nlret @<code>}
fcb6c0fb
MW
1194\end{describe}
1195
1196\begin{describe}{mac}
cac85e0b
MW
1197 {format-compound-statement
1198 (@<stream> @<child> \&optional @<morep>) \\ \ind
1199 @<declaration>^* \\
1200 @<form>^*}
fcb6c0fb
MW
1201\end{describe}
1202
7de8c666
MW
1203\begin{describe}{fun}
1204 {format-banner-comment @<stream> @<control> \&rest @<args>}
1205\end{describe}
1206
fcb6c0fb
MW
1207\begin{table}
1208 \begin{tabular}[C]{ll>{\codeface}l} \hlx*{hv}
1209 \thd{Class name} &
1210 \thd{Arguments} &
1211 \thd{Output format} \\ \hlx{vhv}
167524b5
MW
1212 @|var| & @<name> @<type> @|\&optional| @<init>
1213 & @<type> @<name> @[= @<init>@];
fcb6c0fb
MW
1214 \\ \hlx{v}
1215 @|set| & @<var> @<expr> & @<var> = @<expr>; \\ \hlx{v}
1216 @|update| & @<var> @<op> @<expr> & @<var> @<op>= @<expr>;
1217 \\ \hlx{v}
2d8d81c5
MW
1218 @|cond| & @<cond> @<conseq> @<alt> & @<cond> ? @<conseq> : @<alt>
1219 \\ \hlx{v}
fcb6c0fb
MW
1220 @|return| & @<expr> & return @[@<expr>@];
1221 \\ \hlx{v}
1222 @|break| & --- & break; \\ \hlx{v}
1223 @|continue| & --- & continue; \\ \hlx{v}
1224 @|expr| & @<expr> & @<expr>; \\ \hlx{v}
167524b5
MW
1225 @|call| & @<func> @|\&rest| @<args>
1226 & @<func>(@<arg>_1,
fcb6c0fb 1227 $\ldots$,
7de8c666
MW
1228 @<arg>_n) \\ \hlx{v}
1229 @|banner| & @<control> @|\&rest| @<args>
1230 & /* @<banner> */ \\ \hlx{vhv}
fcb6c0fb
MW
1231 @|block| & @<decls> @<body> & \{ @[@<decls>@] @<body> \}
1232 \\ \hlx{v}
167524b5
MW
1233 @|if| & @<cond> @<conseq> @|\&optional| @<alt>
1234 & if (@<cond>) @<conseq>
fcb6c0fb 1235 @[else @<alt>@] \\ \hlx{v}
2d8d81c5
MW
1236 @|for| & @<init> @<cond> @<update> @<body> &
1237 for (@<init>; @<cond>; @<update>) @<body> \\ \hlx{v}
fcb6c0fb
MW
1238 @|while| & @<cond> @<body> & while (@<cond>) @<body>
1239 \\ \hlx{v}
1240 @|do-while| & @<body> @<cond> & do @<body> while (@<cond>);
1241 \\ \hlx{v}
7de8c666
MW
1242 @|function| &
1243 \vtop{\hbox{\strut @<name> @<type> @<body>}
1244 \hbox{\strut \quad @|\&optional @<banner>|}
1245 \hbox{\strut \quad @|\&rest| @<banner-args>}} &
1246 \vtop{\hbox{\strut @[/* @<banner> */@]}
1247 \hbox{\strut @<type>_0 @<name>(@<type>_1 @<arg>_1, $\ldots$,
167524b5
MW
1248 @<type>_n @<arg>_n @[, \dots@])}
1249 \hbox{\strut \quad @<body>}} \\ \hlx*{vh}
fcb6c0fb
MW
1250 \end{tabular}
1251 \caption{Instruction classes}
1252 \label{tab:codegen.codegen.insts}
1253\end{table}
1254
31d4431b 1255
fcb6c0fb
MW
1256\subsection{Code generation} \label{sec:clang.codegen.codegen}
1257
1258\begin{describe}{gf}{codegen-functions @<codegen> @> @<list>}
1259\end{describe}
1260
1261\begin{describe}{gf}
1262 {ensure-var @<codegen> @<name> @<type> \&optional @<init>}
1263\end{describe}
1264
1265\begin{describe}{gf}{emit-inst @<codegen> @<inst>}
1266\end{describe}
1267
1268\begin{describe}{gf}{emit-insts @<codegen> @<insts>}
1269\end{describe}
1270
1271\begin{describe}{gf}{emit-decl @<codegen> @<decl>}
1272\end{describe}
1273
7c3f8ae6 1274\begin{describe}{gf}{emit-decls @<codegen> @<decls>}
fcb6c0fb
MW
1275\end{describe}
1276
7de8c666
MW
1277\begin{describe}{fun}{emit-banner @<codegen> @<control> \&rest @<args>}
1278\end{describe}
1279
fcb6c0fb
MW
1280\begin{describe}{gf}{codegen-push @<codegen>}
1281\end{describe}
1282
1283\begin{describe}{gf}{codegen-pop @<codegen> @> @<decls> @<insts>}
1284\end{describe}
1285
1286\begin{describe}{gf}{codegen-pop-block @<codegen> @> @<block-inst>}
1287\end{describe}
1288
1289\begin{describe}{gf}
1290 {codegen-pop-function @<codegen> @<name> @<type> @> @<name>}
1291\end{describe}
1292
1293\begin{describe}{gf}{codegen-add-function @<codegen> @<function>}
1294\end{describe}
1295
1296\begin{describe}{fun}
1297 {codegen-build-function @<codegen> @<name> @<type> @<vars> @<insts>
1298 @> @<name>}
1299\end{describe}
1300
1301\begin{describe}{gf}{temporary-var @<codegen> @<type> @> @<name>}
1302\end{describe}
1303
1304\begin{describe}{mac}
cac85e0b
MW
1305 {with-temporary-var (@<codegen> @<var> @<type>) \\ \ind
1306 @<declaration>^* \\
1307 @<form>^* \-
1308 \nlret @<value>^*}
fcb6c0fb
MW
1309\end{describe}
1310
1311\begin{describe}{fun}{deliver-expr @<codegen> @<target> @<expr>}
1312\end{describe}
1313
357885be
MW
1314\begin{describe}{fun}
1315 {deliver-call @<codegen> @<target> @<func> \&rest @<args>}
1316\end{describe}
1317
fcb6c0fb
MW
1318\begin{describe}{fun}{convert-stmts @<codegen> @<target> @<type> @<func>}
1319\end{describe}
1320
1321\begin{describe}{cls}{codegen () \&key :vars :insts (:temp-index 0)}
1322\end{describe}
1323
2c7465ac
MW
1324%%%--------------------------------------------------------------------------
1325\section{Literal C code fragments} \label{sec:clang.fragment}
1326
1327\begin{describe}{cls}{c-fragment () \&key :location :text}
1328\end{describe}
1329
1330\begin{describe}{gf}{c-fragment-text @<fragment> @> @<string>}
1331\end{describe}
1332
1333\begin{describe}{fun}
1334 {scan-c-fragment @<scanner> @<end-chars>
1335 @> @<result> @<success-flag> @<consumed-flag>}
1336\end{describe}
1337
1338\begin{describe}{fun}
1339 {parse-delimited-fragment @<scanner> @<begin> @<end> \&key :keep-end
1340 \nlret @<result> @<success-flag> @<consumed-flag>}
1341\end{describe}
1342
dea4d055
MW
1343%%%----- That's all, folks --------------------------------------------------
1344
1345%%% Local variables:
1346%%% mode: LaTeX
1347%%% TeX-master: "sod.tex"
1348%%% TeX-PDF-mode: t
1349%%% End: