chiark / gitweb /
src/utilities: (add partial-order-minima)
[sod] / src / utilities.lisp
CommitLineData
dea4d055
MW
1;;; -*-lisp-*-
2;;;
3;;; Various handy utilities
4;;;
5;;; (c) 2009 Straylight/Edgeware
6;;;
7
8;;;----- Licensing notice ---------------------------------------------------
9;;;
e0808c47 10;;; This file is part of the Sensible Object Design, an object system for C.
dea4d055
MW
11;;;
12;;; SOD is free software; you can redistribute it and/or modify
13;;; it under the terms of the GNU General Public License as published by
14;;; the Free Software Foundation; either version 2 of the License, or
15;;; (at your option) any later version.
16;;;
17;;; SOD is distributed in the hope that it will be useful,
18;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
19;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20;;; GNU General Public License for more details.
21;;;
22;;; You should have received a copy of the GNU General Public License
23;;; along with SOD; if not, write to the Free Software Foundation,
24;;; Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25
26(cl:defpackage #:sod-utilities
27 (:use #:common-lisp
28
29 ;; MOP from somewhere.
30 #+sbcl #:sb-mop
31 #+(or cmu clisp) #:mop
32 #+ecl #:clos))
33
34(cl:in-package #:sod-utilities)
35
36;;;--------------------------------------------------------------------------
37;;; Macro hacks.
38
39(export 'with-gensyms)
40(defmacro with-gensyms ((&rest binds) &body body)
41 "Evaluate BODY with variables bound to fresh symbols.
42
43 The BINDS are a list of entries (VAR [NAME]), and a singleton list can be
44 replaced by just a symbol; each VAR is bound to a fresh symbol generated
45 by (gensym NAME), where NAME defaults to the symbol-name of VAR."
46 `(let (,@(mapcar (lambda (bind)
47 (multiple-value-bind (var name)
48 (if (atom bind)
49 (values bind (concatenate 'string
50 (symbol-name bind) "-"))
51 (destructuring-bind
52 (var &optional
53 (name (concatenate 'string
54 (symbol-name var) "-")))
55 bind
56 (values var name)))
57 `(,var (gensym ,name))))
58 binds))
59 ,@body))
60
61(eval-when (:compile-toplevel :load-toplevel :execute)
62 (defun strip-quote (form)
63 "If FORM looks like (quote FOO) for self-evaluating FOO, return FOO.
64
65 If FORM is a symbol whose constant value is `nil' then return `nil'.
66 Otherwise return FORM unchanged. This makes it easier to inspect constant
67 things. This is a utility for `once-only'."
68
69 (cond ((and (consp form)
70 (eq (car form) 'quote)
71 (cdr form)
72 (null (cddr form)))
73 (let ((body (cadr form)))
74 (if (or (not (or (consp body) (symbolp body)))
75 (member body '(t nil))
76 (keywordp body))
77 body
78 form)))
79 ((and (symbolp form) (boundp form) (null (symbol-value form)))
80 nil)
81 (t
82 form))))
83
84(export 'once-only)
85(defmacro once-only (binds &body body)
86 "Macro helper for preventing repeated evaluation.
87
88 The syntax is actually hairier than shown:
89
90 once-only ( [[ :environment ENV ]] { VAR | (VAR [VALUE-FORM]) }* )
91 { FORM }*
92
93 So, the BINDS are a list of entries (VAR [VALUE-FORM]); a singleton list
94 can be replaced by just a symbol VAR, and the VALUE-FORM defaults to VAR.
95 But before them you can have keyword arguments. Only one is defined so
96 far. See below for the crazy things that does.
97
98 The result of evaluating a ONCE-ONLY form is a form with the structure
99
100 (let ((#:GS1 VALUE-FORM1)
101 ...
102 (#:GSn VALUE-FORMn))
103 STUFF)
104
105 where STUFF is the value of the BODY forms, as an implicit progn, in an
106 environment with the VARs bound to the corresponding gensyms.
107
108 As additional magic, if any of the VALUE-FORMs is actually constant (as
109 determined by inspection, and aided by `constantp' if an :environment is
110 supplied, then no gensym is constructed for it, and the VAR is bound
111 directly to the constant form. Moreover, if the constant form looks like
112 (quote FOO) for a self-evaluating FOO then the outer layer of quoting is
113 stripped away."
114
115 ;; We need an extra layer of gensyms in our expansion: we'll want the
116 ;; expansion to examine the various VALUE-FORMs to find out whether they're
117 ;; constant without evaluating them repeatedly. This also helps with
118 ;; another problem: we explicitly encourage the rebinding of a VAR
119 ;; (probably a macro argument) to a gensym which will be bound to the value
120 ;; of the form previously held in VAR itself -- so the gensym and value
121 ;; form must exist at the same time and we need two distinct variables.
122
123 (with-gensyms ((envvar "ENV-") lets sym (bodyfunc "BODY-"))
124 (let ((env nil))
125
126 ;; First things first: let's pick up the keywords.
127 (loop
128 (unless (and binds (keywordp (car binds)))
129 (return))
130 (ecase (pop binds)
131 (:environment (setf env (pop binds)))))
132
133 ;; Now we'll investigate the bindings. Turn each one into a list (VAR
134 ;; VALUE-FORM TEMP) where TEMP is an appropriate gensym -- see the note
135 ;; above.
136 (let ((canon (mapcar (lambda (bind)
137 (multiple-value-bind (var form)
138 (if (atom bind)
139 (values bind bind)
140 (destructuring-bind
141 (var &optional (form var)) bind
142 (values var form)))
143 (list var form
144 (gensym (format nil "T-~A-"
145 (symbol-name var))))))
146 binds)))
147
148 `(let* (,@(and env `((,envvar ,env)))
149 (,lets nil)
150 ,@(mapcar (lambda (bind)
151 (destructuring-bind (var form temp) bind
152 (declare (ignore var))
153 `(,temp ,form)))
154 canon)
155 ,@(mapcar (lambda (bind)
156 (destructuring-bind (var form temp) bind
157 (declare (ignore form))
158 `(,var
159 (cond ((constantp ,temp
160 ,@(and env `(,envvar)))
161 (strip-quote ,temp))
162 ((symbolp ,temp)
163 ,temp)
164 (t
165 (let ((,sym (gensym
166 ,(concatenate 'string
167 (symbol-name var)
168 "-"))))
169 (push (list ,sym ,temp) ,lets)
170 ,sym))))))
171 canon))
172 (flet ((,bodyfunc () ,@body))
173 (if ,lets
174 `(let (,@(nreverse ,lets)) ,(,bodyfunc))
175 (,bodyfunc))))))))
176
177(export 'parse-body)
b8c698ee 178(defun parse-body (body &key (docp t) (declp t))
dea4d055
MW
179 "Parse the BODY into a docstring, declarations and the body forms.
180
181 These are returned as three lists, so that they can be spliced into a
182 macro expansion easily. The declarations are consolidated into a single
b8c698ee
MW
183 `declare' form. If DOCP is nil then a docstring is not permitted; if
184 DECLP is nil, then declarations are not permitted."
dea4d055
MW
185 (let ((decls nil)
186 (doc nil))
187 (loop
188 (cond ((null body) (return))
b8c698ee 189 ((and declp (consp (car body)) (eq (caar body) 'declare))
dea4d055 190 (setf decls (append decls (cdr (pop body)))))
b8c698ee 191 ((and docp (stringp (car body)) (not doc) (cdr body))
dea4d055
MW
192 (setf doc (pop body)))
193 (t (return))))
194 (values (and doc (list doc))
195 (and decls (list (cons 'declare decls)))
196 body)))
197
e8abb286
MW
198;;;--------------------------------------------------------------------------
199;;; Locatives.
200
201(export '(loc locp))
202(defstruct (loc (:predicate locp) (:constructor make-loc (reader writer)))
203 "Locative data type. See `locf' and `ref'."
204 (reader nil :type function)
205 (writer nil :type function))
206
207(export 'locf)
208(defmacro locf (place &environment env)
209 "Slightly cheesy locatives.
210
211 (locf PLACE) returns an object which, using the `ref' function, can be
212 used to read or set the value of PLACE. It's cheesy because it uses
213 closures rather than actually taking the address of something. Also,
214 unlike Zetalisp, we don't overload `car' to do our dirty work."
215 (multiple-value-bind
216 (valtmps valforms newtmps setform getform)
217 (get-setf-expansion place env)
218 `(let* (,@(mapcar #'list valtmps valforms))
219 (make-loc (lambda () ,getform)
220 (lambda (,@newtmps) ,setform)))))
221
222(export 'ref)
223(declaim (inline ref (setf ref)))
224(defun ref (loc)
225 "Fetch the value referred to by a locative."
226 (funcall (loc-reader loc)))
227(defun (setf ref) (new loc)
228 "Store a new value in the place referred to by a locative."
229 (funcall (loc-writer loc) new))
230
231(export 'with-locatives)
232(defmacro with-locatives (locs &body body)
233 "Evaluate BODY with implicit locatives.
234
235 LOCS is a list of items of the form (SYM [LOC-EXPR]), where SYM is a
236 symbol and LOC-EXPR evaluates to a locative. If LOC-EXPR is omitted, it
237 defaults to SYM. As an abbreviation for a common case, LOCS may be a
238 symbol instead of a list.
239
240 The BODY is evaluated in an environment where each SYM is a symbol macro
241 which expands to (ref LOC-EXPR) -- or, in fact, something similar which
242 doesn't break if LOC-EXPR has side-effects. Thus, references, including
243 `setf' forms, fetch or modify the thing referred to by the LOC-EXPR.
244 Useful for covering over where something uses a locative."
245 (setf locs (mapcar (lambda (item)
246 (cond ((atom item) (list item item))
247 ((null (cdr item)) (list (car item) (car item)))
248 (t item)))
249 (if (listp locs) locs (list locs))))
250 (let ((tt (mapcar (lambda (l) (declare (ignore l)) (gensym)) locs))
251 (ll (mapcar #'cadr locs))
252 (ss (mapcar #'car locs)))
253 `(let (,@(mapcar (lambda (tmp loc) `(,tmp ,loc)) tt ll))
254 (symbol-macrolet (,@(mapcar (lambda (sym tmp)
255 `(,sym (ref ,tmp))) ss tt))
256 ,@body))))
257
dea4d055
MW
258;;;--------------------------------------------------------------------------
259;;; Anaphorics.
260
261(export 'it)
262
263(export 'aif)
264(defmacro aif (cond cons &optional (alt nil altp))
265 "If COND is not nil, evaluate CONS with `it' bound to the value of COND.
266
267 Otherwise, if given, evaluate ALT; `it' isn't bound in ALT."
268 (once-only (cond)
269 `(if ,cond (let ((it ,cond)) ,cons) ,@(and altp `(,alt)))))
270
271(export 'awhen)
272(defmacro awhen (cond &body body)
273 "If COND, evaluate BODY as a progn with `it' bound to the value of COND."
274 `(let ((it ,cond)) (when it ,@body)))
275
3e166443
MW
276(export 'aand)
277(defmacro aand (&rest forms)
278 "Like `and', but anaphoric.
279
280 Each FORM except the first is evaluated with `it' bound to the value of
281 the previous one. If there are no forms, then the result it `t'; if there
282 is exactly one, then wrapping it in `aand' is pointless."
283 (labels ((doit (first rest)
284 (if (null rest)
285 first
286 `(let ((it ,first))
287 (if it ,(doit (car rest) (cdr rest)) nil)))))
288 (if (null forms)
289 't
290 (doit (car forms) (cdr forms)))))
291
dea4d055 292(export 'acond)
bf090e02 293(defmacro acond (&body clauses &environment env)
dea4d055
MW
294 "Like COND, but with `it' bound to the value of the condition.
295
296 Each of the CLAUSES has the form (CONDITION FORM*); if a CONDITION is
297 non-nil then evaluate the FORMs with `it' bound to the non-nil value, and
298 return the value of the last FORM; if there are no FORMs, then return `it'
299 itself. If the CONDITION is nil then continue with the next clause; if
300 all clauses evaluate to nil then the result is nil."
301 (labels ((walk (clauses)
302 (if (null clauses)
303 `nil
304 (once-only (:environment env (cond (caar clauses)))
305 (if (and (constantp cond)
306 (if (and (consp cond) (eq (car cond) 'quote))
307 (cadr cond) cond))
308 (if (cdar clauses)
309 `(let ((it ,cond))
310 (declare (ignorable it))
311 ,@(cdar clauses))
312 cond)
313 `(if ,cond
314 ,(if (cdar clauses)
315 `(let ((it ,cond))
316 (declare (ignorable it))
317 ,@(cdar clauses))
318 cond)
319 ,(walk (cdr clauses))))))))
320 (walk clauses)))
321
322(export '(acase aecase atypecase aetypecase))
323(defmacro acase (value &body clauses)
324 `(let ((it ,value)) (case it ,@clauses)))
325(defmacro aecase (value &body clauses)
326 `(let ((it ,value)) (ecase it ,@clauses)))
327(defmacro atypecase (value &body clauses)
328 `(let ((it ,value)) (typecase it ,@clauses)))
329(defmacro aetypecase (value &body clauses)
330 `(let ((it ,value)) (etypecase it ,@clauses)))
331
332(export 'asetf)
333(defmacro asetf (&rest places-and-values &environment env)
334 "Anaphoric update of places.
335
336 The PLACES-AND-VALUES are alternating PLACEs and VALUEs. Each VALUE is
337 evaluated with IT bound to the current value stored in the corresponding
338 PLACE."
339 `(progn ,@(loop for (place value) on places-and-values by #'cddr
340 collect (multiple-value-bind
341 (temps inits newtemps setform getform)
342 (get-setf-expansion place env)
343 `(let* (,@(mapcar #'list temps inits)
344 (it ,getform))
345 (multiple-value-bind ,newtemps ,value
346 ,setform))))))
347
348;;;--------------------------------------------------------------------------
349;;; MOP hacks (not terribly demanding).
350
bf090e02
MW
351(export 'instance-initargs)
352(defgeneric instance-initargs (instance)
353 (:documentation
354 "Return a plausble list of initargs for INSTANCE.
355
356 The idea is that you can make a copy of INSTANCE by invoking
357
358 (apply #'make-instance (class-of INSTANCE)
359 (instance-initargs INSTANCE))
360
361 The default implementation works by inspecting the slot definitions and
362 extracting suitable initargs, so this will only succeed if enough slots
363 actually have initargs specified that `initialize-instance' can fill in
364 the rest correctly.
365
366 The list returned is freshly consed, and you can destroy it if you like.")
367 (:method ((instance standard-object))
368 (mapcan (lambda (slot)
369 (aif (slot-definition-initargs slot)
370 (list (car it)
371 (slot-value instance (slot-definition-name slot)))
372 nil))
373 (class-slots (class-of instance)))))
374
dea4d055
MW
375(export '(copy-instance copy-instance-using-class))
376(defgeneric copy-instance-using-class (class instance &rest initargs)
377 (:documentation
378 "Metaobject protocol hook for `copy-instance'.")
379 (:method ((class standard-class) instance &rest initargs)
380 (let ((copy (allocate-instance class)))
381 (dolist (slot (class-slots class))
382 (let ((name (slot-definition-name slot)))
383 (when (slot-boundp instance name)
384 (setf (slot-value copy name) (slot-value instance name)))))
385 (apply #'shared-initialize copy nil initargs))))
386(defun copy-instance (object &rest initargs)
387 "Construct and return a copy of OBJECT.
388
389 The new object has the same class as OBJECT, and the same slot values
390 except where overridden by INITARGS."
391 (apply #'copy-instance-using-class (class-of object) object initargs))
392
9ec578d9
MW
393(export '(generic-function-methods method-specializers
394 eql-specializer eql-specializer-object))
395
dea4d055
MW
396;;;--------------------------------------------------------------------------
397;;; List utilities.
398
399(export 'make-list-builder)
400(defun make-list-builder (&optional initial)
401 "Return a simple list builder."
402
403 ;; The `builder' is just a cons cell whose cdr will be the list that's
404 ;; wanted. Effectively, then, we have a list that's one item longer than
405 ;; we actually want. The car of this extra initial cons cell is always the
406 ;; last cons in the list -- which is now well defined because there's
407 ;; always at least one.
408
409 (let ((builder (cons nil initial)))
410 (setf (car builder) (last builder))
411 builder))
412
413(export 'lbuild-add)
414(defun lbuild-add (builder item)
415 "Add an ITEM to the end of a list BUILDER."
416 (let ((new (cons item nil)))
417 (setf (cdar builder) new
418 (car builder) new))
419 builder)
420
421(export 'lbuild-add-list)
422(defun lbuild-add-list (builder list)
423 "Add a LIST to the end of a list BUILDER. The LIST will be clobbered."
424 (when list
425 (setf (cdar builder) list
426 (car builder) (last list)))
427 builder)
428
429(export 'lbuild-list)
430(defun lbuild-list (builder)
431 "Return the constructed list."
432 (cdr builder))
433
434(export 'mappend)
435(defun mappend (function list &rest more-lists)
69dda0c9 436 "Like a nondestructive `mapcan'.
dea4d055
MW
437
438 Map FUNCTION over the the corresponding elements of LIST and MORE-LISTS,
439 and return the result of appending all of the resulting lists."
440 (reduce #'append (apply #'mapcar function list more-lists) :from-end t))
441
442(export '(inconsistent-merge-error merge-error-candidates))
443(define-condition inconsistent-merge-error (error)
444 ((candidates :initarg :candidates
445 :reader merge-error-candidates))
446 (:documentation
9fb4a980 447 "Reports an inconsistency in the arguments passed to `merge-lists'.")
dea4d055 448 (:report (lambda (condition stream)
e2838dc5
MW
449 (format stream "Merge inconsistency: failed to decide between ~
450 ~{~#[~;~A~;~A and ~A~:;~
451 ~@{~A, ~#[~;and ~A~]~}~]~}"
dea4d055
MW
452 (merge-error-candidates condition)))))
453
454(export 'merge-lists)
e2838dc5 455(defun merge-lists (lists &key pick (test #'eql) (present #'identity))
dea4d055
MW
456 "Return a merge of the given LISTS.
457
e8c5a09e 458 The resulting list contains the items of the given LISTS, with duplicates
dea4d055
MW
459 removed. The order of the resulting list is consistent with the orders of
460 the input LISTS in the sense that if A precedes B in some input list then
461 A will also precede B in the output list. If the lists aren't consistent
462 (e.g., some list contains A followed by B, and another contains B followed
e2838dc5
MW
463 by A) then an error of type `inconsistent-merge-error' is signalled. The
464 offending items are filtered for presentation through the PRESENT function
465 before being attached to the condition, so as to produce a more useful
466 diagnostic message.
dea4d055
MW
467
468 Item equality is determined by TEST.
469
470 If there is an ambiguity at any point -- i.e., a choice between two or
471 more possible next items to emit -- then PICK is called to arbitrate.
472 PICK is called with two arguments: the list of candidate next items, and
e8c5a09e
MW
473 the current output list. It should return one of the candidate items.
474 The order of the candidates in the list given to the PICK function
475 reflects their order in the input LISTS: item A will precede item B in the
476 candidates list if and only if an occurrence of A appears in an earlier
477 input list than any occurrence of item B. (This completely determines the
478 order of the candidates: it is not possible that two candidates appear in
479 the same input list would resolve the ambiguity between them.) If PICK is
480 omitted then the item chosen is the one appearing in the earliest of the
481 input lists: i.e., effectively, the default PICK function is
482
483 (lambda (candidates output-so-far)
484 (declare (ignore output-so-far))
485 (car candidates))
dea4d055
MW
486
487 The primary use of this function is in computing class precedence lists.
488 By building the input lists and selecting the PICK function appropriately,
489 a variety of different CPL algorithms can be implemented."
490
022a3499
MW
491 (do ((lb (make-list-builder)))
492 ((null lists) (lbuild-list lb))
dea4d055
MW
493
494 ;; The candidate items are the ones at the front of the input lists.
495 ;; Gather them up, removing duplicates. If a candidate is somewhere in
496 ;; one of the other lists other than at the front then we reject it. If
497 ;; we've just rejected everything, then we can make no more progress and
498 ;; the input lists were inconsistent.
e8c5a09e
MW
499 (let* ((candidates (delete-duplicates (mapcar #'car lists)
500 :test test :from-end t))
dea4d055
MW
501 (leasts (remove-if (lambda (item)
502 (some (lambda (list)
503 (member item (cdr list) :test test))
504 lists))
505 candidates))
506 (winner (cond ((null leasts)
507 (error 'inconsistent-merge-error
e2838dc5 508 :candidates (mapcar present candidates)))
dea4d055
MW
509 ((null (cdr leasts))
510 (car leasts))
511 (pick
512 (funcall pick leasts (lbuild-list lb)))
513 (t (car leasts)))))
514
515 ;; Check that the PICK function isn't conning us.
516 (assert (member winner leasts :test test))
517
518 ;; Update the output list and remove the winning item from the input
519 ;; lists. We know that it must be at the front of each input list
520 ;; containing it. At this point, we discard input lists entirely when
521 ;; they run out of entries. The loop ends when there are no more input
522 ;; lists left, i.e., when we've munched all of the input items.
523 (lbuild-add lb winner)
524 (setf lists (delete nil (mapcar (lambda (list)
525 (if (funcall test winner (car list))
526 (cdr list)
527 list))
528 lists))))))
529
530(export 'categorize)
531(defmacro categorize ((itemvar items &key bind) categories &body body)
532 "Categorize ITEMS into lists and invoke BODY.
533
534 The ITEMVAR is a symbol; as the macro iterates over the ITEMS, ITEMVAR
535 will contain the current item. The BIND argument is a list of LET*-like
536 clauses. The CATEGORIES are a list of clauses of the form (SYMBOL
537 PREDICATE).
538
539 The behaviour of the macro is as follows. ITEMVAR is assigned (not
540 bound), in turn, each item in the list ITEMS. The PREDICATEs in the
541 CATEGORIES list are evaluated in turn, in an environment containing
542 ITEMVAR and the BINDings, until one of them evaluates to a non-nil value.
543 At this point, the item is assigned to the category named by the
544 corresponding SYMBOL. If none of the PREDICATEs returns non-nil then an
545 error is signalled; a PREDICATE consisting only of T will (of course)
546 match anything; it is detected specially so as to avoid compiler warnings.
547
548 Once all of the ITEMS have been categorized in this fashion, the BODY is
549 evaluated as an implicit PROGN. For each SYMBOL naming a category, a
550 variable named after that symbol will be bound in the BODY's environment
551 to a list of the items in that category, in the same order in which they
552 were found in the list ITEMS. The final values of the macro are the final
553 values of the BODY."
554
555 (let* ((cat-names (mapcar #'car categories))
556 (cat-match-forms (mapcar #'cadr categories))
557 (cat-vars (mapcar (lambda (name) (gensym (concatenate 'string
558 (symbol-name name) "-")))
559 cat-names))
560 (items-var (gensym "ITEMS-")))
561 `(let ((,items-var ,items)
562 ,@(mapcar (lambda (cat-var) (list cat-var nil)) cat-vars))
563 (dolist (,itemvar ,items-var)
564 (let* ,bind
565 (cond ,@(mapcar (lambda (cat-match-form cat-var)
566 `(,cat-match-form
567 (push ,itemvar ,cat-var)))
568 cat-match-forms cat-vars)
569 ,@(and (not (member t cat-match-forms))
570 `((t (error "Failed to categorize ~A" ,itemvar)))))))
571 (let ,(mapcar (lambda (name var)
572 `(,name (nreverse ,var)))
573 cat-names cat-vars)
574 ,@body))))
575
42291726
MW
576(export 'partial-order-minima)
577(defun partial-order-minima (items order)
578 "Return a list of minimal items according to the non-strict partial ORDER.
579
580 The ORDER function describes the partial order: (funcall ORDER X Y) should
581 return true if X precedes or is equal to Y in the order."
582 (reduce (lambda (tops this)
583 (let ((new nil) (keep t))
584 (dolist (top tops)
585 (cond ((funcall order top this)
586 (setf keep nil)
587 (push top new))
588 ((not (funcall order this top))
589 (push top new))))
590 (nreverse (if keep (cons this new) new))))
591 items
592 :initial-value nil))
593
dea4d055
MW
594;;;--------------------------------------------------------------------------
595;;; Strings and characters.
596
597(export 'frob-identifier)
598(defun frob-identifier (string &key (swap-case t) (swap-hyphen t))
599 "Twiddles the case of STRING.
600
601 If all the letters in STRING are uppercase, and SWAP-CASE is true, then
602 switch them to lowercase; if they're all lowercase then switch them to
603 uppercase. If there's a mix then leave them all alone. At the same time,
604 if there are underscores but no hyphens, and SWAP-HYPHEN is true, then
605 switch them to hyphens, if there are hyphens and no underscores, switch
606 them underscores, and if there are both then leave them alone.
607
608 This is an invertible transformation, which turns vaguely plausible Lisp
609 names into vaguely plausible C names and vice versa. Lisp names with
610 `funny characters' like stars and percent signs won't be any use, of
611 course."
612
613 ;; Work out what kind of a job we've got to do. Gather flags: bit 0 means
614 ;; there are upper-case letters; bit 1 means there are lower-case letters;
615 ;; bit 2 means there are hyphens; bit 3 means there are underscores.
616 ;;
617 ;; Consequently, (logxor flags (ash flags 1)) is interesting: bit 1 is set
618 ;; if we have to frob case; bit 3 is set if we have to swap hyphens and
619 ;; underscores. So use this to select functions which do bits of the
620 ;; mapping, and then compose them together.
621 (let* ((flags (reduce (lambda (state ch)
622 (logior state
623 (cond ((upper-case-p ch) 1)
624 ((lower-case-p ch) 2)
625 ((char= ch #\-) 4)
626 ((char= ch #\_) 8)
627 (t 0))))
628 string
629 :initial-value 0))
630 (mask (logxor flags (ash flags 1)))
631 (letter (cond ((or (not swap-case) (not (logbitp 1 mask)))
632 (constantly nil))
633 ((logbitp 0 flags)
634 (lambda (ch)
635 (and (alpha-char-p ch) (char-downcase ch))))
636 (t
637 (lambda (ch)
638 (and (alpha-char-p ch) (char-upcase ch))))))
639 (uscore-hyphen (cond ((or (not (logbitp 3 mask)) (not swap-hyphen))
640 (constantly nil))
641 ((logbitp 2 flags)
642 (lambda (ch) (and (char= ch #\-) #\_)))
643 (t
644 (lambda (ch) (and (char= ch #\_) #\-))))))
645
646 (if (logbitp 3 (logior mask (ash mask 2)))
647 (map 'string (lambda (ch)
648 (or (funcall letter ch)
649 (funcall uscore-hyphen ch)
650 ch))
651 string)
652 string)))
653
654(export 'whitespace-char-p)
655(declaim (inline whitespace-char-p))
656(defun whitespace-char-p (char)
657 "Returns whether CHAR is a whitespace character.
658
659 Whitespaceness is determined relative to the compile-time readtable, which
660 is probably good enough for most purposes."
661 (case char
662 (#.(loop for i below char-code-limit
663 for ch = (code-char i)
664 unless (with-input-from-string (in (string ch))
665 (peek-char t in nil))
666 collect ch) t)
667 (t nil)))
668
669(export 'update-position)
670(declaim (inline update-position))
671(defun update-position (char line column)
672 "Updates LINE and COLUMN appropriately for having read the character CHAR.
673
674 Returns the new LINE and COLUMN numbers."
675 (case char
676 ((#\newline #\vt #\page)
677 (values (1+ line) 0))
678 ((#\tab)
679 (values line (logandc2 (+ column 8) 7)))
680 (t
681 (values line (1+ column)))))
682
683(export 'backtrack-position)
684(declaim (inline backtrack-position))
685(defun backtrack-position (char line column)
686 "Updates LINE and COLUMN appropriately for having unread CHAR.
687
688 Well, actually an approximation for it; it will likely be wrong if the
689 last character was a tab. But when the character is read again, it will
690 be correct."
691
692 ;; This isn't perfect: if the character doesn't actually match what was
693 ;; really read then it might not actually be possible: for example, if we
694 ;; push back a newline while in the middle of a line, or a tab while not at
695 ;; a tab stop. In that case, we'll just lose, but hopefully not too badly.
696 (case char
697
698 ;; In the absence of better ideas, I'll set the column number to zero.
699 ;; This is almost certainly wrong, but with a little luck nobody will ask
700 ;; and it'll be all right soon.
701 ((#\newline #\vt #\page) (values (1- line) 0))
702
703 ;; Winding back a single space is sufficient. If the position is
704 ;; currently on a tab stop then it'll advance back here next time. If
705 ;; not, we're going to lose anyway because the previous character
706 ;; certainly couldn't have been a tab.
707 (#\tab (values line (1- column)))
708
709 ;; Anything else: just decrement the column and cross fingers.
710 (t (values line (1- column)))))
711
712;;;--------------------------------------------------------------------------
713;;; Functions.
714
715(export 'compose)
716(defun compose (function &rest more-functions)
717 "Composition of functions. Functions are applied left-to-right.
718
719 This is the reverse order of the usual mathematical notation, but I find
bf090e02
MW
720 it easier to read. It's also slightly easier to work with in programs.
721 That is, (compose F1 F2 ... Fn) is what a category theorist might write as
722 F1 ; F2 ; ... ; Fn, rather than F1 o F2 o ... o Fn."
723
dea4d055
MW
724 (labels ((compose1 (func-a func-b)
725 (lambda (&rest args)
726 (multiple-value-call func-b (apply func-a args)))))
727 (reduce #'compose1 more-functions :initial-value function)))
728
c34b237d
MW
729;;;--------------------------------------------------------------------------
730;;; Variables.
731
732(export 'defvar-unbound)
733(defmacro defvar-unbound (var doc)
734 "Make VAR a special variable with documentation DOC, but leave it unbound."
735 `(eval-when (:compile-toplevel :load-toplevel :execute)
736 (defvar ,var)
737 (setf (documentation ',var 'variable) ',doc)
738 ',var))
739
dea4d055
MW
740;;;--------------------------------------------------------------------------
741;;; Symbols.
742
743(export 'symbolicate)
744(defun symbolicate (&rest symbols)
745 "Return a symbol named after the concatenation of the names of the SYMBOLS.
746
3109662a 747 The symbol is interned in the current `*package*'. Trad."
dea4d055
MW
748 (intern (apply #'concatenate 'string (mapcar #'symbol-name symbols))))
749
750;;;--------------------------------------------------------------------------
751;;; Object printing.
752
753(export 'maybe-print-unreadable-object)
754(defmacro maybe-print-unreadable-object
755 ((object stream &rest args) &body body)
756 "Print helper for usually-unreadable objects.
757
3109662a 758 If `*print-escape*' is set then print OBJECT unreadably using BODY.
dea4d055
MW
759 Otherwise just print using BODY."
760 (with-gensyms (print)
761 `(flet ((,print () ,@body))
762 (if *print-escape*
763 (print-unreadable-object (,object ,stream ,@args)
764 (,print))
765 (,print)))))
766
08b6e064
MW
767(export 'print-ugly-stuff)
768(defun print-ugly-stuff (stream func)
769 "Print not-pretty things to the stream underlying STREAM.
770
771 The Lisp pretty-printing machinery, notably `pprint-logical-block', may
772 interpose additional streams between its body and the original target
773 stream. This makes it difficult to make use of the underlying stream's
774 special features, whatever they might be."
775
776 ;; This is unpleasant. Hacky hacky.
777 #.(or #+sbcl '(if (typep stream 'sb-pretty:pretty-stream)
778 (let ((target (sb-pretty::pretty-stream-target stream)))
779 (pprint-newline :mandatory stream)
780 (funcall func target))
781 (funcall func stream))
782 #+cmu '(if (typep stream 'pp:pretty-stream)
783 (let ((target (pp::pretty-stream-target stream)))
784 (pprint-newline :mandatory stream)
785 (funcall func target))
786 (funcall func stream))
787 '(funcall func stream)))
788
dea4d055
MW
789;;;--------------------------------------------------------------------------
790;;; Iteration macros.
791
792(export 'dosequence)
793(defmacro dosequence ((var seq &key (start 0) (end nil) indexvar)
794 &body body
795 &environment env)
796 "Macro for iterating over general sequences.
797
798 Iterates over a (sub)sequence SEQ, delimited by START and END (which are
799 evaluated). For each item of SEQ, BODY is invoked with VAR bound to the
800 item, and INDEXVAR (if requested) bound to the item's index. (Note that
801 this is different from most iteration constructs in Common Lisp, which
802 work by mutating the variable.)
803
804 The loop is surrounded by an anonymous BLOCK and the loop body forms an
805 implicit TAGBODY, as is usual. There is no result-form, however."
806
807 (once-only (:environment env seq start end)
808 (with-gensyms ((ivar "INDEX-") (endvar "END-") (bodyfunc "BODY-"))
b8c698ee
MW
809 (multiple-value-bind (docs decls body) (parse-body body :docp nil)
810 (declare (ignore docs))
811
812 (flet ((loopguts (indexp listp endvar)
813 ;; Build a DO-loop to do what we want.
814 (let* ((do-vars nil)
815 (end-condition (if endvar
816 `(>= ,ivar ,endvar)
817 `(endp ,seq)))
818 (item (if listp
819 `(car ,seq)
820 `(aref ,seq ,ivar)))
821 (body-call `(,bodyfunc ,item)))
822 (when listp
823 (push `(,seq (nthcdr ,start ,seq) (cdr ,seq))
824 do-vars))
825 (when indexp
826 (push `(,ivar ,start (1+ ,ivar)) do-vars))
827 (when indexvar
828 (setf body-call (append body-call (list ivar))))
829 `(do ,do-vars (,end-condition) ,body-call))))
830
831 `(block nil
832 (flet ((,bodyfunc (,var ,@(and indexvar `(,indexvar)))
833 ,@decls
834 (tagbody ,@body)))
dea4d055
MW
835 (etypecase ,seq
836 (vector
837 (let ((,endvar (or ,end (length ,seq))))
838 ,(loopguts t nil endvar)))
839 (list
840 (if ,end
841 ,(loopguts t t end)
b8c698ee 842 ,(loopguts indexvar t nil)))))))))))
dea4d055 843
4b8e5c03
MW
844;;;--------------------------------------------------------------------------
845;;; Structure accessor hacks.
846
847(export 'define-access-wrapper)
848(defmacro define-access-wrapper (from to &key read-only)
849 "Make (FROM THING) work like (TO THING).
850
851 If not READ-ONLY, then also make (setf (FROM THING) VALUE) work like
852 (setf (TO THING) VALUE).
853
854 This is mostly useful for structure slot accessors where the slot has to
855 be given an unpleasant name to avoid it being an external symbol."
856 `(progn
857 (declaim (inline ,from ,@(and (not read-only) `((setf ,from)))))
858 (defun ,from (object)
859 (,to object))
860 ,@(and (not read-only)
861 `((defun (setf ,from) (value object)
862 (setf (,to object) value))))))
863
db6c3279
MW
864;;;--------------------------------------------------------------------------
865;;; Condition and error utilities.
866
867(export 'designated-condition)
868(defun designated-condition (default-type datum arguments
869 &key allow-pointless-arguments)
870 "Return the condition designated by DATUM and ARGUMENTS.
871
872 DATUM and ARGUMENTS together are a `condition designator' of (some
873 supertype of) DEFAULT-TYPE; return the condition so designated."
874 (typecase datum
875 (condition
876 (unless (or allow-pointless-arguments (null arguments))
877 (error "Argument list provided with specific condition"))
878 datum)
879 (symbol
880 (apply #'make-condition datum arguments))
881 ((or string function)
882 (make-condition default-type
883 :format-control datum
884 :format-arguments arguments))
885 (t
886 (error "Unexpected condition designator datum ~S" datum))))
887
dea4d055
MW
888;;;--------------------------------------------------------------------------
889;;; CLOS hacking.
890
891(export 'default-slot)
892(defmacro default-slot ((instance slot &optional (slot-names t))
893 &body value
894 &environment env)
895 "If INSTANCE's slot named SLOT is unbound, set it to VALUE.
896
897 Only set SLOT if it's listed in SLOT-NAMES, or SLOT-NAMES is `t' (i.e., we
898 obey the `shared-initialize' protocol). SLOT-NAMES defaults to `t', so
899 you can use it in `initialize-instance' or similar without ill effects.
900 Both INSTANCE and SLOT are evaluated; VALUE is an implicit progn and only
901 evaluated if it's needed."
902
903 (once-only (:environment env instance slot slot-names)
904 `(when ,(if (eq slot-names t)
905 `(not (slot-boundp ,instance ,slot))
906 `(and (not (slot-boundp ,instance ,slot))
907 (or (eq ,slot-names t)
908 (member ,slot ,slot-names))))
909 (setf (slot-value ,instance ,slot)
910 (progn ,@value)))))
911
141283ff
MW
912(export 'define-on-demand-slot)
913(defmacro define-on-demand-slot (class slot (instance) &body body)
914 "Defines a slot which computes its initial value on demand.
915
916 Sets up the named SLOT of CLASS to establish its value as the implicit
917 progn BODY, by defining an appropriate method on `slot-unbound'."
b8c698ee
MW
918 (multiple-value-bind (docs decls body) (parse-body body)
919 (with-gensyms (classvar slotvar)
920 `(defmethod slot-unbound
921 (,classvar (,instance ,class) (,slotvar (eql ',slot)))
922 ,@docs ,@decls
923 (declare (ignore ,classvar))
fc09e191 924 (setf (slot-value ,instance ',slot) (block ,slot ,@body))))))
141283ff 925
dea4d055 926;;;----- That's all, folks --------------------------------------------------