chiark / gitweb /
doc/syntax.tex: Refactor the <class-definition> syntax.
[sod] / doc / clang.tex
CommitLineData
dea4d055
MW
1%%% -*-latex-*-
2%%%
1f7d590d 3%%% C language utilities
dea4d055 4%%%
1f7d590d 5%%% (c) 2015 Straylight/Edgeware
dea4d055
MW
6%%%
7
8%%%----- Licensing notice ---------------------------------------------------
9%%%
e0808c47 10%%% This file is part of the Sensible Object Design, an object system for C.
dea4d055
MW
11%%%
12%%% SOD is free software; you can redistribute it and/or modify
13%%% it under the terms of the GNU General Public License as published by
14%%% the Free Software Foundation; either version 2 of the License, or
15%%% (at your option) any later version.
16%%%
17%%% SOD is distributed in the hope that it will be useful,
18%%% but WITHOUT ANY WARRANTY; without even the implied warranty of
19%%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20%%% GNU General Public License for more details.
21%%%
22%%% You should have received a copy of the GNU General Public License
23%%% along with SOD; if not, write to the Free Software Foundation,
24%%% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25
1f7d590d 26\chapter{C language utilities} \label{ch:clang}
dea4d055
MW
27
28%%%--------------------------------------------------------------------------
1f7d590d 29\section{C type representation} \label{sec:clang.c-types}
dea4d055 30
1f7d590d 31\subsection{Overview} \label{sec:clang.c-types.over}
dea4d055
MW
32
33The Sod translator represents C types in a fairly simple and direct way.
34However, because it spends a fair amount of its time dealing with C types, it
35provides a number of useful operations and macros.
36
64d1ecf7 37The class hierarchy is shown in~\xref{fig:codegen.c-types.classes}.
dea4d055
MW
38
39\begin{figure} \centering
40 \parbox{10pt}{\begin{tabbing}
1f7d590d
MW
41 @|c-type| \\ \ind
42 @|qualifiable-c-type| \\ \ind
43 @|simple-c-type| \\ \ind
dea4d055 44 @|c-class-type| \- \\
1f7d590d 45 @|tagged-c-type| \\ \ind
dea4d055
MW
46 @|c-struct-type| \\
47 @|c-union-type| \\
48 @|c-enum-type| \- \\
49 @|c-pointer-type| \- \\
50 @|c-array-type| \\
51 @|c-function-type|
52 \end{tabbing}}
53 \caption{Classes representing C types}
64d1ecf7 54\label{fig:codegen.c-types.classes}
dea4d055
MW
55\end{figure}
56
57C type objects are immutable unless otherwise specified.
58
59\subsubsection{Constructing C type objects}
60There is a constructor function for each non-abstract class of C type object.
61Note, however, that constructor functions need not generate a fresh type
62object if a previously existing type object is suitable. In this case, we
63say that the objects are \emph{interned}. Some constructor functions are
64specified to return interned objects: programs may rely on receiving the same
65(@|eq|) type object for similar (possibly merely @|equal|) arguments. Where
66not specified, clients may still not rely on receiving fresh objects.
67
68A convenient S-expression notation is provided by the @|c-type| macro. Use
69of this macro is merely an abbreviation for corresponding use of the various
70constructor functions, and therefore interns type objects in the same manner.
71The syntax accepted by the macro can be extended in order to support new
72classes: see @|defctype|, @|c-type-alias| and @|define-c-type-syntax|.
73
74The descriptions of each of the various classes include descriptions of the
75initargs which may be passed to @|make-instance| when constructing a new
76instance of the class. However, the constructor functions and S-expression
77syntax are strongly recommended over direct use of @|make-instance|.
78
79\subsubsection{Printing}
80There are two protocols for printing C types. Unfortunately they have
81similar names.
82\begin{itemize}
83\item The @|print-c-type| function prints a C type value using the
84 S-expression notation. It is mainly useful for diagnostic purposes.
85\item The @|pprint-c-type| function prints a C type as a C-syntax
86 declaration.
87\end{itemize}
88Neither generic function defines a default primary method; subclasses of
89@|c-type| must define their own methods in order to print correctly.
90
1f7d590d 91\subsection{The C type root class} \label{sec:clang.c-types.root}
dea4d055
MW
92
93\begin{describe}{cls}{c-type ()}
94 The class @|c-type| marks the root of the built-in C type hierarchy.
95
96 Users may define subclasses of @|c-type|. All non-abstract subclasses must
97 have a primary method defined on @|pprint-c-type|; unless instances of the
98 subclass are interned, a method on @|c-type-equal-p| is also required.
99
100 The class @|c-type| is abstract.
101\end{describe}
102
1f7d590d 103\subsection{C type S-expression notation} \label{sec:clang.c-types.sexp}
dea4d055
MW
104
105The S-expression representation of a type is described syntactically as a
106type specifier. Type specifiers fit into two syntactic categories.
107\begin{itemize}
108\item A \emph{symbolic type specifier} consists of a symbol. It has a
109 single, fixed meaning: if @<name> is a symbolic type specifier, then each
110 use of @<name> in a type specifier evaluates to the same (@|eq|) type
111 object, until the @<name> is redefined.
112\item A \emph{type operator} is a symbol; the corresponding specifier is a
113 list whose @|car| is the operator. The remaining items in the list are
114 arguments to the type operator.
115\end{itemize}
116
1f7d590d 117\begin{describe}{mac}{c-type @<type-spec> @> @<c-type>}
dea4d055
MW
118 Evaluates to a C type object, as described by the type specifier
119 @<type-spec>.
120\end{describe}
121
1f7d590d
MW
122\begin{describe}{mac}
123 {defctype @{ @<name> @! (@<name> @<nickname>^*) @} @<type-spec>
124 @> @<names>}
dea4d055
MW
125 Defines a new symbolic type specifier @<name>; if a list of @<name>s is
126 given, then all are defined in the same way. The type constructed by using
127 any of the @<name>s is as described by the type specifier @<type-spec>.
128
129 The resulting type object is constructed once, at the time that the macro
130 expansion is evaluated; the same (@|eq|) value is used each time any
131 @<name> is used in a type specifier.
132\end{describe}
133
1f7d590d 134\begin{describe}{mac}{c-type-alias @<original> @<alias>^* @> @<aliases>}
dea4d055
MW
135 Defines each @<alias> as being a type operator identical in behaviour to
136 @<original>. If @<original> is later redefined then the behaviour of the
137 @<alias>es changes too.
138\end{describe}
139
1f7d590d 140\begin{describe}{mac}
cac85e0b
MW
141 {define-c-type-syntax @<name> @<lambda-list> \\ \ind
142 @[[ @<declaration>^* @! @<doc-string> @]] \\
143 @<form>^* \-
144 \nlret @<name>}
dea4d055
MW
145 Defines the symbol @<name> as a new type operator. When a list of the form
146 @|(@<name> @<argument>^*)| is used as a type specifier, the @<argument>s
147 are bound to fresh variables according to @<lambda-list> (a destructuring
148 lambda-list) and the @<form>s evaluated in order in the resulting lexical
149 environment as an implicit @|progn|. The value should be a Lisp form which
150 will evaluate to the type specified by the arguments.
151
152 The @<form>s may call @|expand-c-type-spec| in order to recursively expand
153 type specifiers among its arguments.
154\end{describe}
155
1f7d590d 156\begin{describe}{fun}{expand-c-type-spec @<type-spec> @> @<form>}
dea4d055
MW
157 Returns the Lisp form that @|(c-type @<type-spec>)| would expand into.
158\end{describe}
159
1f7d590d
MW
160\begin{describe}{gf}
161 {print-c-type @<stream> @<type> \&optional @<colon> @<atsign>}
dea4d055
MW
162 Print the C type object @<type> to @<stream> in S-expression form. The
163 @<colon> and @<atsign> arguments may be interpreted in any way which seems
164 appropriate: they are provided so that @|print-c-type| may be called via
165 @|format|'s @|\char`\~/\dots/| command; they are not set when
166 @|print-c-type| is called by Sod functions.
167
168 There should be a method defined for every C type class; there is no
169 default method.
170\end{describe}
171
1f7d590d 172\subsection{Comparing C types} \label{sec:clang.c-types.cmp}
dea4d055
MW
173
174It is necessary to compare C types for equality, for example when checking
175argument lists for methods. This is done by @|c-type-equal-p|.
176
1f7d590d
MW
177\begin{describe}{gf}
178 {c-type-equal-p @<c-type>_1 @<c-type>_2 @> @<generalized-boolean>}
179 The generic function @|c-type-equal-p| compares two C types @<c-type>_1 and
180 @<c-type>_2 for equality; it returns true if the two types are equal and
dea4d055
MW
181 false if they are not.
182
183 Two types are equal if they are structurally similar, where this property
184 is defined by methods for each individual class; see the descriptions of
185 the classes for the details.
186
187 The generic function @|c-type-equal-p| uses the @|and| method combination.
188
1f7d590d 189 \begin{describe}{meth}{c-type-equal-p @<c-type>_1 @<c-type>_2}
dea4d055
MW
190 A default primary method for @|c-type-equal-p| is defined. It simply
191 returns @|nil|. This way, methods can specialize on both arguments
192 without fear that a call will fail because no methods are applicable.
193 \end{describe}
1f7d590d 194 \begin{describe}{ar-meth}{c-type-equal-p @<c-type>_1 @<c-type>_2}
dea4d055 195 A default around-method for @|c-type-equal-p| is defined. It returns
1f7d590d
MW
196 true if @<c-type>_1 and @<c-type>_2 are @|eql|; otherwise it delegates to
197 the primary methods. Since several common kinds of C types are interned,
dea4d055
MW
198 this is a common case worth optimizing.
199 \end{describe}
200\end{describe}
201
1f7d590d 202\subsection{Outputting C types} \label{sec:clang.c-types.output}
dea4d055 203
1f7d590d 204\begin{describe}{gf}{pprint-c-type @<c-type> @<stream> @<kernel>}
dea4d055 205 The generic function @|pprint-c-type| pretty-prints to @<stream> a C-syntax
1f7d590d 206 declaration of an object or function of type @<c-type>. The result is
dea4d055
MW
207 written to @<stream>.
208
209 A C declaration has two parts: a sequence of \emph{declaration specifiers}
210 and a \emph{declarator}. The declarator syntax involves parentheses and
211 operators, in order to reflect the operators applicable to the declared
212 variable. For example, the name of a pointer variable is preceded by @`*';
213 the name of an array is followed by dimensions enclosed in @`['\dots @`]'.
214
215 The @<kernel> argument must be a function designator (though see the
216 standard around-method); it is invoked as
217 \begin{quote} \codeface
218 (funcall @<kernel> @<stream> @<priority> @<spacep>)
219 \end{quote}
220 It should write to @<stream> -- which may not be the same stream originally
221 passed into the generic function -- the `kernel' of the declarator, i.e.,
222 the part to which prefix and/or postfix operators are attached to form the
223 full declarator.
224
225 The methods on @|pprint-c-type| specialized for compound types work by
226 recursively calling @|pprint-c-type| on the subtype, passing down a closure
227 which prints the necessary additional declarator operators before calling
228 the original @<kernel> function. The additional arguments @<priority> and
229 @<spacep> support this implementation technique.
230
231 The @<priority> argument describes the surrounding operator context. It is
232 zero if no type operators are directly attached to the kernel (i.e., there
233 are no operators at all, or the kernel is enclosed in parentheses), one if
234 a prefix operator is directly attached, or two if a postfix operator is
235 directly attached. If the @<kernel> function intends to provide its own
236 additional declarator operators, it should check the @<priority> in order
237 to determine whether parentheses are necessary. See also the
238 @|maybe-in-parens| macro (page~\pageref{mac:maybe-in-parens}).
239
240 The @<spacep> argument indicates whether a space needs to be printed in
241 order to separate the declarator from the declaration specifiers. A kernel
242 which contains an identifier should insert a space before the identifier
243 when @<spacep> is non-nil. An `empty' kernel, as found in an abstract
244 declarator (one that specifies no name), looks more pleasing without a
245 trailing space. See also the @|c-type-space| function
246 (page~\pageref{fun:c-type-space}).
247
248 Every concrete subclass of @|c-type| is expected to provide a primary
249 method on this function. There is no default primary method.
250
1f7d590d 251 \begin{describe}{ar-meth}{pprint-c-type @<c-type> @<stream> @<kernel>}
dea4d055
MW
252 A default around method is defined on @|pprint-c-type| which `canonifies'
253 non-function @<kernel> arguments. In particular:
254 \begin{itemize}
255 \item if @<kernel> is nil, then @|pprint-c-type| is called recursively
256 with a @<kernel> function that does nothing; and
257 \item if @<kernel> is any other kind of object, then @|pprint-c-type| is
258 called recursively with a @<kernel> function that prints the object as
259 if by @|princ|, preceded if necessary by space using @|c-type-space|.
260 \end{itemize}
261 \end{describe}
262\end{describe}
263
264\begin{describe}{fun}{c-type-space @<stream>}
265 Writes a space and other pretty-printing instructions to @<stream> in order
266 visually to separate a declarator from the preceding declaration
267 specifiers. The precise details are subject to change.
268\end{describe}
269
1f7d590d 270\begin{describe}{mac}
cac85e0b
MW
271 {maybe-in-parens (@<stream-var> @<guard-form>)
272 @<declaration>^*
273 @<form>^*}
dea4d055
MW
274 The @<guard-form> is evaluated, and then the @<form>s are evaluated in
275 sequence within a pretty-printer logical block writing to the stream named
276 by the symbol @<stream-var>. If the @<guard-form> evaluates to nil, then
277 the logical block has empty prefix and suffix strings; if it evaluates to a
278 non-nil value, then the logical block has prefix and suffix @`(' and @`)'
279 respectively.
280
281 Note that this may cause @<stream> to be bound to a different stream object
282 within the @<form>s.
283\end{describe}
284
285\subsection{Type qualifiers and qualifiable types}
1f7d590d 286\label{sec:clang.ctypes.qual}
dea4d055
MW
287
288\begin{describe}{cls}{qualifiable-c-type (c-type) \&key :qualifiers}
289 The class @|qualifiable-c-type| describes C types which can bear
290 `qualifiers' (\Cplusplus\ calls them `cv-qualifiers'): @|const|,
291 @|restrict| and @|volatile|.
292
293 The @<qualifiers> are a list of keyword symbols @|:const|, @|:restrict| and
294 @|:volatile|. There is no built-in limitation to these particular
295 qualifiers; others keywords may be used, though this isn't recommended.
296
297 Two qualifiable types are equal only if they have \emph{matching
298 qualifiers}: i.e., every qualifier attached to one is also attached to
299 the other: order is not significant, and neither is multiplicity.
300
301 The class @|qualifiable-c-type| is abstract.
302\end{describe}
303
1f7d590d
MW
304\begin{describe}{gf}{c-type-qualifiers @<c-type> @> @<list>}
305 Returns the qualifiers of the @|qualifiable-c-type| instance @<c-type> as
306 an immutable list.
dea4d055
MW
307\end{describe}
308
1f7d590d
MW
309\begin{describe}{fun}{qualify-type @<c-type> @<qualifiers> @> @<c-type>}
310 The argument @<c-type> must be an instance of @|qualifiable-c-type|,
dea4d055
MW
311 currently bearing no qualifiers, and @<qualifiers> a list of qualifier
312 keywords. The result is a C type object like @<c-type> except that it
313 bears the given @<qualifiers>.
314
1f7d590d 315 The @<c-type> is not modified. If @<c-type> is interned, then the returned
dea4d055
MW
316 type will be interned.
317\end{describe}
318
319\begin{describe}{fun}{format-qualifiers @<qualifiers>}
320 Returns a string containing the qualifiers listed in @<qualifiers> in C
321 syntax, with a space after each. In particular, if @<qualifiers> is
322 non-null then the final character of the returned string will be a space.
323\end{describe}
324
1f7d590d 325\subsection{Leaf types} \label{sec:clang.c-types.leaf}
dea4d055
MW
326
327A \emph{leaf type} is a type which is not defined in terms of another type.
328In Sod, the leaf types are
329\begin{itemize}
330\item \emph{simple types}, including builtin types like @|int| and @|char|,
331 as well as type names introduced by @|typename|, because Sod isn't
332 interested in what the type name means, merely that it names a type; and
333\item \emph{tagged types}, i.e., enum, struct and union types which are named
334 by a keyword identifying the kind of type, and a \emph{tag}.
335\end{itemize}
336
337\begin{describe}{cls}{simple-c-type (qualifiable-c-type)
338 \&key :qualifiers :name}
339 The class of `simple types'; an instance denotes the type @<qualifiers>
340 @<name>.
341
342 A simple type object maintains a \emph{name}, which is a string whose
343 contents are the C name for the type. The initarg @|:name| may be used to
344 provide this name when calling @|make-instance|.
345
346 Two simple type objects are equal if and only if they have @|string=| names
347 and matching qualifiers.
348
349 A number of symbolic type specifiers for builtin types are predefined as
64d1ecf7 350 shown in \xref{tab:codegen.c-types.simple}. These are all defined as if by
dea4d055
MW
351 @|define-simple-c-type|, so can be used to construct qualified types.
352\end{describe}
353
354\begin{table}
fcb6c0fb
MW
355 \begin{tabular}[C]{ll} \hlx*{hv}
356 \thd{C type} & \thd{Specifiers} \\ \hlx{vhv}
357 @|void| & @|void| \\ \hlx{v}
a4434457
MW
358 @|_Bool| & @|bool| \\ \hlx{v}
359 @|char| & @|char| \\ \hlx{}
a4434457 360 @|wchar_t| & @|wchar-t| \\ \hlx{v}
d21ac4d9
MW
361 @|signed char| & @|signed-char|, @|schar| \\ \hlx{}
362 @|unsigned char| & @|unsigned-char|, @|uchar| \\ \hlx{v}
dea4d055 363 @|short| & @|short|, @|signed-short|, @|short-int|,
fcb6c0fb 364 @|signed-short-int| @|sshort| \\ \hlx{}
dea4d055 365 @|unsigned short| & @|unsigned-short|, @|unsigned-short-int|,
fcb6c0fb 366 @|ushort| \\ \hlx{v}
dea4d055 367 @|int| & @|int|, @|signed|, @|signed-int|,
fcb6c0fb
MW
368 @|sint| \\ \hlx{}
369 @|unsigned int| & @|unsigned|, @|unsigned-int|, @|uint| \\ \hlx{v}
dea4d055 370 @|long| & @|long|, @|signed-long|, @|long-int|,
fcb6c0fb 371 @|signed-long-int|, @|slong| \\ \hlx{}
dea4d055 372 @|unsigned long| & @|unsigned-long|, @|unsigned-long-int|,
fcb6c0fb 373 @|ulong| \\ \hlx{v}
dea4d055 374 @|long long| & @|long-long|, @|signed-long-long|,
d21ac4d9 375 @|long-long-int|, \\ \hlx{}
dea4d055
MW
376 & \qquad @|signed-long-long-int|,
377 @|llong|, @|sllong| \\ \hlx{v}
378 @|unsigned long long|
379 & @|unsigned-long-long|, @|unsigned-long-long-int|,
fcb6c0fb 380 @|ullong| \\ \hlx{v}
d21ac4d9
MW
381 @|size_t| & @|size-t| \\ \hlx{}
382 @|ptrdiff_t| & @|ptrdiff-t| \\ \hlx{v}
fcb6c0fb 383 @|float| & @|float| \\ \hlx{}
a4434457
MW
384 @|double| & @|double| \\ \hlx{}
385 @|long double| & @|long-double| \\ \hlx{v}
386 @|float _Imaginary| & @|float-imaginary| \\ \hlx{}
a4434457 387 @|double _Imaginary|& @|double-imaginary| \\ \hlx{}
a4434457 388 @|long double _Imaginary|
d21ac4d9
MW
389 & @|long-double-imaginary| \\ \hlx{v}
390 @|float _Complex| & @|float-complex| \\ \hlx{}
391 @|double _Complex| & @|double-complex| \\ \hlx{}
a4434457 392 @|long double _Complex|
d21ac4d9
MW
393 & @|long-double-complex| \\ \hlx{v}
394 @|va_list| & @|va-list| \\ \hlx*{vh}
dea4d055
MW
395 \end{tabular}
396 \caption{Builtin symbolic type specifiers for simple C types}
64d1ecf7 397 \label{tab:codegen.c-types.simple}
dea4d055
MW
398\end{table}
399
1f7d590d
MW
400\begin{describe}{fun}
401 {make-simple-type @<name> \&optional @<qualifiers> @> @<c-type>}
dea4d055
MW
402 Return the (unique interned) simple C type object for the C type whose name
403 is @<name> (a string) and which has the given @<qualifiers> (a list of
404 keywords).
405\end{describe}
406
1f7d590d
MW
407\begin{describe}{gf}{c-type-name @<c-type> @> @<string>}
408 Returns the name of a @|simple-c-type| instance @<c-type> as an immutable
dea4d055
MW
409 string.
410\end{describe}
411
1f7d590d
MW
412\begin{describe}{mac}
413 {define-simple-c-type @{ @<name> @! (@<name>^*) @} @<string> @> @<name>}
dea4d055
MW
414 Define type specifiers for a new simple C type. Each symbol @<name> is
415 defined as a symbolic type specifier for the (unique interned) simple C
416 type whose name is the value of @<string>. Further, each @<name> is
417 defined to be a type operator: the type specifier @|(@<name>
418 @<qualifier>^*)| evaluates to the (unique interned) simple C type whose
419 name is @<string> and which has the @<qualifiers> (which are evaluated).
420\end{describe}
421
422\begin{describe}{cls}{tagged-c-type (qualifiable-c-type)
423 \&key :qualifiers :tag}
424 Provides common behaviour for C tagged types. A @<tag> is a string
425 containing a C identifier.
426
427 Two tagged types are equal if and only if they have the same class, their
428 @<tag>s are @|string=|, and they have matching qualifiers. (User-defined
429 subclasses may have additional methods on @|c-type-equal-p| which impose
430 further restrictions.)
431\end{describe}
432\begin{boxy}[Bug]
433 Sod maintains distinct namespaces for the three kinds of tagged types. In
434 C, there is only one namespace for tags which is shared between enums,
435 structs and unions.
436\end{boxy}
437
1f7d590d
MW
438\begin{describe}{gf}{c-tagged-type-kind @<c-type> @> @<keyword>}
439 Returns a keyword classifying the tagged @<c-type>: one of @|:enum|,
440 @|:struct| or @|:union|. User-defined subclasses of @|tagged-c-type|
441 should return their own classification symbols. It is intended that
442 @|(string-downcase (c-tagged-type-kind @<c-type>))| be valid C
443 syntax.\footnote{%
dea4d055
MW
444 Alas, C doesn't provide a syntactic category for these keywords;
445 \Cplusplus\ calls them a @<class-key>.} %
1f7d590d
MW
446 There is a method defined for each of the built-in tagged type classes
447 @|c-struct-type|, @|c-union-type| and @|c-enum-type|.
448\end{describe}
449
450\begin{describe}{gf}{kind-c-tagged-type @<keyword> @> @<symbol>}
451 This is not quite the inverse of @|c-tagged-type-kind|. Given a keyword
452 naming a kind of tagged type, return the name of the corresponding C
453 type class as a symbol.
dea4d055
MW
454\end{describe}
455
456\begin{describe}{cls}{c-enum-type (tagged-c-type) \&key :qualifiers :tag}
457 Represents a C enumerated type. An instance denotes the C type @|enum|
458 @<tag>. See the direct superclass @|tagged-c-type| for details.
459
460 The type specifier @|(enum @<tag> @<qualifier>^*)| returns the (unique
461 interned) enumerated type with the given @<tag> and @<qualifier>s (all
462 evaluated).
463\end{describe}
1f7d590d
MW
464\begin{describe}{fun}
465 {make-enum-type @<tag> \&optional @<qualifiers> @> @<c-enum-type>}
dea4d055
MW
466 Return the (unique interned) C type object for the enumerated C type whose
467 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
468 keywords).
469\end{describe}
470
471\begin{describe}{cls}{c-struct-type (tagged-c-type) \&key :qualifiers :tag}
472 Represents a C structured type. An instance denotes the C type @|struct|
473 @<tag>. See the direct superclass @|tagged-c-type| for details.
474
475 The type specifier @|(struct @<tag> @<qualifier>^*)| returns the (unique
476 interned) structured type with the given @<tag> and @<qualifier>s (all
477 evaluated).
478\end{describe}
1f7d590d
MW
479\begin{describe}{fun}
480 {make-struct-type @<tag> \&optional @<qualifiers> @> @<c-struct-type>}
dea4d055
MW
481 Return the (unique interned) C type object for the structured C type whose
482 tag is @<tag> (a string) and which has the given @<qualifiers> (a list of
483 keywords).
484\end{describe}
485
486\begin{describe}{cls}{c-union-type (tagged-c-type) \&key :qualifiers :tag}
487 Represents a C union type. An instance denotes the C type @|union|
488 @<tag>. See the direct superclass @|tagged-c-type|
489 for details.
490
491 The type specifier @|(union @<tag> @<qualifier>^*)| returns the (unique
492 interned) union type with the given @<tag> and @<qualifier>s (all
493 evaluated).
494\end{describe}
1f7d590d
MW
495\begin{describe}{fun}
496 {make-union-type @<tag> \&optional @<qualifiers> @> @<c-union-type>}
dea4d055
MW
497 Return the (unique interned) C type object for the union C type whose tag
498 is @<tag> (a string) and which has the given @<qualifiers> (a list of
499 keywords).
500\end{describe}
501
1f7d590d
MW
502\subsection{Compound C types} \label{sec:code.c-types.compound}
503
504Some C types are \emph{compound types}: they're defined in terms of existing
505types. The classes which represent compound types implement a common
506protocol.
dea4d055 507
1f7d590d
MW
508\begin{describe}{gf}{c-type-subtype @<c-type> @> @<subtype>}
509 Returns the underlying type of a compound type @<c-type>. Precisely what
510 this means depends on the class of @<c-type>.
dea4d055
MW
511\end{describe}
512
1f7d590d
MW
513\subsection{Pointer types} \label{sec:clang.c-types.pointer}
514
515Pointers compound types. The subtype of a pointer type is the type it points
516to.
517
518\begin{describe}{cls}
519 {c-pointer-type (qualifiable-c-type) \&key :qualifiers :subtype}
dea4d055
MW
520 Represents a C pointer type. An instance denotes the C type @<subtype>
521 @|*|@<qualifiers>.
522
523 The @<subtype> may be any C type. Two pointer types are equal if and only
524 if their subtypes are equal and they have matching qualifiers.
525
526 The type specifier @|(* @<type-spec> @<qualifier>^*)| returns a type
527 qualified pointer-to-@<subtype>, where @<subtype> is the type specified by
528 @<type-spec> and the @<qualifier>s are qualifier keywords (which are
529 evaluated). The synonyms @|ptr| and @|pointer| may be used in place of the
530 star @`*'.
531
fcb6c0fb 532 The symbol @|string| is a type specifier for the type pointer to
dea4d055
MW
533 characters; the symbol @|const-string| is a type specifier for the type
534 pointer to constant characters.
535\end{describe}
1f7d590d
MW
536
537\begin{describe}{fun}
538 {make-pointer-type @<c-type> \&optional @<qualifiers>
539 @> @<c-pointer-type>}
fcb6c0fb 540 Return an object describing the type qualified pointer to @<subtype>.
dea4d055
MW
541 If @<subtype> is interned, then the returned pointer type object is
542 interned also.
543\end{describe}
544
1f7d590d
MW
545\subsection{Array types} \label{sec:clang.c-types.array}
546
fcb6c0fb
MW
547Arrays implement the compound-type protocol. The subtype of an array type is
548the array element type.
1f7d590d 549
dea4d055
MW
550\begin{describe}{cls}{c-array-type (c-type) \&key :subtype :dimensions}
551 Represents a multidimensional C array type. The @<dimensions> are a list
552 of dimension specifiers $d_0$, $d_1$, \ldots, $d_{n-1}$; an instance then
553 denotes the C type @<subtype> @|[$d_0$][$d_1$]$\ldots$[$d_{n-1}$]|. An
554 individual dimension specifier is either a string containing a C integral
555 constant expression, or nil which is equivalent to an empty string. Only
556 the first (outermost) dimension $d_0$ should be empty.
557
558 C doesn't actually have multidimensional arrays as a primitive notion;
559 rather, it permits an array (with known extent) to be the element type of
560 an array, which achieves an equivalent effect. C arrays are stored in
561 row-major order: i.e., if we write down the indices of the elements of an
562 array in order of ascending address, the rightmost index varies fastest;
563 hence, the type constructed is more accurately an array of $d_0$ arrays of
564 $d_1$ of \ldots\ arrays of $d_{n-1}$ elements of type @<subtype>. We shall
565 continue to abuse terminology and refer to multidimensional arrays.
566
567 The type specifier @|([] @<type-spec> @<dimension>^*)| constructs a
568 multidimensional array with the given @<dimension>s whose elements have the
569 type specified by @<type-spec>. If no dimensions are given then a
570 single-dimensional array with unspecified extent. The synonyms @|array|
571 and @|vector| may be used in place of the brackets @`[]'.
572\end{describe}
1f7d590d
MW
573
574\begin{describe}{fun}
575 {make-array-type @<subtype> @<dimensions> @> @<c-array-type>}
dea4d055
MW
576 Return an object describing the type of arrays with given @<dimensions> and
577 with element type @<subtype> (an instance of @|c-type|). The @<dimensions>
578 argument is a list whose elements are strings or nil; see the description
579 of the class @|c-array-type| above for details.
580\end{describe}
1f7d590d
MW
581
582\begin{describe}{gf}{c-array-dimensions @<c-type> @> @<list>}
583 Returns the dimensions of @<c-type>, an array type, as an immutable list.
584\end{describe}
585
586\subsection{Function types} \label{sec:clang.c-types.fun}
587
fcb6c0fb
MW
588Function types implement the compound-type protocol. The subtype of a
589function type is the type of the function's return value.
590
1f7d590d 591\begin{describe}{cls}{argument}
fcb6c0fb 592 Represents an ordinary function argument.
1f7d590d
MW
593\end{describe}
594
595\begin{describe}{fun}{argumentp @<value> @> @<generalized-boolean>}
fcb6c0fb
MW
596 Decide whether @<value> is an @<argument> object: if so, return non-nil; if
597 not return nil.
1f7d590d
MW
598\end{describe}
599
600\begin{describe}{fun}{make-argument @<name> @<c-type> @> @<argument>}
fcb6c0fb
MW
601 Construct and a return a new @<argument> object. The argument has type
602 @<c-type>, which must be a @|c-type| object, and is named @<name>.
603
604 The @<name> may be nil to indicate that the argument has no name: in this
605 case the argument will be formatted as an abstract declarator, which is not
606 suitable for function definitions. If @<name> is not nil, then the
607 @<name>'s print representation, with @|*print-escape*| nil, is used as the
608 argument name.
1f7d590d
MW
609\end{describe}
610
52e2a70f
MW
611\begin{describe*}
612 {\dhead{fun}{argument-name @<argument> @> @<name>}
613 \dhead{fun}{argument-type @<argument> @> @<c-type>}}
614 Accessor functions for @|argument| objects. They return the name (for
615 @|argument-name|) or type (for @|argument-type|) from the object, as passed
616 to @|make-argument|.
617\end{describe*}
dea4d055 618
fcb6c0fb 619\begin{describe}{gf}
1f7d590d 620 {commentify-argument-name @<name> @> @<commentified-name>}
fcb6c0fb
MW
621 Convert the argument name @<name> so that it's suitable to declare the
622 function in a header file.
dea4d055 623
fcb6c0fb
MW
624 Robust header files shouldn't include literal argument names in
625 declarations of functions or function types, since this restricts the
626 including file from defining such names as macros. This generic function
627 is used to convert names into a safe form.
628
629 \begin{describe}{meth}{commentify-argument-name (@<name> null) @> nil}
630 Returns nil: if the argument name is already omitted, it's safe for use
631 in a header file.
632 \end{describe}
633 \begin{describe}{meth}{commentify-argument-name (@<name> t) @> @<string>}
634 Returns the print form of @<name> wrapped in a C comment, as
635 @`/*@<name>*/'.
636 \end{describe}
1f7d590d
MW
637\end{describe}
638
639\begin{describe}{fun}
fcb6c0fb
MW
640 {commentify-argument-names @<arguments> @> @<commentified-arguments>}
641 Convert the @<arguments> list so that it's suitable for use in a header
642 file.
643
644 The @<arguments> list should be a list whose items are @|argument| objects
645 or the keyword @|:ellipsis|. The return value is a list constructed as
646 follows. For each @|argument| object in the input list, there is a
647 corresponding @|argument| object in the returned list, with the same type,
648 and whose name is the result of @|commentify-argument-name| applied to the
649 input argument name; an @|:ellipsis| in the input list is passed through
650 unchanged.
1f7d590d
MW
651\end{describe}
652
fcb6c0fb
MW
653\begin{describe}{cls}{c-function-type (c-type) \&key :subtype :arguments}
654 Represents C function types. An instance denotes the type of a C
655 function which accepts the @<arguments> and returns @<subtype>.
656
657 The @<arguments> are a possibly empty list. All but the last element of
658 the list must be @|argument| objects; the final element may instead be the
659 keyword @|:ellipsis|, which denotes a variable argument list.
660
661 An @<arguments> list consisting of a single argument with type @|void| is
662 converted into an empty list. On output as C code, an empty argument list
663 is written as @|void|. It is not possible to represent a pre-ANSI C
664 function without prototypes.
665
666 Two function types are considered to be the same if their return types are
667 the same, and their argument lists consist of arguments with the same type,
668 in the same order, and either both or neither argument list ends with
669 @|:ellipsis|; argument names are not compared.
670
ed76585e
MW
671 The type specifier
672 \begin{prog}
673 (fun @<return-type>
674 @{ (@<arg-name> @<arg-type>) @}^*
675 @[:ellipsis @! . @<form>@])
676 \end{prog}
677 constructs a function type. The function has the subtype @<return-type>.
678 The remaining items in the type-specifier list are used to construct the
679 argument list. The argument items are a possibly improper list, beginning
680 with zero or more \emph{explicit arguments}: two-item
681 @<arg-name>/@<arg-type> lists. For each such list, an @|argument| object
682 is constructed with the given name (evaluated) and type. Following the
683 explicit arguments, there may be
fcb6c0fb
MW
684 \begin{itemize}
685 \item nothing, in which case the function's argument list consists only of
686 the explicit arguments;
687 \item the keyword @|:ellipsis|, as the final item in the type-specifier
688 list, indicating a variable argument list may follow the explicit
689 arguments; or
690 \item a possibly-improper list tail, beginning with an atom either as a
691 list item or as the final list cdr, indicating that the entire list tail
692 is Lisp expression which is to be evaluated to compute the remaining
693 arguments.
694 \end{itemize}
695 A tail expression may return a list of @|argument| objects, optionally
696 followed by an @|:ellipsis|.
697
698 For example,
699 \begin{prog}
700 (c-type (fun \=(lisp (c-type-subtype other-func)) \+ \\
701 ("first" int) . (c-function-arguments other-func))
702 \end{prog}
703 evaluates to a function type like @|other-func|, only with an additional
704 argument of type @|int| added to the front of its argument list. This
705 could also have been written
706 \begin{prog}
707 (let (\=(args (c-function-arguments other-func)) \+ \\
708 (ret (c-type-subtype other-func))) \- \\ \ind
709 (c-type (fun \=(lisp ret) ("first" int) . args)
710 \end{prog}
1f7d590d
MW
711\end{describe}
712
713\begin{describe}{fun}
fcb6c0fb
MW
714 {make-function-type @<subtype> @<arguments> @> @<c-function-type>}
715 Construct and return a new function type, returning @<subtype> and
716 accepting the @<arguments>.
717\end{describe}
718
719\begin{describe}{gf}
720 {c-function-arguments @<c-function-type> @> @<arguments>}
721 Return the arguments list of the @<c-function-type>.
1f7d590d
MW
722\end{describe}
723
724\begin{describe}{fun}
fcb6c0fb
MW
725 {commentify-function-type @<c-function-type> @> @<commentified-c-type>}
726 Return a commentified version of the @<c-function-type>.
727
728 The returned type has the same subtype as the given type, and the argument
729 list of the returned type is the result of applying
730 @|commentify-argument-names| to the argument list of the given type.
dea4d055
MW
731\end{describe}
732
1f7d590d
MW
733\subsection{Parsing C types} \label{sec:clang.c-types.parsing}
734
756f4928
MW
735\begin{describe}{fun}
736 {parse-c-type @<scanner>
737 @> @<result> @<success-flag> @<consumed-flag>}
738\end{describe}
739
740\begin{describe}{fun}
741 {parse-declarator @<scanner> @<base-type> \&key :kernel :abstractp
742 \nlret @<result> @<success-flag> @<consumed-flag>}
743\end{describe}
744
745\subsection{Class types} \label{sec:clang.c-types.class}
746
747\begin{describe}{cls}
748 {c-class-type (simple-c-type) \&key :class :tag :qualifiers :name}
749\end{describe}
750
751\begin{describe*}
752 {\dhead{gf}{c-type-class @<class-type> @> @<class>}
753 \dhead{gf}{setf (c-type-class @<class-type>) @<class>}}
754\end{describe*}
755
756\begin{describe}{fun}{find-class-type @<name> @> @<class-type-or-nil>}
757\end{describe}
758
759\begin{describe}{fun}
760 {make-class-type @<name> \&optional @<qualifiers> @> @<class-type>}
761\end{describe}
762
763\begin{describe}{fun}
764 {make-class-type @<name> \&optional @<qualifiers> @> @<class-type>}
765\end{describe}
766
767\begin{describe}{fun}{find-sod-class @<name> @> @<class>}
768\end{describe}
769
770\begin{describe}{fun}{record-sod-class @<class>}
771\end{describe}
772
1f7d590d
MW
773%%%--------------------------------------------------------------------------
774\section{Generating C code} \label{sec:clang.codegen}
775
fcb6c0fb
MW
776This section deals with Sod's facilities for constructing and manipulating C
777expressions, declarations, instructions and definitions.
778
779\subsection{Temporary names} \label{sec:clang.codegen.temporaries}
780
781Many C-level objects, especially ones with external linkage or inclusion in a
782header file, are assigned names which are simple strings, perhaps fixed ones,
783perhaps constructed. Other objects don't need meaningful names, and
784suitably unique constructed names would be tedious and most likely rather
785opaque. Therefore Sod has an ability to construct \emph{temporary names}.
786
787These aren't temporary in the sense that they name C objects which have
788limited lifetimes at runtime. Rather, the idea is that the names be
789significant only to small pieces of Lisp code, which will soon forget about
790them.
791
792\subsubsection{The temporary name protocol}
793Temporary names are represented by objects which implement a simple protocol.
794
795\begin{describe}{gf}{format-temporary-name @<var> @<stream>}
796\end{describe}
797
798\begin{describe*}
799 {\dhead{gf}{var-in-use-p @<var> @> @<generalized-boolean>}
800 \dhead[setf var-in-use-p]
801 {gf}{setf (var-in-use-p @<var>) @<generalized-boolean>}}
802\end{describe*}
803
804\subsubsection{Temporary name objects}
805
806\begin{describe}{cls}{temporary-name () \&key :tag}
807 A temporary name object. This is the root of a small collection of
808 subclasses, but is also usable on its own.
809\end{describe}
810
811\begin{describe}{meth}
812 {commentify-argument-name (@<name> temporary-name) @> nil}
813\end{describe}
814
815\begin{table}
816 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
817 \thd{\textbf{Class}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
818 temporary-name & @<tag> \\
819 temporary-argument & sod__a@<tag> \\
820 temporary-function & sod__f@<tag> \\
821 temporary-variable & sod__v@<tag> \\ \hlx*{vh}
822 \end{tabular}
823 \caption{Temporary name formats}
824 \label{tab:codegen.codegen.temps-format}
825\end{table}
826
827\begin{describe}{cls}{temporary-argument (temporary-name) \&key :tag}
828\end{describe}
829
830\begin{describe}{cls}{temporary-function (temporary-name) \&key :tag}
831\end{describe}
832
833\begin{describe}{fun}{temporary-function @> @<name>}
834\end{describe}
835
836\begin{describe}{cls}
837 {temporary-variable (temporary-name) \&key :tag :in-use-p}
838\end{describe}
839
840\subsubsection{Well-known `temporary' names}
841
842\begin{table}
843 \begin{tabular}[C]{*2{>{\codeface}l}} \hlx*{hv}
844 \thd{\textbf{Variable}} & \thd{\textbf{Name format}} \\ \hlx{vhv}
845 {}*sod-ap* & sod__ap \\
0f2c2a9d 846 {}*sod-master-ap* & sod__master_ap \\ \hlx*{vh}
fcb6c0fb
MW
847 \end{tabular}
848 \caption{Well-known temporary names}
849 \label{tab:codegen.codegen.well-known-temps}
850\end{table}
851
852\subsection{Instructions} \label{sec:clang.codegen.insts}
853
854\begin{describe}{cls}{inst () \&key}
855\end{describe}
856
857\begin{describe}{gf}{inst-metric @<inst>}
858\end{describe}
859
860\begin{describe}{mac}
cac85e0b
MW
861 {definst @<code> (@<streamvar> \&key @<export>) (@<arg>^*) \\ \ind
862 @[[ @<declaration>^* @! @<doc-string> @]] \\
863 @<form>^* \-
864 \nlret @<code>}
fcb6c0fb
MW
865\end{describe}
866
867\begin{describe}{mac}
cac85e0b
MW
868 {format-compound-statement
869 (@<stream> @<child> \&optional @<morep>) \\ \ind
870 @<declaration>^* \\
871 @<form>^*}
fcb6c0fb
MW
872\end{describe}
873
874\begin{table}
875 \begin{tabular}[C]{ll>{\codeface}l} \hlx*{hv}
876 \thd{Class name} &
877 \thd{Arguments} &
878 \thd{Output format} \\ \hlx{vhv}
879 @|var| & @<name> @<type> @<init> & @<type> @<name> @[= @<init>@];
880 \\ \hlx{v}
881 @|set| & @<var> @<expr> & @<var> = @<expr>; \\ \hlx{v}
882 @|update| & @<var> @<op> @<expr> & @<var> @<op>= @<expr>;
883 \\ \hlx{v}
884 @|return| & @<expr> & return @[@<expr>@];
885 \\ \hlx{v}
886 @|break| & --- & break; \\ \hlx{v}
887 @|continue| & --- & continue; \\ \hlx{v}
888 @|expr| & @<expr> & @<expr>; \\ \hlx{v}
889 @|call| & @<func> @<args> & @<func>(@<arg>_1,
890 $\ldots$,
891 @<arg>_n) \\ \hlx{v}
892 @|va-start| & @<ap> @<arg> & va_start(@<ap>, @<arg>);
893 \\ \hlx{v}
894 @|va-copy| & @<to> @<from> & va_copy(@<to>, @<from>);
895 \\ \hlx{v}
896 @|va-end| & @<ap> & va_end(@<ap>); \\ \hlx{vhv}
897 @|block| & @<decls> @<body> & \{ @[@<decls>@] @<body> \}
898 \\ \hlx{v}
899 @|if| & @<cond> @<conseq> @<alt> & if (@<cond>) @<conseq>
900 @[else @<alt>@] \\ \hlx{v}
901 @|while| & @<cond> @<body> & while (@<cond>) @<body>
902 \\ \hlx{v}
903 @|do-while| & @<body> @<cond> & do @<body> while (@<cond>);
904 \\ \hlx{v}
905 @|function| & @<name> @<type> @<body> &
906 @<type>_0 @<name>(@<type>_1 @<arg>_1, $\ldots$,
907 @<type>_n @<arg>_n @[, \dots@])
908 @<body> \\ \hlx*{vh}
909 \end{tabular}
910 \caption{Instruction classes}
911 \label{tab:codegen.codegen.insts}
912\end{table}
913
914\subsection{Code generation} \label{sec:clang.codegen.codegen}
915
916\begin{describe}{gf}{codegen-functions @<codegen> @> @<list>}
917\end{describe}
918
919\begin{describe}{gf}
920 {ensure-var @<codegen> @<name> @<type> \&optional @<init>}
921\end{describe}
922
923\begin{describe}{gf}{emit-inst @<codegen> @<inst>}
924\end{describe}
925
926\begin{describe}{gf}{emit-insts @<codegen> @<insts>}
927\end{describe}
928
929\begin{describe}{gf}{emit-decl @<codegen> @<decl>}
930\end{describe}
931
7c3f8ae6 932\begin{describe}{gf}{emit-decls @<codegen> @<decls>}
fcb6c0fb
MW
933\end{describe}
934
935\begin{describe}{gf}{codegen-push @<codegen>}
936\end{describe}
937
938\begin{describe}{gf}{codegen-pop @<codegen> @> @<decls> @<insts>}
939\end{describe}
940
941\begin{describe}{gf}{codegen-pop-block @<codegen> @> @<block-inst>}
942\end{describe}
943
944\begin{describe}{gf}
945 {codegen-pop-function @<codegen> @<name> @<type> @> @<name>}
946\end{describe}
947
948\begin{describe}{gf}{codegen-add-function @<codegen> @<function>}
949\end{describe}
950
951\begin{describe}{fun}
952 {codegen-build-function @<codegen> @<name> @<type> @<vars> @<insts>
953 @> @<name>}
954\end{describe}
955
956\begin{describe}{gf}{temporary-var @<codegen> @<type> @> @<name>}
957\end{describe}
958
959\begin{describe}{mac}
cac85e0b
MW
960 {with-temporary-var (@<codegen> @<var> @<type>) \\ \ind
961 @<declaration>^* \\
962 @<form>^* \-
963 \nlret @<value>^*}
fcb6c0fb
MW
964\end{describe}
965
966\begin{describe}{fun}{deliver-expr @<codegen> @<target> @<expr>}
967\end{describe}
968
969\begin{describe}{fun}{convert-stmts @<codegen> @<target> @<type> @<func>}
970\end{describe}
971
972\begin{describe}{cls}{codegen () \&key :vars :insts (:temp-index 0)}
973\end{describe}
974
2c7465ac
MW
975%%%--------------------------------------------------------------------------
976\section{Literal C code fragments} \label{sec:clang.fragment}
977
978\begin{describe}{cls}{c-fragment () \&key :location :text}
979\end{describe}
980
981\begin{describe}{gf}{c-fragment-text @<fragment> @> @<string>}
982\end{describe}
983
984\begin{describe}{fun}
985 {scan-c-fragment @<scanner> @<end-chars>
986 @> @<result> @<success-flag> @<consumed-flag>}
987\end{describe}
988
989\begin{describe}{fun}
990 {parse-delimited-fragment @<scanner> @<begin> @<end> \&key :keep-end
991 \nlret @<result> @<success-flag> @<consumed-flag>}
992\end{describe}
993
dea4d055
MW
994%%%----- That's all, folks --------------------------------------------------
995
996%%% Local variables:
997%%% mode: LaTeX
998%%% TeX-master: "sod.tex"
999%%% TeX-PDF-mode: t
1000%%% End: