Commit | Line | Data |
---|---|---|
b4a26b17 IJ |
1 | /* sha512.c - Functions to compute SHA512 and SHA384 message digest of files or |
2 | memory blocks according to the NIST specification FIPS-180-2. | |
3 | ||
4 | Copyright (C) 2005, 2006, 2008, 2009, 2010 Free Software Foundation, Inc. | |
5 | ||
6 | This program is free software: you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation, either version 3 of the License, or | |
9 | (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
18 | ||
19 | /* Written by David Madore, considerably copypasting from | |
20 | Scott G. Miller's sha1.c | |
21 | */ | |
22 | ||
23 | #include <config.h> | |
24 | ||
25 | #include "sha512.h" | |
26 | ||
27 | #include <stddef.h> | |
28 | #include <stdlib.h> | |
29 | #include <string.h> | |
30 | ||
31 | #if USE_UNLOCKED_IO | |
32 | # include "unlocked-io.h" | |
33 | #endif | |
34 | ||
35 | #ifdef WORDS_BIGENDIAN | |
36 | # define SWAP(n) (n) | |
37 | #else | |
38 | # define SWAP(n) \ | |
39 | u64or (u64or (u64or (u64shl (n, 56), \ | |
40 | u64shl (u64and (n, u64lo (0x0000ff00)), 40)), \ | |
41 | u64or (u64shl (u64and (n, u64lo (0x00ff0000)), 24), \ | |
42 | u64shl (u64and (n, u64lo (0xff000000)), 8))), \ | |
43 | u64or (u64or (u64and (u64shr (n, 8), u64lo (0xff000000)), \ | |
44 | u64and (u64shr (n, 24), u64lo (0x00ff0000))), \ | |
45 | u64or (u64and (u64shr (n, 40), u64lo (0x0000ff00)), \ | |
46 | u64shr (n, 56)))) | |
47 | #endif | |
48 | ||
49 | #define BLOCKSIZE 32768 | |
50 | #if BLOCKSIZE % 128 != 0 | |
51 | # error "invalid BLOCKSIZE" | |
52 | #endif | |
53 | ||
54 | /* This array contains the bytes used to pad the buffer to the next | |
55 | 128-byte boundary. */ | |
56 | static const unsigned char fillbuf[128] = { 0x80, 0 /* , 0, 0, ... */ }; | |
57 | ||
58 | ||
59 | /* | |
60 | Takes a pointer to a 512 bit block of data (eight 64 bit ints) and | |
61 | intializes it to the start constants of the SHA512 algorithm. This | |
62 | must be called before using hash in the call to sha512_hash | |
63 | */ | |
64 | void | |
65 | sha512_init_ctx (struct sha512_ctx *ctx) | |
66 | { | |
67 | ctx->state[0] = u64hilo (0x6a09e667, 0xf3bcc908); | |
68 | ctx->state[1] = u64hilo (0xbb67ae85, 0x84caa73b); | |
69 | ctx->state[2] = u64hilo (0x3c6ef372, 0xfe94f82b); | |
70 | ctx->state[3] = u64hilo (0xa54ff53a, 0x5f1d36f1); | |
71 | ctx->state[4] = u64hilo (0x510e527f, 0xade682d1); | |
72 | ctx->state[5] = u64hilo (0x9b05688c, 0x2b3e6c1f); | |
73 | ctx->state[6] = u64hilo (0x1f83d9ab, 0xfb41bd6b); | |
74 | ctx->state[7] = u64hilo (0x5be0cd19, 0x137e2179); | |
75 | ||
76 | ctx->total[0] = ctx->total[1] = u64lo (0); | |
77 | ctx->buflen = 0; | |
78 | } | |
79 | ||
80 | void | |
81 | sha384_init_ctx (struct sha512_ctx *ctx) | |
82 | { | |
83 | ctx->state[0] = u64hilo (0xcbbb9d5d, 0xc1059ed8); | |
84 | ctx->state[1] = u64hilo (0x629a292a, 0x367cd507); | |
85 | ctx->state[2] = u64hilo (0x9159015a, 0x3070dd17); | |
86 | ctx->state[3] = u64hilo (0x152fecd8, 0xf70e5939); | |
87 | ctx->state[4] = u64hilo (0x67332667, 0xffc00b31); | |
88 | ctx->state[5] = u64hilo (0x8eb44a87, 0x68581511); | |
89 | ctx->state[6] = u64hilo (0xdb0c2e0d, 0x64f98fa7); | |
90 | ctx->state[7] = u64hilo (0x47b5481d, 0xbefa4fa4); | |
91 | ||
92 | ctx->total[0] = ctx->total[1] = u64lo (0); | |
93 | ctx->buflen = 0; | |
94 | } | |
95 | ||
96 | /* Copy the value from V into the memory location pointed to by *CP, | |
97 | If your architecture allows unaligned access, this is equivalent to | |
98 | * (__typeof__ (v) *) cp = v */ | |
99 | static inline void | |
100 | set_uint64 (char *cp, u64 v) | |
101 | { | |
102 | memcpy (cp, &v, sizeof v); | |
103 | } | |
104 | ||
105 | /* Put result from CTX in first 64 bytes following RESBUF. | |
106 | The result must be in little endian byte order. */ | |
107 | void * | |
108 | sha512_read_ctx (const struct sha512_ctx *ctx, void *resbuf) | |
109 | { | |
110 | int i; | |
111 | char *r = resbuf; | |
112 | ||
113 | for (i = 0; i < 8; i++) | |
114 | set_uint64 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i])); | |
115 | ||
116 | return resbuf; | |
117 | } | |
118 | ||
119 | void * | |
120 | sha384_read_ctx (const struct sha512_ctx *ctx, void *resbuf) | |
121 | { | |
122 | int i; | |
123 | char *r = resbuf; | |
124 | ||
125 | for (i = 0; i < 6; i++) | |
126 | set_uint64 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i])); | |
127 | ||
128 | return resbuf; | |
129 | } | |
130 | ||
131 | /* Process the remaining bytes in the internal buffer and the usual | |
132 | prolog according to the standard and write the result to RESBUF. */ | |
133 | static void | |
134 | sha512_conclude_ctx (struct sha512_ctx *ctx) | |
135 | { | |
136 | /* Take yet unprocessed bytes into account. */ | |
137 | size_t bytes = ctx->buflen; | |
138 | size_t size = (bytes < 112) ? 128 / 8 : 128 * 2 / 8; | |
139 | ||
140 | /* Now count remaining bytes. */ | |
141 | ctx->total[0] = u64plus (ctx->total[0], u64lo (bytes)); | |
142 | if (u64lt (ctx->total[0], u64lo (bytes))) | |
143 | ctx->total[1] = u64plus (ctx->total[1], u64lo (1)); | |
144 | ||
145 | /* Put the 128-bit file length in *bits* at the end of the buffer. | |
146 | Use set_uint64 rather than a simple assignment, to avoid risk of | |
147 | unaligned access. */ | |
148 | set_uint64 ((char *) &ctx->buffer[size - 2], | |
149 | SWAP (u64or (u64shl (ctx->total[1], 3), | |
150 | u64shr (ctx->total[0], 61)))); | |
151 | set_uint64 ((char *) &ctx->buffer[size - 1], | |
152 | SWAP (u64shl (ctx->total[0], 3))); | |
153 | ||
154 | memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 8 - bytes); | |
155 | ||
156 | /* Process last bytes. */ | |
157 | sha512_process_block (ctx->buffer, size * 8, ctx); | |
158 | } | |
159 | ||
160 | void * | |
161 | sha512_finish_ctx (struct sha512_ctx *ctx, void *resbuf) | |
162 | { | |
163 | sha512_conclude_ctx (ctx); | |
164 | return sha512_read_ctx (ctx, resbuf); | |
165 | } | |
166 | ||
167 | void * | |
168 | sha384_finish_ctx (struct sha512_ctx *ctx, void *resbuf) | |
169 | { | |
170 | sha512_conclude_ctx (ctx); | |
171 | return sha384_read_ctx (ctx, resbuf); | |
172 | } | |
173 | ||
174 | /* Compute SHA512 message digest for bytes read from STREAM. The | |
175 | resulting message digest number will be written into the 64 bytes | |
176 | beginning at RESBLOCK. */ | |
177 | int | |
178 | sha512_stream (FILE *stream, void *resblock) | |
179 | { | |
180 | struct sha512_ctx ctx; | |
181 | size_t sum; | |
182 | ||
183 | char *buffer = malloc (BLOCKSIZE + 72); | |
184 | if (!buffer) | |
185 | return 1; | |
186 | ||
187 | /* Initialize the computation context. */ | |
188 | sha512_init_ctx (&ctx); | |
189 | ||
190 | /* Iterate over full file contents. */ | |
191 | while (1) | |
192 | { | |
193 | /* We read the file in blocks of BLOCKSIZE bytes. One call of the | |
194 | computation function processes the whole buffer so that with the | |
195 | next round of the loop another block can be read. */ | |
196 | size_t n; | |
197 | sum = 0; | |
198 | ||
199 | /* Read block. Take care for partial reads. */ | |
200 | while (1) | |
201 | { | |
202 | n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream); | |
203 | ||
204 | sum += n; | |
205 | ||
206 | if (sum == BLOCKSIZE) | |
207 | break; | |
208 | ||
209 | if (n == 0) | |
210 | { | |
211 | /* Check for the error flag IFF N == 0, so that we don't | |
212 | exit the loop after a partial read due to e.g., EAGAIN | |
213 | or EWOULDBLOCK. */ | |
214 | if (ferror (stream)) | |
215 | { | |
216 | free (buffer); | |
217 | return 1; | |
218 | } | |
219 | goto process_partial_block; | |
220 | } | |
221 | ||
222 | /* We've read at least one byte, so ignore errors. But always | |
223 | check for EOF, since feof may be true even though N > 0. | |
224 | Otherwise, we could end up calling fread after EOF. */ | |
225 | if (feof (stream)) | |
226 | goto process_partial_block; | |
227 | } | |
228 | ||
229 | /* Process buffer with BLOCKSIZE bytes. Note that | |
230 | BLOCKSIZE % 128 == 0 | |
231 | */ | |
232 | sha512_process_block (buffer, BLOCKSIZE, &ctx); | |
233 | } | |
234 | ||
235 | process_partial_block:; | |
236 | ||
237 | /* Process any remaining bytes. */ | |
238 | if (sum > 0) | |
239 | sha512_process_bytes (buffer, sum, &ctx); | |
240 | ||
241 | /* Construct result in desired memory. */ | |
242 | sha512_finish_ctx (&ctx, resblock); | |
243 | free (buffer); | |
244 | return 0; | |
245 | } | |
246 | ||
247 | /* FIXME: Avoid code duplication */ | |
248 | int | |
249 | sha384_stream (FILE *stream, void *resblock) | |
250 | { | |
251 | struct sha512_ctx ctx; | |
252 | size_t sum; | |
253 | ||
254 | char *buffer = malloc (BLOCKSIZE + 72); | |
255 | if (!buffer) | |
256 | return 1; | |
257 | ||
258 | /* Initialize the computation context. */ | |
259 | sha384_init_ctx (&ctx); | |
260 | ||
261 | /* Iterate over full file contents. */ | |
262 | while (1) | |
263 | { | |
264 | /* We read the file in blocks of BLOCKSIZE bytes. One call of the | |
265 | computation function processes the whole buffer so that with the | |
266 | next round of the loop another block can be read. */ | |
267 | size_t n; | |
268 | sum = 0; | |
269 | ||
270 | /* Read block. Take care for partial reads. */ | |
271 | while (1) | |
272 | { | |
273 | n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream); | |
274 | ||
275 | sum += n; | |
276 | ||
277 | if (sum == BLOCKSIZE) | |
278 | break; | |
279 | ||
280 | if (n == 0) | |
281 | { | |
282 | /* Check for the error flag IFF N == 0, so that we don't | |
283 | exit the loop after a partial read due to e.g., EAGAIN | |
284 | or EWOULDBLOCK. */ | |
285 | if (ferror (stream)) | |
286 | { | |
287 | free (buffer); | |
288 | return 1; | |
289 | } | |
290 | goto process_partial_block; | |
291 | } | |
292 | ||
293 | /* We've read at least one byte, so ignore errors. But always | |
294 | check for EOF, since feof may be true even though N > 0. | |
295 | Otherwise, we could end up calling fread after EOF. */ | |
296 | if (feof (stream)) | |
297 | goto process_partial_block; | |
298 | } | |
299 | ||
300 | /* Process buffer with BLOCKSIZE bytes. Note that | |
301 | BLOCKSIZE % 128 == 0 | |
302 | */ | |
303 | sha512_process_block (buffer, BLOCKSIZE, &ctx); | |
304 | } | |
305 | ||
306 | process_partial_block:; | |
307 | ||
308 | /* Process any remaining bytes. */ | |
309 | if (sum > 0) | |
310 | sha512_process_bytes (buffer, sum, &ctx); | |
311 | ||
312 | /* Construct result in desired memory. */ | |
313 | sha384_finish_ctx (&ctx, resblock); | |
314 | free (buffer); | |
315 | return 0; | |
316 | } | |
317 | ||
318 | /* Compute SHA512 message digest for LEN bytes beginning at BUFFER. The | |
319 | result is always in little endian byte order, so that a byte-wise | |
320 | output yields to the wanted ASCII representation of the message | |
321 | digest. */ | |
322 | void * | |
323 | sha512_buffer (const char *buffer, size_t len, void *resblock) | |
324 | { | |
325 | struct sha512_ctx ctx; | |
326 | ||
327 | /* Initialize the computation context. */ | |
328 | sha512_init_ctx (&ctx); | |
329 | ||
330 | /* Process whole buffer but last len % 128 bytes. */ | |
331 | sha512_process_bytes (buffer, len, &ctx); | |
332 | ||
333 | /* Put result in desired memory area. */ | |
334 | return sha512_finish_ctx (&ctx, resblock); | |
335 | } | |
336 | ||
337 | void * | |
338 | sha384_buffer (const char *buffer, size_t len, void *resblock) | |
339 | { | |
340 | struct sha512_ctx ctx; | |
341 | ||
342 | /* Initialize the computation context. */ | |
343 | sha384_init_ctx (&ctx); | |
344 | ||
345 | /* Process whole buffer but last len % 128 bytes. */ | |
346 | sha512_process_bytes (buffer, len, &ctx); | |
347 | ||
348 | /* Put result in desired memory area. */ | |
349 | return sha384_finish_ctx (&ctx, resblock); | |
350 | } | |
351 | ||
352 | void | |
353 | sha512_process_bytes (const void *buffer, size_t len, struct sha512_ctx *ctx) | |
354 | { | |
355 | /* When we already have some bits in our internal buffer concatenate | |
356 | both inputs first. */ | |
357 | if (ctx->buflen != 0) | |
358 | { | |
359 | size_t left_over = ctx->buflen; | |
360 | size_t add = 256 - left_over > len ? len : 256 - left_over; | |
361 | ||
362 | memcpy (&((char *) ctx->buffer)[left_over], buffer, add); | |
363 | ctx->buflen += add; | |
364 | ||
365 | if (ctx->buflen > 128) | |
366 | { | |
367 | sha512_process_block (ctx->buffer, ctx->buflen & ~127, ctx); | |
368 | ||
369 | ctx->buflen &= 127; | |
370 | /* The regions in the following copy operation cannot overlap. */ | |
371 | memcpy (ctx->buffer, | |
372 | &((char *) ctx->buffer)[(left_over + add) & ~127], | |
373 | ctx->buflen); | |
374 | } | |
375 | ||
376 | buffer = (const char *) buffer + add; | |
377 | len -= add; | |
378 | } | |
379 | ||
380 | /* Process available complete blocks. */ | |
381 | if (len >= 128) | |
382 | { | |
383 | #if !_STRING_ARCH_unaligned | |
384 | # define alignof(type) offsetof (struct { char c; type x; }, x) | |
385 | # define UNALIGNED_P(p) (((size_t) p) % alignof (u64) != 0) | |
386 | if (UNALIGNED_P (buffer)) | |
387 | while (len > 128) | |
388 | { | |
389 | sha512_process_block (memcpy (ctx->buffer, buffer, 128), 128, ctx); | |
390 | buffer = (const char *) buffer + 128; | |
391 | len -= 128; | |
392 | } | |
393 | else | |
394 | #endif | |
395 | { | |
396 | sha512_process_block (buffer, len & ~127, ctx); | |
397 | buffer = (const char *) buffer + (len & ~127); | |
398 | len &= 127; | |
399 | } | |
400 | } | |
401 | ||
402 | /* Move remaining bytes in internal buffer. */ | |
403 | if (len > 0) | |
404 | { | |
405 | size_t left_over = ctx->buflen; | |
406 | ||
407 | memcpy (&((char *) ctx->buffer)[left_over], buffer, len); | |
408 | left_over += len; | |
409 | if (left_over >= 128) | |
410 | { | |
411 | sha512_process_block (ctx->buffer, 128, ctx); | |
412 | left_over -= 128; | |
413 | memcpy (ctx->buffer, &ctx->buffer[16], left_over); | |
414 | } | |
415 | ctx->buflen = left_over; | |
416 | } | |
417 | } | |
418 | ||
419 | /* --- Code below is the primary difference between sha1.c and sha512.c --- */ | |
420 | ||
421 | /* SHA512 round constants */ | |
422 | #define K(I) sha512_round_constants[I] | |
423 | static u64 const sha512_round_constants[80] = { | |
424 | u64init (0x428a2f98, 0xd728ae22), u64init (0x71374491, 0x23ef65cd), | |
425 | u64init (0xb5c0fbcf, 0xec4d3b2f), u64init (0xe9b5dba5, 0x8189dbbc), | |
426 | u64init (0x3956c25b, 0xf348b538), u64init (0x59f111f1, 0xb605d019), | |
427 | u64init (0x923f82a4, 0xaf194f9b), u64init (0xab1c5ed5, 0xda6d8118), | |
428 | u64init (0xd807aa98, 0xa3030242), u64init (0x12835b01, 0x45706fbe), | |
429 | u64init (0x243185be, 0x4ee4b28c), u64init (0x550c7dc3, 0xd5ffb4e2), | |
430 | u64init (0x72be5d74, 0xf27b896f), u64init (0x80deb1fe, 0x3b1696b1), | |
431 | u64init (0x9bdc06a7, 0x25c71235), u64init (0xc19bf174, 0xcf692694), | |
432 | u64init (0xe49b69c1, 0x9ef14ad2), u64init (0xefbe4786, 0x384f25e3), | |
433 | u64init (0x0fc19dc6, 0x8b8cd5b5), u64init (0x240ca1cc, 0x77ac9c65), | |
434 | u64init (0x2de92c6f, 0x592b0275), u64init (0x4a7484aa, 0x6ea6e483), | |
435 | u64init (0x5cb0a9dc, 0xbd41fbd4), u64init (0x76f988da, 0x831153b5), | |
436 | u64init (0x983e5152, 0xee66dfab), u64init (0xa831c66d, 0x2db43210), | |
437 | u64init (0xb00327c8, 0x98fb213f), u64init (0xbf597fc7, 0xbeef0ee4), | |
438 | u64init (0xc6e00bf3, 0x3da88fc2), u64init (0xd5a79147, 0x930aa725), | |
439 | u64init (0x06ca6351, 0xe003826f), u64init (0x14292967, 0x0a0e6e70), | |
440 | u64init (0x27b70a85, 0x46d22ffc), u64init (0x2e1b2138, 0x5c26c926), | |
441 | u64init (0x4d2c6dfc, 0x5ac42aed), u64init (0x53380d13, 0x9d95b3df), | |
442 | u64init (0x650a7354, 0x8baf63de), u64init (0x766a0abb, 0x3c77b2a8), | |
443 | u64init (0x81c2c92e, 0x47edaee6), u64init (0x92722c85, 0x1482353b), | |
444 | u64init (0xa2bfe8a1, 0x4cf10364), u64init (0xa81a664b, 0xbc423001), | |
445 | u64init (0xc24b8b70, 0xd0f89791), u64init (0xc76c51a3, 0x0654be30), | |
446 | u64init (0xd192e819, 0xd6ef5218), u64init (0xd6990624, 0x5565a910), | |
447 | u64init (0xf40e3585, 0x5771202a), u64init (0x106aa070, 0x32bbd1b8), | |
448 | u64init (0x19a4c116, 0xb8d2d0c8), u64init (0x1e376c08, 0x5141ab53), | |
449 | u64init (0x2748774c, 0xdf8eeb99), u64init (0x34b0bcb5, 0xe19b48a8), | |
450 | u64init (0x391c0cb3, 0xc5c95a63), u64init (0x4ed8aa4a, 0xe3418acb), | |
451 | u64init (0x5b9cca4f, 0x7763e373), u64init (0x682e6ff3, 0xd6b2b8a3), | |
452 | u64init (0x748f82ee, 0x5defb2fc), u64init (0x78a5636f, 0x43172f60), | |
453 | u64init (0x84c87814, 0xa1f0ab72), u64init (0x8cc70208, 0x1a6439ec), | |
454 | u64init (0x90befffa, 0x23631e28), u64init (0xa4506ceb, 0xde82bde9), | |
455 | u64init (0xbef9a3f7, 0xb2c67915), u64init (0xc67178f2, 0xe372532b), | |
456 | u64init (0xca273ece, 0xea26619c), u64init (0xd186b8c7, 0x21c0c207), | |
457 | u64init (0xeada7dd6, 0xcde0eb1e), u64init (0xf57d4f7f, 0xee6ed178), | |
458 | u64init (0x06f067aa, 0x72176fba), u64init (0x0a637dc5, 0xa2c898a6), | |
459 | u64init (0x113f9804, 0xbef90dae), u64init (0x1b710b35, 0x131c471b), | |
460 | u64init (0x28db77f5, 0x23047d84), u64init (0x32caab7b, 0x40c72493), | |
461 | u64init (0x3c9ebe0a, 0x15c9bebc), u64init (0x431d67c4, 0x9c100d4c), | |
462 | u64init (0x4cc5d4be, 0xcb3e42b6), u64init (0x597f299c, 0xfc657e2a), | |
463 | u64init (0x5fcb6fab, 0x3ad6faec), u64init (0x6c44198c, 0x4a475817), | |
464 | }; | |
465 | ||
466 | /* Round functions. */ | |
467 | #define F2(A, B, C) u64or (u64and (A, B), u64and (C, u64or (A, B))) | |
468 | #define F1(E, F, G) u64xor (G, u64and (E, u64xor (F, G))) | |
469 | ||
470 | /* Process LEN bytes of BUFFER, accumulating context into CTX. | |
471 | It is assumed that LEN % 128 == 0. | |
472 | Most of this code comes from GnuPG's cipher/sha1.c. */ | |
473 | ||
474 | void | |
475 | sha512_process_block (const void *buffer, size_t len, struct sha512_ctx *ctx) | |
476 | { | |
477 | u64 const *words = buffer; | |
478 | u64 const *endp = words + len / sizeof (u64); | |
479 | u64 x[16]; | |
480 | u64 a = ctx->state[0]; | |
481 | u64 b = ctx->state[1]; | |
482 | u64 c = ctx->state[2]; | |
483 | u64 d = ctx->state[3]; | |
484 | u64 e = ctx->state[4]; | |
485 | u64 f = ctx->state[5]; | |
486 | u64 g = ctx->state[6]; | |
487 | u64 h = ctx->state[7]; | |
488 | ||
489 | /* First increment the byte count. FIPS PUB 180-2 specifies the possible | |
490 | length of the file up to 2^128 bits. Here we only compute the | |
491 | number of bytes. Do a double word increment. */ | |
492 | ctx->total[0] = u64plus (ctx->total[0], u64lo (len)); | |
493 | if (u64lt (ctx->total[0], u64lo (len))) | |
494 | ctx->total[1] = u64plus (ctx->total[1], u64lo (1)); | |
495 | ||
496 | #define S0(x) u64xor (u64rol(x, 63), u64xor (u64rol (x, 56), u64shr (x, 7))) | |
497 | #define S1(x) u64xor (u64rol (x, 45), u64xor (u64rol (x, 3), u64shr (x, 6))) | |
498 | #define SS0(x) u64xor (u64rol (x, 36), u64xor (u64rol (x, 30), u64rol (x, 25))) | |
499 | #define SS1(x) u64xor (u64rol(x, 50), u64xor (u64rol (x, 46), u64rol (x, 23))) | |
500 | ||
501 | #define M(I) (x[(I) & 15] \ | |
502 | = u64plus (x[(I) & 15], \ | |
503 | u64plus (S1 (x[((I) - 2) & 15]), \ | |
504 | u64plus (x[((I) - 7) & 15], \ | |
505 | S0 (x[((I) - 15) & 15]))))) | |
506 | ||
507 | #define R(A, B, C, D, E, F, G, H, K, M) \ | |
508 | do \ | |
509 | { \ | |
510 | u64 t0 = u64plus (SS0 (A), F2 (A, B, C)); \ | |
511 | u64 t1 = \ | |
512 | u64plus (H, u64plus (SS1 (E), \ | |
513 | u64plus (F1 (E, F, G), u64plus (K, M)))); \ | |
514 | D = u64plus (D, t1); \ | |
515 | H = u64plus (t0, t1); \ | |
516 | } \ | |
517 | while (0) | |
518 | ||
519 | while (words < endp) | |
520 | { | |
521 | int t; | |
522 | /* FIXME: see sha1.c for a better implementation. */ | |
523 | for (t = 0; t < 16; t++) | |
524 | { | |
525 | x[t] = SWAP (*words); | |
526 | words++; | |
527 | } | |
528 | ||
529 | R( a, b, c, d, e, f, g, h, K( 0), x[ 0] ); | |
530 | R( h, a, b, c, d, e, f, g, K( 1), x[ 1] ); | |
531 | R( g, h, a, b, c, d, e, f, K( 2), x[ 2] ); | |
532 | R( f, g, h, a, b, c, d, e, K( 3), x[ 3] ); | |
533 | R( e, f, g, h, a, b, c, d, K( 4), x[ 4] ); | |
534 | R( d, e, f, g, h, a, b, c, K( 5), x[ 5] ); | |
535 | R( c, d, e, f, g, h, a, b, K( 6), x[ 6] ); | |
536 | R( b, c, d, e, f, g, h, a, K( 7), x[ 7] ); | |
537 | R( a, b, c, d, e, f, g, h, K( 8), x[ 8] ); | |
538 | R( h, a, b, c, d, e, f, g, K( 9), x[ 9] ); | |
539 | R( g, h, a, b, c, d, e, f, K(10), x[10] ); | |
540 | R( f, g, h, a, b, c, d, e, K(11), x[11] ); | |
541 | R( e, f, g, h, a, b, c, d, K(12), x[12] ); | |
542 | R( d, e, f, g, h, a, b, c, K(13), x[13] ); | |
543 | R( c, d, e, f, g, h, a, b, K(14), x[14] ); | |
544 | R( b, c, d, e, f, g, h, a, K(15), x[15] ); | |
545 | R( a, b, c, d, e, f, g, h, K(16), M(16) ); | |
546 | R( h, a, b, c, d, e, f, g, K(17), M(17) ); | |
547 | R( g, h, a, b, c, d, e, f, K(18), M(18) ); | |
548 | R( f, g, h, a, b, c, d, e, K(19), M(19) ); | |
549 | R( e, f, g, h, a, b, c, d, K(20), M(20) ); | |
550 | R( d, e, f, g, h, a, b, c, K(21), M(21) ); | |
551 | R( c, d, e, f, g, h, a, b, K(22), M(22) ); | |
552 | R( b, c, d, e, f, g, h, a, K(23), M(23) ); | |
553 | R( a, b, c, d, e, f, g, h, K(24), M(24) ); | |
554 | R( h, a, b, c, d, e, f, g, K(25), M(25) ); | |
555 | R( g, h, a, b, c, d, e, f, K(26), M(26) ); | |
556 | R( f, g, h, a, b, c, d, e, K(27), M(27) ); | |
557 | R( e, f, g, h, a, b, c, d, K(28), M(28) ); | |
558 | R( d, e, f, g, h, a, b, c, K(29), M(29) ); | |
559 | R( c, d, e, f, g, h, a, b, K(30), M(30) ); | |
560 | R( b, c, d, e, f, g, h, a, K(31), M(31) ); | |
561 | R( a, b, c, d, e, f, g, h, K(32), M(32) ); | |
562 | R( h, a, b, c, d, e, f, g, K(33), M(33) ); | |
563 | R( g, h, a, b, c, d, e, f, K(34), M(34) ); | |
564 | R( f, g, h, a, b, c, d, e, K(35), M(35) ); | |
565 | R( e, f, g, h, a, b, c, d, K(36), M(36) ); | |
566 | R( d, e, f, g, h, a, b, c, K(37), M(37) ); | |
567 | R( c, d, e, f, g, h, a, b, K(38), M(38) ); | |
568 | R( b, c, d, e, f, g, h, a, K(39), M(39) ); | |
569 | R( a, b, c, d, e, f, g, h, K(40), M(40) ); | |
570 | R( h, a, b, c, d, e, f, g, K(41), M(41) ); | |
571 | R( g, h, a, b, c, d, e, f, K(42), M(42) ); | |
572 | R( f, g, h, a, b, c, d, e, K(43), M(43) ); | |
573 | R( e, f, g, h, a, b, c, d, K(44), M(44) ); | |
574 | R( d, e, f, g, h, a, b, c, K(45), M(45) ); | |
575 | R( c, d, e, f, g, h, a, b, K(46), M(46) ); | |
576 | R( b, c, d, e, f, g, h, a, K(47), M(47) ); | |
577 | R( a, b, c, d, e, f, g, h, K(48), M(48) ); | |
578 | R( h, a, b, c, d, e, f, g, K(49), M(49) ); | |
579 | R( g, h, a, b, c, d, e, f, K(50), M(50) ); | |
580 | R( f, g, h, a, b, c, d, e, K(51), M(51) ); | |
581 | R( e, f, g, h, a, b, c, d, K(52), M(52) ); | |
582 | R( d, e, f, g, h, a, b, c, K(53), M(53) ); | |
583 | R( c, d, e, f, g, h, a, b, K(54), M(54) ); | |
584 | R( b, c, d, e, f, g, h, a, K(55), M(55) ); | |
585 | R( a, b, c, d, e, f, g, h, K(56), M(56) ); | |
586 | R( h, a, b, c, d, e, f, g, K(57), M(57) ); | |
587 | R( g, h, a, b, c, d, e, f, K(58), M(58) ); | |
588 | R( f, g, h, a, b, c, d, e, K(59), M(59) ); | |
589 | R( e, f, g, h, a, b, c, d, K(60), M(60) ); | |
590 | R( d, e, f, g, h, a, b, c, K(61), M(61) ); | |
591 | R( c, d, e, f, g, h, a, b, K(62), M(62) ); | |
592 | R( b, c, d, e, f, g, h, a, K(63), M(63) ); | |
593 | R( a, b, c, d, e, f, g, h, K(64), M(64) ); | |
594 | R( h, a, b, c, d, e, f, g, K(65), M(65) ); | |
595 | R( g, h, a, b, c, d, e, f, K(66), M(66) ); | |
596 | R( f, g, h, a, b, c, d, e, K(67), M(67) ); | |
597 | R( e, f, g, h, a, b, c, d, K(68), M(68) ); | |
598 | R( d, e, f, g, h, a, b, c, K(69), M(69) ); | |
599 | R( c, d, e, f, g, h, a, b, K(70), M(70) ); | |
600 | R( b, c, d, e, f, g, h, a, K(71), M(71) ); | |
601 | R( a, b, c, d, e, f, g, h, K(72), M(72) ); | |
602 | R( h, a, b, c, d, e, f, g, K(73), M(73) ); | |
603 | R( g, h, a, b, c, d, e, f, K(74), M(74) ); | |
604 | R( f, g, h, a, b, c, d, e, K(75), M(75) ); | |
605 | R( e, f, g, h, a, b, c, d, K(76), M(76) ); | |
606 | R( d, e, f, g, h, a, b, c, K(77), M(77) ); | |
607 | R( c, d, e, f, g, h, a, b, K(78), M(78) ); | |
608 | R( b, c, d, e, f, g, h, a, K(79), M(79) ); | |
609 | ||
610 | a = ctx->state[0] = u64plus (ctx->state[0], a); | |
611 | b = ctx->state[1] = u64plus (ctx->state[1], b); | |
612 | c = ctx->state[2] = u64plus (ctx->state[2], c); | |
613 | d = ctx->state[3] = u64plus (ctx->state[3], d); | |
614 | e = ctx->state[4] = u64plus (ctx->state[4], e); | |
615 | f = ctx->state[5] = u64plus (ctx->state[5], f); | |
616 | g = ctx->state[6] = u64plus (ctx->state[6], g); | |
617 | h = ctx->state[7] = u64plus (ctx->state[7], h); | |
618 | } | |
619 | } |