chiark / gitweb /
codec, baseconv: Cleanup of the various binary encoding functions.
[mLib] / hash / unihash.h
CommitLineData
8fe3c82b 1/* -*-c-*-
8fe3c82b 2 *
3 * Simple and efficient universal hashing for hashtables
4 *
5 * (c) 2003 Straylight/Edgeware
6 */
7
d4efbcd9 8/*----- Licensing notice --------------------------------------------------*
8fe3c82b 9 *
10 * This file is part of the mLib utilities library.
11 *
12 * mLib is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
d4efbcd9 16 *
8fe3c82b 17 * mLib is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
d4efbcd9 21 *
8fe3c82b 22 * You should have received a copy of the GNU Library General Public
23 * License along with mLib; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
8fe3c82b 28#ifndef MLIB_UNIHASH_H
29#define MLIB_UNIHASH_H
30
31#ifdef __cplusplus
32 extern "C" {
33#endif
34
35
36/*----- Concept -----------------------------------------------------------*
37 *
38 * Let %$\gf{q}$% be a finite field. Choose an arbitrary %$k \inr \gf{q}$%.
39 * Let %$M$% be a message. Injectively pad %$M$% and split it into blocks
40 * $m_{n-1}, m_{n-2}, \ldots, m_2, m_1, m_0$% in %$\gf{q}%.
41 * Then we compute
42 *
573eadb5 43 * %$H_k(M) = k^{n+1} + \sum_{0\le i<n} m_i k^{i+1}.$%
8fe3c82b 44 *
45 * Note that %$H_0(M) = 0$% for all messages %$M$%.
46 *
47 * If we deal with messages at most %$\ell$% blocks long then %$H_k(\cdot)$%
48 * is %$(\ell + 1)/q$%-almost universal. Moreover, if %$q = 2^f$% then
49 * %$H_k(\cdot)$% is %$(\ell + 1)/q$%-almost XOR-universal.
50 *
51 * Proof. Let %$A$% and %$B$% be two messages, represented by
52 * %$a_{n-1}, \ldots, a_0$% and %$b_{m-1}, \ldots, b_0$% respectively; and
53 * choose any %$\delta \in \gf{q}$%. We must bound the probability that
54 *
55 * %$k^{n+1} + a_{n-1} k^{n} + \cdots + a_1 k^2 + a_0 k - {}$%
56 * %$k^{m+1} - b_{m-1} k^{m} - \cdots - b_1 k^2 - b_0 k = \delta$%.
57 *
58 * Firstly, we claim that if %$A$% and %$B$% are distinct, there is some
59 * nonzero coefficient of %$k$%. For if %$n \ne m$% then, without loss of
60 * generality, let %$n > m$%, and hence the coefficient of %$k_n$% is
61 * nonzero. Alternatively, if %$n = m$% then there must be some
62 * %$i \in \{ 0, \ldots, n - 1 \}$% with %$a_i \ne b_i$%, for otherwise the
63 * messages would be identical; but then the coefficient of %$k^{i+1}$% is
64 * %$a_i - b_i \ne 0$%.
65 *
66 * Hence we have a polynomial equation with degree at most %$\ell + 1$%;
67 * there must be at most %$\ell + 1$% solutions for %$k$%; but we choose
68 * %$k$% at random from a set of %$q$%; so the equation is true with
69 * probability at most %$(\ell + 1)/q$%.
70 *
71 * This function can be used as a simple MAC with provable security against
72 * computationally unbounded adversaries. Simply XOR the hash with a random
73 * string indexed from a large random pad by some nonce sent with the
74 * message. The probability of a forgery attempt being successful is then
573eadb5 75 * %$(\ell + 1)/2^t$%, where %$t$% is the tag length and %$\ell$% is the
76 * longest message permitted.
8fe3c82b 77 */
78
79/*----- Practicalities ----------------------------------------------------*
80 *
81 * We work in %$\gf{2^32}$%, represented as a field of polynomials modulo
573eadb5 82 * %$\texttt{104c11db7}_x$% (this is the standard CRC-32 polynomial). Our
83 * blocks are bytes.
8fe3c82b 84 *
85 * The choice of a 32-bit hash is made for pragmatic reasons: we're never
86 * likely to actually want all 32 bits for a real hashtable anyway. The
87 * truncation result is needed to keep us afloat with smaller tables.
88 *
89 * We compute hashes using a slightly unrolled version of Horner's rule,
90 * using the recurrence:
91 *
92 * %$a_{i+b} = (a_i + m_i) k^b + m_{i+1} k^{b-1} + \cdots + m_{i+b-1} k$%
93 *
94 * which involves one full-width multiply and %$b - 1$% one-byte multiplies;
95 * the latter may be efficiently computed using a table lookup. Start with
96 * %$a_0 = k$%.
97 *
98 * We precompute tables %$S[\cdot][\cdot][\cdot]$%, where
99 *
100 * %$S[u][v][w] = k^{u+1} x^{8v} w$%
101 * for %$0 \le u < b$%, %$0 \le v < 4$%, %$0 \le w < 256)$%.
102 *
103 * A one-byte multiply is one lookup; a full-width multiply is four lookups
104 * and three XORs. The processing required is then %$b + 3$% lookups and
105 * %$b + 3$% XORs per batch, or %$(b + 3)/b$% lookups and XORs per byte, at
106 * the expense of %$4 b$% kilobytes of tables. This compares relatively
107 * favorably with CRC32. Indeed, in tests, this implementation with $b = 4$%
108 * is faster than a 32-bit CRC.
109 */
110
111/*----- Header files ------------------------------------------------------*/
112
113#include <stddef.h>
114
115#ifndef MLIB_BITS_H
116# include "bits.h"
117#endif
118
119/*----- Data structures ---------------------------------------------------*/
120
121#define UNIHASH_NBATCH 4
122#define UNIHASH_POLY 0x04c11db7 /* From CRC32 */
123
124typedef struct unihash_info {
125 uint32 s[UNIHASH_NBATCH][4][256]; /* S-tables as described */
126} unihash_info;
127
6f444bda 128/*----- A global hash-info table ------------------------------------------*/
129
130extern unihash_info unihash_global; /* Key this if you like */
131
8fe3c82b 132/*----- Functions provided ------------------------------------------------*/
133
134/* --- @unihash_setkey@ --- *
135 *
136 * Arguments: @unihash_info *i@ = where to store the precomputed tables
137 * @uint32 k@ = the key to set, randomly chosen
138 *
139 * Returns: ---
140 *
141 * Use: Calculates the tables required for efficient hashing.
142 */
143
144extern void unihash_setkey(unihash_info */*i*/, uint32 /*k*/);
145
146/* --- @unihash_hash@ --- *
147 *
148 * Arguments: @const unihash_info *i@ = pointer to precomputed table
149 * @uint32 a@ = @UNIHASH_INIT(i)@ or value from previous call
150 * @const void *p@ = pointer to data to hash
151 * @size_t sz@ = size of the data
152 *
573eadb5 153 * Returns: Hash of data so far.
8fe3c82b 154 *
d4efbcd9 155 * Use: Hashes data. Call this as many times as needed.
8fe3c82b 156 */
157
158#define UNIHASH_INIT(i) ((i)->s[0][0][1]) /* %$k$% */
159
160extern uint32 unihash_hash(const unihash_info */*i*/, uint32 /*a*/,
161 const void */*p*/, size_t /*sz*/);
162
163/* --- @unihash@ --- *
164 *
165 * Arguments: @const unihash_info *i@ = precomputed tables
166 * @const void *p@ = pointer to data to hash
167 * @size_t sz@ = size of the data
168 *
169 * Returns: The hash value computed.
170 *
171 * Use: All-in-one hashing function. No faster than using the
d4efbcd9 172 * separate calls, but more convenient.
8fe3c82b 173 */
174
175#define UNIHASH(i, p, sz) (unihash_hash((i), UNIHASH_INIT((i)), (p), (sz)))
176
177extern uint32 unihash(const unihash_info */*i*/,
178 const void */*p*/, size_t /*sz*/);
179
180/*----- That's all, folks -------------------------------------------------*/
181
182#ifdef __cplusplus
183 }
184#endif
185
186#endif