X-Git-Url: http://www.chiark.greenend.org.uk/ucgi/~mdw/git/disorder/blobdiff_plain/56fd389cfb7656c00faa213c33ec52bb66c79bd2..32b158f23f2909163f0414b67706ae7b201cb7a2:/lib/unicode.c diff --git a/lib/unicode.c b/lib/unicode.c index 749916a..95c9f6d 100644 --- a/lib/unicode.c +++ b/lib/unicode.c @@ -21,7 +21,8 @@ * @brief Unicode support functions * * Here by UTF-8 and UTF-8 we mean the encoding forms of those names (not the - * encoding schemes). + * encoding schemes). The primary encoding form is UTF-32 but convenience + * wrappers using UTF-8 are provided for a number of functions. * * The idea is that all the strings that hit the database will be in a * particular normalization form, and for the search and tags database @@ -42,6 +43,115 @@ #include "unicode.h" #include "unidata.h" +/** @defgroup utf32props Unicode Code Point Properties */ +/*@{*/ + +static const struct unidata *utf32__unidata_hard(uint32_t c); + +/** @brief Find definition of code point @p c + * @param c Code point + * @return Pointer to @ref unidata structure for @p c + * + * @p c can be any 32-bit value, a sensible value will be returned regardless. + * The returned pointer is NOT guaranteed to be unique to @p c. + */ +static inline const struct unidata *utf32__unidata(uint32_t c) { + /* The bottom half of the table contains almost everything of interest + * and we can just return the right thing straight away */ + if(c < UNICODE_BREAK_START) + return &unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS]; + else + return utf32__unidata_hard(c); +} + +/** @brief Find definition of code point @p c + * @param c Code point + * @return Pointer to @ref unidata structure for @p c + * + * @p c can be any 32-bit value, a sensible value will be returned regardless. + * The returned pointer is NOT guaranteed to be unique to @p c. + * + * Don't use this function (although it will work fine) - use utf32__unidata() + * instead. + */ +static const struct unidata *utf32__unidata_hard(uint32_t c) { + if(c < UNICODE_BREAK_START) + return &unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS]; + /* Within the break everything is unassigned */ + if(c < UNICODE_BREAK_END) + return utf32__unidata(0xFFFF); /* guaranteed to be Cn */ + /* Planes 15 and 16 are (mostly) private use */ + if((c >= 0xF0000 && c <= 0xFFFFD) + || (c >= 0x100000 && c <= 0x10FFFD)) + return utf32__unidata(0xE000); /* first Co code point */ + /* Everything else above the break top is unassigned */ + if(c >= UNICODE_BREAK_TOP) + return utf32__unidata(0xFFFF); /* guaranteed to be Cn */ + /* Currently the rest is language tags and variation selectors */ + c -= (UNICODE_BREAK_END - UNICODE_BREAK_START); + return &unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS]; +} + +/** @brief Return the combining class of @p c + * @param c Code point + * @return Combining class of @p c + * + * @p c can be any 32-bit value, a sensible value will be returned regardless. + */ +static inline int utf32__combining_class(uint32_t c) { + return utf32__unidata(c)->ccc; +} + +/** @brief Return the General_Category value for @p c + * @param Code point + * @return General_Category property value + * + * @p c can be any 32-bit value, a sensible value will be returned regardless. + */ +static inline enum unicode_General_Category utf32__general_category(uint32_t c) { + return utf32__unidata(c)->general_category; +} + +/** @brief Determine Grapheme_Break property + * @param c Code point + * @return Grapheme_Break property value of @p c + * + * @p c can be any 32-bit value, a sensible value will be returned regardless. + */ +static inline enum unicode_Grapheme_Break utf32__grapheme_break(uint32_t c) { + return utf32__unidata(c)->grapheme_break; +} + +/** @brief Determine Word_Break property + * @param c Code point + * @return Word_Break property value of @p c + * + * @p c can be any 32-bit value, a sensible value will be returned regardless. + */ +static inline enum unicode_Word_Break utf32__word_break(uint32_t c) { + return utf32__unidata(c)->word_break; +} + +/** @brief Determine Sentence_Break property + * @param c Code point + * @return Word_Break property value of @p c + * + * @p c can be any 32-bit value, a sensible value will be returned regardless. + */ +static inline enum unicode_Sentence_Break utf32__sentence_break(uint32_t c) { + return utf32__unidata(c)->sentence_break; +} + +/** @brief Return true if @p c is ignorable for boundary specifications + * @param wb Word break property value + * @return non-0 if @p wb is unicode_Word_Break_Extend or unicode_Word_Break_Format + */ +static inline int utf32__boundary_ignorable(enum unicode_Word_Break wb) { + return (wb == unicode_Word_Break_Extend + || wb == unicode_Word_Break_Format); +} + +/*@}*/ /** @defgroup utftransform Functions that transform between different Unicode encoding forms */ /*@{*/ @@ -112,69 +222,46 @@ error: */ uint32_t *utf8_to_utf32(const char *s, size_t ns, size_t *ndp) { struct dynstr_ucs4 d; - uint32_t c32, c; + uint32_t c32; const uint8_t *ss = (const uint8_t *)s; + int n; dynstr_ucs4_init(&d); while(ns > 0) { - c = *ss++; - --ns; - /* Acceptable UTF-8 is that which codes for Unicode Scalar Values - * (Unicode 5.0.0 s3.9 D76) - * - * 0xxxxxxx - * 7 data bits gives 0x00 - 0x7F and all are acceptable - * - * 110xxxxx 10xxxxxx - * 11 data bits gives 0x0000 - 0x07FF but only 0x0080 - 0x07FF acceptable - * - * 1110xxxx 10xxxxxx 10xxxxxx - * 16 data bits gives 0x0000 - 0xFFFF but only 0x0800 - 0xFFFF acceptable - * (and UTF-16 surrogates are not acceptable) - * - * 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx - * 21 data bits gives 0x00000000 - 0x001FFFFF - * but only 0x00010000 - 0x0010FFFF are acceptable - * - * It is NOT always the case that the data bits in the first byte are - * always non-0 for the acceptable values, so we do a separate check after - * decoding. - */ - if(c < 0x80) - c32 = c; - else if(c <= 0xDF) { - if(ns < 1) goto error; - c32 = c & 0x1F; - c = *ss++; - if((c & 0xC0) != 0x80) goto error; - c32 = (c32 << 6) | (c & 0x3F); - if(c32 < 0x80) goto error; - } else if(c <= 0xEF) { - if(ns < 2) goto error; - c32 = c & 0x0F; - c = *ss++; - if((c & 0xC0) != 0x80) goto error; - c32 = (c32 << 6) | (c & 0x3F); - c = *ss++; - if((c & 0xC0) != 0x80) goto error; - c32 = (c32 << 6) | (c & 0x3F); - if(c32 < 0x0800 || (c32 >= 0xD800 && c32 <= 0xDFFF)) goto error; - } else if(c <= 0xF7) { - if(ns < 3) goto error; - c32 = c & 0x07; - c = *ss++; - if((c & 0xC0) != 0x80) goto error; - c32 = (c32 << 6) | (c & 0x3F); - c = *ss++; - if((c & 0xC0) != 0x80) goto error; - c32 = (c32 << 6) | (c & 0x3F); - c = *ss++; - if((c & 0xC0) != 0x80) goto error; - c32 = (c32 << 6) | (c & 0x3F); - if(c32 < 0x00010000 || c32 > 0x0010FFFF) goto error; + const struct unicode_utf8_row *const r = &unicode_utf8_valid[*ss]; + if(r->count <= ns) { + switch(r->count) { + case 1: + c32 = *ss; + break; + case 2: + if(ss[1] < r->min2 || ss[1] > r->max2) + goto error; + c32 = *ss & 0x1F; + break; + case 3: + if(ss[1] < r->min2 || ss[1] > r->max2) + goto error; + c32 = *ss & 0x0F; + break; + case 4: + if(ss[1] < r->min2 || ss[1] > r->max2) + goto error; + c32 = *ss & 0x07; + break; + default: + goto error; + } } else goto error; + for(n = 1; n < r->count; ++n) { + if(ss[n] < 0x80 || ss[n] > 0xBF) + goto error; + c32 = (c32 << 6) | (ss[n] & 0x3F); + } dynstr_ucs4_append(&d, c32); + ss += r->count; + ns -= r->count; } dynstr_ucs4_terminate(&d); if(ndp) @@ -185,6 +272,342 @@ error: return 0; } +/** @brief Test whether [s,s+ns) is valid UTF-8 + * @param s Start of string + * @param ns Length of string + * @return non-0 if @p s is valid UTF-8, 0 if it is not valid + * + * This function is intended to be much faster than calling utf8_to_utf32() and + * throwing away the result. + */ +int utf8_valid(const char *s, size_t ns) { + const uint8_t *ss = (const uint8_t *)s; + while(ns > 0) { + const struct unicode_utf8_row *const r = &unicode_utf8_valid[*ss]; + if(r->count <= ns) { + switch(r->count) { + case 1: + break; + case 2: + if(ss[1] < r->min2 || ss[1] > r->max2) + return 0; + break; + case 3: + if(ss[1] < r->min2 || ss[1] > r->max2) + return 0; + if(ss[2] < 0x80 || ss[2] > 0xBF) + return 0; + break; + case 4: + if(ss[1] < r->min2 || ss[1] > r->max2) + return 0; + if(ss[2] < 0x80 || ss[2] > 0xBF) + return 0; + if(ss[3] < 0x80 || ss[3] > 0xBF) + return 0; + break; + default: + return 0; + } + } else + return 0; + ss += r->count; + ns -= r->count; + } + return 1; +} + +/*@}*/ +/** @defgroup utf32iterator UTF-32 string iterators */ +/*@{*/ + +struct utf32_iterator_data { + /** @brief Start of string */ + const uint32_t *s; + + /** @brief Length of string */ + size_t ns; + + /** @brief Current position */ + size_t n; + + /** @brief Last two non-ignorable characters or (uint32_t)-1 + * + * last[1] is the non-Extend/Format character just before position @p n; + * last[0] is the one just before that. + * + * Exception 1: if there is no such non-Extend/Format character then an + * Extend/Format character is accepted instead. + * + * Exception 2: if there is no such character even taking that into account + * the value is (uint32_t)-1. + */ + uint32_t last[2]; +}; + +/** @brief Create a new iterator pointing at the start of a string + * @param s Start of string + * @param ns Length of string + * @return New iterator + */ +utf32_iterator utf32_iterator_new(const uint32_t *s, size_t ns) { + utf32_iterator it = xmalloc(sizeof *it); + it->s = s; + it->ns = ns; + it->n = 0; + it->last[0] = it->last[1] = -1; + return it; +} + +/** @brief Initialize an internal private iterator + * @param it Iterator + * @param s Start of string + * @param ns Length of string + * @param n Absolute position + */ +static void utf32__iterator_init(utf32_iterator it, + const uint32_t *s, size_t ns, size_t n) { + it->s = s; + it->ns = ns; + it->n = 0; + it->last[0] = it->last[1] = -1; + utf32_iterator_advance(it, n); +} + +/** @brief Destroy an iterator + * @param it Iterator + */ +void utf32_iterator_destroy(utf32_iterator it) { + xfree(it); +} + +/** @brief Find the current position of an interator + * @param it Iterator + */ +size_t utf32_iterator_where(utf32_iterator it) { + return it->n; +} + +/** @brief Set an iterator's absolute position + * @param it Iterator + * @param n Absolute position + * @return 0 on success, non-0 on error + * + * It is an error to position the iterator outside the string (but acceptable + * to point it at the hypothetical post-final character). If an invalid value + * of @p n is specified then the iterator is not changed. + */ +int utf32_iterator_set(utf32_iterator it, size_t n) { + /* TODO figure out how far we must back up to be able to re-synchronize; see + * UAX #29 s6.4. */ + if(n > it->ns) + return -1; + if(n >= it->n) + n -= it->n; + else { + it->n = 0; + it->last[0] = it->last[1] = -1; + } + return utf32_iterator_advance(it, n); +} + +/** @brief Advance an iterator + * @param it Iterator + * @param count Number of code points to advance by + * @return 0 on success, non-0 on error + * + * It is an error to advance an iterator beyond the hypothetical post-final + * character of the string. If an invalid value of @p n is specified then the + * iterator is not changed. + * + * This function has O(n) time complexity: it works by advancing naively + * forwards through the string. + */ +int utf32_iterator_advance(utf32_iterator it, size_t count) { + if(count <= it->ns - it->n) { + while(count > 0) { + const uint32_t c = it->s[it->n]; + const enum unicode_Word_Break wb = utf32__word_break(c); + if(it->last[1] == (uint32_t)-1 + || !utf32__boundary_ignorable(wb)) { + it->last[0] = it->last[1]; + it->last[1] = c; + } + ++it->n; + --count; + } + return 0; + } else + return -1; +} + +/** @brief Find the current code point + * @param it Iterator + * @return Current code point or 0 + * + * If the iterator points at the hypothetical post-final character of the + * string then 0 is returned. NB that this doesn't mean that there aren't any + * 0 code points inside the string! + */ +uint32_t utf32_iterator_code(utf32_iterator it) { + if(it->n < it->ns) + return it->s[it->n]; + else + return 0; +} + +/** @brief Test for a grapheme boundary + * @param it Iterator + * @return Non-0 if pointing just after a grapheme boundary, otherwise 0 + */ +int utf32_iterator_grapheme_boundary(utf32_iterator it) { + uint32_t before, after; + enum unicode_Grapheme_Break gbbefore, gbafter; + /* GB1 and GB2 */ + if(it->n == 0 || it->n == it->ns) + return 1; + /* Now we know that s[n-1] and s[n] are safe to inspect */ + /* GB3 */ + before = it->s[it->n-1]; + after = it->s[it->n]; + if(before == 0x000D && after == 0x000A) + return 0; + gbbefore = utf32__grapheme_break(before); + gbafter = utf32__grapheme_break(after); + /* GB4 */ + if(gbbefore == unicode_Grapheme_Break_Control + || before == 0x000D + || before == 0x000A) + return 1; + /* GB5 */ + if(gbafter == unicode_Grapheme_Break_Control + || after == 0x000D + || after == 0x000A) + return 1; + /* GB6 */ + if(gbbefore == unicode_Grapheme_Break_L + && (gbafter == unicode_Grapheme_Break_L + || gbafter == unicode_Grapheme_Break_V + || gbafter == unicode_Grapheme_Break_LV + || gbafter == unicode_Grapheme_Break_LVT)) + return 0; + /* GB7 */ + if((gbbefore == unicode_Grapheme_Break_LV + || gbbefore == unicode_Grapheme_Break_V) + && (gbafter == unicode_Grapheme_Break_V + || gbafter == unicode_Grapheme_Break_T)) + return 0; + /* GB8 */ + if((gbbefore == unicode_Grapheme_Break_LVT + || gbbefore == unicode_Grapheme_Break_T) + && gbafter == unicode_Grapheme_Break_T) + return 0; + /* GB9 */ + if(gbafter == unicode_Grapheme_Break_Extend) + return 0; + /* GB10 */ + return 1; + +} + +/** @brief Test for a word boundary + * @param it Iterator + * @return Non-0 if pointing just after a word boundary, otherwise 0 + */ +int utf32_iterator_word_boundary(utf32_iterator it) { + enum unicode_Word_Break twobefore, before, after, twoafter; + size_t nn; + + /* WB1 and WB2 */ + if(it->n == 0 || it->n == it->ns) + return 1; + /* WB3 */ + if(it->s[it->n-1] == 0x000D && it->s[it->n] == 0x000A) + return 0; + /* WB4 */ + /* (!Sep) x (Extend|Format) as in UAX #29 s6.2 */ + if(utf32__sentence_break(it->s[it->n-1]) != unicode_Sentence_Break_Sep + && utf32__boundary_ignorable(utf32__word_break(it->s[it->n]))) + return 0; + /* Gather the property values we'll need for the rest of the test taking the + * s6.2 changes into account */ + /* First we look at the code points after the proposed boundary */ + nn = it->n; /* ns */ + after = utf32__word_break(it->s[nn++]); + if(!utf32__boundary_ignorable(after)) { + /* X (Extend|Format)* -> X */ + while(nn < it->ns + && utf32__boundary_ignorable(utf32__word_break(it->s[nn]))) + ++nn; + } + /* It's possible now that nn=ns */ + if(nn < it->ns) + twoafter = utf32__word_break(it->s[nn]); + else + twoafter = unicode_Word_Break_Other; + + /* We've already recorded the non-ignorable code points before the proposed + * boundary */ + before = utf32__word_break(it->last[1]); + twobefore = utf32__word_break(it->last[0]); + + /* WB5 */ + if(before == unicode_Word_Break_ALetter + && after == unicode_Word_Break_ALetter) + return 0; + /* WB6 */ + if(before == unicode_Word_Break_ALetter + && after == unicode_Word_Break_MidLetter + && twoafter == unicode_Word_Break_ALetter) + return 0; + /* WB7 */ + if(twobefore == unicode_Word_Break_ALetter + && before == unicode_Word_Break_MidLetter + && after == unicode_Word_Break_ALetter) + return 0; + /* WB8 */ + if(before == unicode_Word_Break_Numeric + && after == unicode_Word_Break_Numeric) + return 0; + /* WB9 */ + if(before == unicode_Word_Break_ALetter + && after == unicode_Word_Break_Numeric) + return 0; + /* WB10 */ + if(before == unicode_Word_Break_Numeric + && after == unicode_Word_Break_ALetter) + return 0; + /* WB11 */ + if(twobefore == unicode_Word_Break_Numeric + && before == unicode_Word_Break_MidNum + && after == unicode_Word_Break_Numeric) + return 0; + /* WB12 */ + if(before == unicode_Word_Break_Numeric + && after == unicode_Word_Break_MidNum + && twoafter == unicode_Word_Break_Numeric) + return 0; + /* WB13 */ + if(before == unicode_Word_Break_Katakana + && after == unicode_Word_Break_Katakana) + return 0; + /* WB13a */ + if((before == unicode_Word_Break_ALetter + || before == unicode_Word_Break_Numeric + || before == unicode_Word_Break_Katakana + || before == unicode_Word_Break_ExtendNumLet) + && after == unicode_Word_Break_ExtendNumLet) + return 0; + /* WB13b */ + if(before == unicode_Word_Break_ExtendNumLet + && (after == unicode_Word_Break_ALetter + || after == unicode_Word_Break_Numeric + || after == unicode_Word_Break_Katakana)) + return 0; + /* WB14 */ + return 1; +} + /*@}*/ /** @defgroup utf32 Functions that operate on UTF-32 strings */ /*@{*/ @@ -203,16 +626,6 @@ size_t utf32_len(const uint32_t *s) { return (size_t)(t - s); } -/** @brief Return the combining class of @p c - * @param c Code point - * @return Combining class of @p c - */ -static inline int utf32__combining_class(uint32_t c) { - if(c < UNICODE_NCHARS) - return unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS].ccc; - return 0; -} - /** @brief Stably sort [s,s+ns) into descending order of combining class * @param s Start of array * @param ns Number of elements, must be at least 1 @@ -319,10 +732,7 @@ static int utf32__canonical_ordering(uint32_t *s, size_t ns) { /** @brief Guts of the decomposition lookup functions */ #define utf32__decompose_one_generic(WHICH) do { \ - const uint32_t *dc = \ - (c < UNICODE_NCHARS \ - ? unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS].WHICH \ - : 0); \ + const uint32_t *dc = utf32__unidata(c)->WHICH; \ if(dc) { \ /* Found a canonical decomposition in the table */ \ while(*dc) \ @@ -424,10 +834,7 @@ uint32_t *utf32_decompose_compat(const uint32_t *s, size_t ns, size_t *ndp) { /** @brief Single-character case-fold and decompose operation */ #define utf32__casefold_one(WHICH) do { \ - const uint32_t *cf = \ - (c < UNICODE_NCHARS \ - ? unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS].casefold \ - : 0); \ + const uint32_t *cf = utf32__unidata(c)->casefold; \ if(cf) { \ /* Found a case-fold mapping in the table */ \ while(*cf) \ @@ -460,13 +867,9 @@ uint32_t *utf32_casefold_canon(const uint32_t *s, size_t ns, size_t *ndp) { * normalize before we fold. In Unicode 5.0.0 this means 0345 COMBINING * GREEK YPOGEGRAMMENI in its decomposition and the various characters that * canonically decompose to it. */ - for(n = 0; n < ns; ++n) { - c = s[n]; - if(c < UNICODE_NCHARS - && (unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS].flags - & unicode_normalize_before_casefold)) + for(n = 0; n < ns; ++n) + if(utf32__unidata(s[n])->flags & unicode_normalize_before_casefold) break; - } if(n < ns) { /* We need a preliminary decomposition */ if(!(ss = utf32_decompose_canon(s, ns, &ns))) @@ -512,13 +915,9 @@ uint32_t *utf32_casefold_compat(const uint32_t *s, size_t ns, size_t *ndp) { size_t n; uint32_t *ss = 0; - for(n = 0; n < ns; ++n) { - c = s[n]; - if(c < UNICODE_NCHARS - && (unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS].flags - & unicode_normalize_before_casefold)) + for(n = 0; n < ns; ++n) + if(utf32__unidata(s[n])->flags & unicode_normalize_before_casefold) break; - } if(n < ns) { /* We need a preliminary _canonical_ decomposition */ if(!(ss = utf32_decompose_canon(s, ns, &ns))) @@ -572,8 +971,43 @@ int utf32_cmp(const uint32_t *a, const uint32_t *b) { return *a < *b ? -1 : (*a > *b ? 1 : 0); } +/** @brief Identify a grapheme cluster boundary + * @param s Start of string (must be NFD) + * @param ns Length of string + * @param n Index within string (in [0,ns].) + * @return 1 at a grapheme cluster boundary, 0 otherwise + * + * This function identifies default grapheme cluster boundaries as described in + * UAX #29 s3. It returns 1 if @p n points at the code point just after a + * grapheme cluster boundary (including the hypothetical code point just after + * the end of the string). + */ +int utf32_is_grapheme_boundary(const uint32_t *s, size_t ns, size_t n) { + struct utf32_iterator_data it[1]; + + utf32__iterator_init(it, s, ns, n); + return utf32_iterator_grapheme_boundary(it); +} + +/** @brief Identify a word boundary + * @param s Start of string (must be NFD) + * @param ns Length of string + * @param n Index within string (in [0,ns].) + * @return 1 at a word boundary, 0 otherwise + * + * This function identifies default word boundaries as described in UAX #29 s4. + * It returns 1 if @p n points at the code point just after a word boundary + * (including the hypothetical code point just after the end of the string). + */ +int utf32_is_word_boundary(const uint32_t *s, size_t ns, size_t n) { + struct utf32_iterator_data it[1]; + + utf32__iterator_init(it, s, ns, n); + return utf32_iterator_word_boundary(it); +} + /*@}*/ -/** @defgroup Functions that operate on UTF-8 strings */ +/** @defgroup utf8 Functions that operate on UTF-8 strings */ /*@{*/ /** @brief Wrapper to transform a UTF-8 string using the UTF-32 function */