X-Git-Url: http://www.chiark.greenend.org.uk/ucgi/~mdw/git/disorder/blobdiff_plain/349b7b74df53fe1631a269f4cd4e87951cfe9397..16fb2830d52c1420afdee555a566d72a065d9616:/lib/unicode.c
diff --git a/lib/unicode.c b/lib/unicode.c
index 032e36e..675f703 100644
--- a/lib/unicode.c
+++ b/lib/unicode.c
@@ -1,21 +1,19 @@
/*
* This file is part of DisOrder
- * Copyright (C) 2007 Richard Kettlewell
+ * Copyright (C) 2007, 2009 Richard Kettlewell
*
- * This program is free software; you can redistribute it and/or modify
+ * This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
+ * the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
* You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
- * USA
+ * along with this program. If not, see .
*/
/** @file lib/unicode.c
* @brief Unicode support functions
@@ -30,19 +28,163 @@
* database code.
*
* As the code stands this guarantee is not well met!
+ *
+ * Subpages:
+ * - @ref utf32props
+ * - @ref utftransform
+ * - @ref utf32iterator
+ * - @ref utf32
+ * - @ref utf8
*/
-#include
-#include "types.h"
-
-#include
-#include /* TODO */
+#include "common.h"
#include "mem.h"
#include "vector.h"
#include "unicode.h"
#include "unidata.h"
+/** @defgroup utf32props Unicode Code Point Properties */
+/*@{*/
+
+static const struct unidata *utf32__unidata_hard(uint32_t c);
+
+/** @brief Find definition of code point @p c
+ * @param c Code point
+ * @return Pointer to @ref unidata structure for @p c
+ *
+ * @p c can be any 32-bit value, a sensible value will be returned regardless.
+ * The returned pointer is NOT guaranteed to be unique to @p c.
+ */
+static inline const struct unidata *utf32__unidata(uint32_t c) {
+ /* The bottom half of the table contains almost everything of interest
+ * and we can just return the right thing straight away */
+ if(c < UNICODE_BREAK_START)
+ return &unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS];
+ else
+ return utf32__unidata_hard(c);
+}
+
+/** @brief Find definition of code point @p c
+ * @param c Code point
+ * @return Pointer to @ref unidata structure for @p c
+ *
+ * @p c can be any 32-bit value, a sensible value will be returned regardless.
+ * The returned pointer is NOT guaranteed to be unique to @p c.
+ *
+ * Don't use this function (although it will work fine) - use utf32__unidata()
+ * instead.
+ */
+static const struct unidata *utf32__unidata_hard(uint32_t c) {
+ if(c < UNICODE_BREAK_START)
+ return &unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS];
+ /* Within the break everything is unassigned */
+ if(c < UNICODE_BREAK_END)
+ return utf32__unidata(0xFFFF); /* guaranteed to be Cn */
+ /* Planes 15 and 16 are (mostly) private use */
+ if((c >= 0xF0000 && c <= 0xFFFFD)
+ || (c >= 0x100000 && c <= 0x10FFFD))
+ return utf32__unidata(0xE000); /* first Co code point */
+ /* Everything else above the break top is unassigned */
+ if(c >= UNICODE_BREAK_TOP)
+ return utf32__unidata(0xFFFF); /* guaranteed to be Cn */
+ /* Currently the rest is language tags and variation selectors */
+ c -= (UNICODE_BREAK_END - UNICODE_BREAK_START);
+ return &unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS];
+}
+
+/** @brief Return the combining class of @p c
+ * @param c Code point
+ * @return Combining class of @p c
+ *
+ * @p c can be any 32-bit value, a sensible value will be returned regardless.
+ */
+static inline int utf32__combining_class(uint32_t c) {
+ return utf32__unidata(c)->ccc;
+}
+
+/** @brief Return the combining class of @p c
+ * @param c Code point
+ * @return Combining class of @p c
+ *
+ * @p c can be any 32-bit value, a sensible value will be returned regardless.
+ */
+int utf32_combining_class(uint32_t c) {
+ return utf32__combining_class(c);
+}
+
+/** @brief Return the General_Category value for @p c
+ * @param c Code point
+ * @return General_Category property value
+ *
+ * @p c can be any 32-bit value, a sensible value will be returned regardless.
+ */
+static inline enum unicode_General_Category utf32__general_category(uint32_t c) {
+ return utf32__unidata(c)->general_category;
+}
+
+/** @brief Determine Grapheme_Break property
+ * @param c Code point
+ * @return Grapheme_Break property value of @p c
+ *
+ * @p c can be any 32-bit value, a sensible value will be returned regardless.
+ */
+static inline enum unicode_Grapheme_Break utf32__grapheme_break(uint32_t c) {
+ return utf32__unidata(c)->grapheme_break;
+}
+
+/** @brief Determine Word_Break property
+ * @param c Code point
+ * @return Word_Break property value of @p c
+ *
+ * @p c can be any 32-bit value, a sensible value will be returned regardless.
+ */
+static inline enum unicode_Word_Break utf32__word_break(uint32_t c) {
+ return utf32__unidata(c)->word_break;
+}
+
+/** @brief Determine Sentence_Break property
+ * @param c Code point
+ * @return Word_Break property value of @p c
+ *
+ * @p c can be any 32-bit value, a sensible value will be returned regardless.
+ */
+static inline enum unicode_Sentence_Break utf32__sentence_break(uint32_t c) {
+ return utf32__unidata(c)->sentence_break;
+}
+
+/** @brief Return true if @p c is ignorable for boundary specifications
+ * @param wb Word break property value
+ * @return non-0 if @p wb is unicode_Word_Break_Extend or unicode_Word_Break_Format
+ */
+static inline int utf32__boundary_ignorable(enum unicode_Word_Break wb) {
+ return (wb == unicode_Word_Break_Extend
+ || wb == unicode_Word_Break_Format);
+}
+
+/** @brief Return the canonical decomposition of @p c
+ * @param c Code point
+ * @return 0-terminated canonical decomposition, or 0
+ */
+static inline const uint32_t *utf32__decomposition_canon(uint32_t c) {
+ const struct unidata *const data = utf32__unidata(c);
+ const uint32_t *const decomp = data->decomp;
+
+ if(decomp && !(data->flags & unicode_compatibility_decomposition))
+ return decomp;
+ else
+ return 0;
+}
+
+/** @brief Return the compatibility decomposition of @p c
+ * @param c Code point
+ * @return 0-terminated decomposition, or 0
+ */
+static inline const uint32_t *utf32__decomposition_compat(uint32_t c) {
+ return utf32__unidata(c)->decomp;
+}
+
+/*@}*/
/** @defgroup utftransform Functions that transform between different Unicode encoding forms */
/*@{*/
@@ -100,7 +242,7 @@ error:
* @param s Source string
* @param ns Length of source string in code points
* @param ndp Where to store length of destination string (or NULL)
- * @return Newly allocated destination string or NULL
+ * @return Newly allocated destination string or NULL on error
*
* The return value is always 0-terminated. The value returned via @p *ndp
* does not include the terminator.
@@ -113,69 +255,46 @@ error:
*/
uint32_t *utf8_to_utf32(const char *s, size_t ns, size_t *ndp) {
struct dynstr_ucs4 d;
- uint32_t c32, c;
+ uint32_t c32;
const uint8_t *ss = (const uint8_t *)s;
+ int n;
dynstr_ucs4_init(&d);
while(ns > 0) {
- c = *ss++;
- --ns;
- /* Acceptable UTF-8 is that which codes for Unicode Scalar Values
- * (Unicode 5.0.0 s3.9 D76)
- *
- * 0xxxxxxx
- * 7 data bits gives 0x00 - 0x7F and all are acceptable
- *
- * 110xxxxx 10xxxxxx
- * 11 data bits gives 0x0000 - 0x07FF but only 0x0080 - 0x07FF acceptable
- *
- * 1110xxxx 10xxxxxx 10xxxxxx
- * 16 data bits gives 0x0000 - 0xFFFF but only 0x0800 - 0xFFFF acceptable
- * (and UTF-16 surrogates are not acceptable)
- *
- * 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
- * 21 data bits gives 0x00000000 - 0x001FFFFF
- * but only 0x00010000 - 0x0010FFFF are acceptable
- *
- * It is NOT always the case that the data bits in the first byte are
- * always non-0 for the acceptable values, so we do a separate check after
- * decoding.
- */
- if(c < 0x80)
- c32 = c;
- else if(c <= 0xDF) {
- if(ns < 1) goto error;
- c32 = c & 0x1F;
- c = *ss++;
- if((c & 0xC0) != 0x80) goto error;
- c32 = (c32 << 6) | (c & 0x3F);
- if(c32 < 0x80) goto error;
- } else if(c <= 0xEF) {
- if(ns < 2) goto error;
- c32 = c & 0x0F;
- c = *ss++;
- if((c & 0xC0) != 0x80) goto error;
- c32 = (c32 << 6) | (c & 0x3F);
- c = *ss++;
- if((c & 0xC0) != 0x80) goto error;
- c32 = (c32 << 6) | (c & 0x3F);
- if(c32 < 0x0800 || (c32 >= 0xD800 && c32 <= 0xDFFF)) goto error;
- } else if(c <= 0xF7) {
- if(ns < 3) goto error;
- c32 = c & 0x07;
- c = *ss++;
- if((c & 0xC0) != 0x80) goto error;
- c32 = (c32 << 6) | (c & 0x3F);
- c = *ss++;
- if((c & 0xC0) != 0x80) goto error;
- c32 = (c32 << 6) | (c & 0x3F);
- c = *ss++;
- if((c & 0xC0) != 0x80) goto error;
- c32 = (c32 << 6) | (c & 0x3F);
- if(c32 < 0x00010000 || c32 > 0x0010FFFF) goto error;
+ const struct unicode_utf8_row *const r = &unicode_utf8_valid[*ss];
+ if(r->count <= ns) {
+ switch(r->count) {
+ case 1:
+ c32 = *ss;
+ break;
+ case 2:
+ if(ss[1] < r->min2 || ss[1] > r->max2)
+ goto error;
+ c32 = *ss & 0x1F;
+ break;
+ case 3:
+ if(ss[1] < r->min2 || ss[1] > r->max2)
+ goto error;
+ c32 = *ss & 0x0F;
+ break;
+ case 4:
+ if(ss[1] < r->min2 || ss[1] > r->max2)
+ goto error;
+ c32 = *ss & 0x07;
+ break;
+ default:
+ goto error;
+ }
} else
goto error;
+ for(n = 1; n < r->count; ++n) {
+ if(ss[n] < 0x80 || ss[n] > 0xBF)
+ goto error;
+ c32 = (c32 << 6) | (ss[n] & 0x3F);
+ }
dynstr_ucs4_append(&d, c32);
+ ss += r->count;
+ ns -= r->count;
}
dynstr_ucs4_terminate(&d);
if(ndp)
@@ -186,6 +305,436 @@ error:
return 0;
}
+/** @brief Test whether [s,s+ns) is valid UTF-8
+ * @param s Start of string
+ * @param ns Length of string
+ * @return non-0 if @p s is valid UTF-8, 0 if it is not valid
+ *
+ * This function is intended to be much faster than calling utf8_to_utf32() and
+ * throwing away the result.
+ */
+int utf8_valid(const char *s, size_t ns) {
+ const uint8_t *ss = (const uint8_t *)s;
+ while(ns > 0) {
+ const struct unicode_utf8_row *const r = &unicode_utf8_valid[*ss];
+ if(r->count <= ns) {
+ switch(r->count) {
+ case 1:
+ break;
+ case 2:
+ if(ss[1] < r->min2 || ss[1] > r->max2)
+ return 0;
+ break;
+ case 3:
+ if(ss[1] < r->min2 || ss[1] > r->max2)
+ return 0;
+ if(ss[2] < 0x80 || ss[2] > 0xBF)
+ return 0;
+ break;
+ case 4:
+ if(ss[1] < r->min2 || ss[1] > r->max2)
+ return 0;
+ if(ss[2] < 0x80 || ss[2] > 0xBF)
+ return 0;
+ if(ss[3] < 0x80 || ss[3] > 0xBF)
+ return 0;
+ break;
+ default:
+ return 0;
+ }
+ } else
+ return 0;
+ ss += r->count;
+ ns -= r->count;
+ }
+ return 1;
+}
+
+/*@}*/
+/** @defgroup utf32iterator UTF-32 string iterators */
+/*@{*/
+
+struct utf32_iterator_data {
+ /** @brief Start of string */
+ const uint32_t *s;
+
+ /** @brief Length of string */
+ size_t ns;
+
+ /** @brief Current position */
+ size_t n;
+
+ /** @brief Last two non-ignorable characters or (uint32_t)-1
+ *
+ * last[1] is the non-Extend/Format character just before position @p n;
+ * last[0] is the one just before that.
+ *
+ * Exception 1: if there is no such non-Extend/Format character then an
+ * Extend/Format character is accepted instead.
+ *
+ * Exception 2: if there is no such character even taking that into account
+ * the value is (uint32_t)-1.
+ */
+ uint32_t last[2];
+
+ /** @brief Tailoring for Word_Break */
+ unicode_property_tailor *word_break;
+};
+
+/** @brief Initialize an internal private iterator
+ * @param it Iterator
+ * @param s Start of string
+ * @param ns Length of string
+ * @param n Absolute position
+ */
+static void utf32__iterator_init(utf32_iterator it,
+ const uint32_t *s, size_t ns, size_t n) {
+ it->s = s;
+ it->ns = ns;
+ it->n = 0;
+ it->last[0] = it->last[1] = -1;
+ it->word_break = 0;
+ utf32_iterator_set(it, n);
+}
+
+/** @brief Create a new iterator pointing at the start of a string
+ * @param s Start of string
+ * @param ns Length of string
+ * @return New iterator
+ */
+utf32_iterator utf32_iterator_new(const uint32_t *s, size_t ns) {
+ utf32_iterator it = xmalloc(sizeof *it);
+ utf32__iterator_init(it, s, ns, 0);
+ return it;
+}
+
+/** @brief Tailor this iterator's interpretation of the Word_Break property.
+ * @param it Iterator
+ * @param pt Property tailor function or NULL
+ *
+ * After calling this the iterator will call @p pt to determine the Word_Break
+ * property of each code point. If it returns -1 the default value will be
+ * used otherwise the returned value will be used.
+ *
+ * @p pt can be NULL to revert to the default value of the property.
+ *
+ * It is safe to call this function at any time; the iterator's internal state
+ * will be reset to suit the new tailoring.
+ */
+void utf32_iterator_tailor_word_break(utf32_iterator it,
+ unicode_property_tailor *pt) {
+ it->word_break = pt;
+ utf32_iterator_set(it, it->n);
+}
+
+static inline enum unicode_Word_Break utf32__iterator_word_break(utf32_iterator it,
+ uint32_t c) {
+ if(!it->word_break)
+ return utf32__word_break(c);
+ else {
+ const int t = it->word_break(c);
+
+ if(t < 0)
+ return utf32__word_break(c);
+ else
+ return t;
+ }
+}
+
+/** @brief Destroy an iterator
+ * @param it Iterator
+ */
+void utf32_iterator_destroy(utf32_iterator it) {
+ xfree(it);
+}
+
+/** @brief Find the current position of an interator
+ * @param it Iterator
+ */
+size_t utf32_iterator_where(utf32_iterator it) {
+ return it->n;
+}
+
+/** @brief Set an iterator's absolute position
+ * @param it Iterator
+ * @param n Absolute position
+ * @return 0 on success, non-0 on error
+ *
+ * It is an error to position the iterator outside the string (but acceptable
+ * to point it at the hypothetical post-final character). If an invalid value
+ * of @p n is specified then the iterator is not changed.
+ *
+ * This function works by backing up and then advancing to reconstruct the
+ * iterator's internal state for position @p n. The worst case will be O(n)
+ * time complexity (with a worse constant factor that utf32_iterator_advance())
+ * but the typical case is essentially constant-time.
+ */
+int utf32_iterator_set(utf32_iterator it, size_t n) {
+ /* We can't just jump to position @p n; the @p last[] values will be wrong.
+ * What we need is to jump a bit behind @p n and then advance forward,
+ * updating @p last[] along the way. How far back? We need to cross two
+ * non-ignorable code points as we advance forwards, so we'd better pass two
+ * such characters on the way back (if such are available).
+ */
+ size_t m;
+
+ if(n > it->ns) /* range check */
+ return -1;
+ /* Walk backwards skipping ignorable code points */
+ m = n;
+ while(m > 0
+ && (utf32__boundary_ignorable(utf32__iterator_word_break(it,
+ it->s[m-1]))))
+ --m;
+ /* Either m=0 or s[m-1] is not ignorable */
+ if(m > 0) {
+ --m;
+ /* s[m] is our first non-ignorable code; look for a second in the same
+ way **/
+ while(m > 0
+ && (utf32__boundary_ignorable(utf32__iterator_word_break(it,
+ it->s[m-1]))))
+ --m;
+ /* Either m=0 or s[m-1] is not ignorable */
+ if(m > 0)
+ --m;
+ }
+ it->last[0] = it->last[1] = -1;
+ it->n = m;
+ return utf32_iterator_advance(it, n - m);
+}
+
+/** @brief Advance an iterator
+ * @param it Iterator
+ * @param count Number of code points to advance by
+ * @return 0 on success, non-0 on error
+ *
+ * It is an error to advance an iterator beyond the hypothetical post-final
+ * character of the string. If an invalid value of @p n is specified then the
+ * iterator is not changed.
+ *
+ * This function has O(n) time complexity: it works by advancing naively
+ * forwards through the string.
+ */
+int utf32_iterator_advance(utf32_iterator it, size_t count) {
+ if(count <= it->ns - it->n) {
+ while(count > 0) {
+ const uint32_t c = it->s[it->n];
+ const enum unicode_Word_Break wb = utf32__iterator_word_break(it, c);
+ if(it->last[1] == (uint32_t)-1
+ || !utf32__boundary_ignorable(wb)) {
+ it->last[0] = it->last[1];
+ it->last[1] = c;
+ }
+ ++it->n;
+ --count;
+ }
+ return 0;
+ } else
+ return -1;
+}
+
+/** @brief Find the current code point
+ * @param it Iterator
+ * @return Current code point or 0
+ *
+ * If the iterator points at the hypothetical post-final character of the
+ * string then 0 is returned. NB that this doesn't mean that there aren't any
+ * 0 code points inside the string!
+ */
+uint32_t utf32_iterator_code(utf32_iterator it) {
+ if(it->n < it->ns)
+ return it->s[it->n];
+ else
+ return 0;
+}
+
+/** @brief Test for a grapheme boundary
+ * @param it Iterator
+ * @return Non-0 if pointing just after a grapheme boundary, otherwise 0
+ *
+ * This function identifies default grapheme cluster boundaries as described in
+ * UAX #29 s3. It returns non-0 if @p it points at the code point just after a
+ * grapheme cluster boundary (including the hypothetical code point just after
+ * the end of the string).
+ */
+int utf32_iterator_grapheme_boundary(utf32_iterator it) {
+ uint32_t before, after;
+ enum unicode_Grapheme_Break gbbefore, gbafter;
+ /* GB1 and GB2 */
+ if(it->n == 0 || it->n == it->ns)
+ return 1;
+ /* Now we know that s[n-1] and s[n] are safe to inspect */
+ /* GB3 */
+ before = it->s[it->n-1];
+ after = it->s[it->n];
+ if(before == 0x000D && after == 0x000A)
+ return 0;
+ gbbefore = utf32__grapheme_break(before);
+ gbafter = utf32__grapheme_break(after);
+ /* GB4 */
+ if(gbbefore == unicode_Grapheme_Break_Control
+ || before == 0x000D
+ || before == 0x000A)
+ return 1;
+ /* GB5 */
+ if(gbafter == unicode_Grapheme_Break_Control
+ || after == 0x000D
+ || after == 0x000A)
+ return 1;
+ /* GB6 */
+ if(gbbefore == unicode_Grapheme_Break_L
+ && (gbafter == unicode_Grapheme_Break_L
+ || gbafter == unicode_Grapheme_Break_V
+ || gbafter == unicode_Grapheme_Break_LV
+ || gbafter == unicode_Grapheme_Break_LVT))
+ return 0;
+ /* GB7 */
+ if((gbbefore == unicode_Grapheme_Break_LV
+ || gbbefore == unicode_Grapheme_Break_V)
+ && (gbafter == unicode_Grapheme_Break_V
+ || gbafter == unicode_Grapheme_Break_T))
+ return 0;
+ /* GB8 */
+ if((gbbefore == unicode_Grapheme_Break_LVT
+ || gbbefore == unicode_Grapheme_Break_T)
+ && gbafter == unicode_Grapheme_Break_T)
+ return 0;
+ /* GB9 */
+ if(gbafter == unicode_Grapheme_Break_Extend)
+ return 0;
+ /* GB9a */
+ if(gbafter == unicode_Grapheme_Break_SpacingMark)
+ return 0;
+ /* GB9b */
+ if(gbbefore == unicode_Grapheme_Break_Prepend)
+ return 0;
+ /* GB10 */
+ return 1;
+
+}
+
+/** @brief Test for a word boundary
+ * @param it Iterator
+ * @return Non-0 if pointing just after a word boundary, otherwise 0
+ *
+ * This function identifies default word boundaries as described in UAX #29 s4.
+ * It returns non-0 if @p it points at the code point just after a word
+ * boundary (including the hypothetical code point just after the end of the
+ * string) and 0 otherwise.
+ */
+int utf32_iterator_word_boundary(utf32_iterator it) {
+ uint32_t before, after;
+ enum unicode_Word_Break wbtwobefore, wbbefore, wbafter, wbtwoafter;
+ size_t nn;
+
+ /* WB1 and WB2 */
+ if(it->n == 0 || it->n == it->ns)
+ return 1;
+ before = it->s[it->n-1];
+ after = it->s[it->n];
+ /* WB3 */
+ if(before == 0x000D && after == 0x000A)
+ return 0;
+ /* WB3a */
+ if(utf32__iterator_word_break(it, before) == unicode_Word_Break_Newline
+ || before == 0x000D
+ || before == 0x000A)
+ return 1;
+ /* WB3b */
+ if(utf32__iterator_word_break(it, after) == unicode_Word_Break_Newline
+ || after == 0x000D
+ || after == 0x000A)
+ return 1;
+ /* WB4 */
+ /* (!Sep) x (Extend|Format) as in UAX #29 s6.2 */
+ if(utf32__sentence_break(before) != unicode_Sentence_Break_Sep
+ && utf32__boundary_ignorable(utf32__iterator_word_break(it, after)))
+ return 0;
+ /* Gather the property values we'll need for the rest of the test taking the
+ * s6.2 changes into account */
+ /* First we look at the code points after the proposed boundary */
+ nn = it->n; /* ns */
+ wbafter = utf32__iterator_word_break(it, it->s[nn++]);
+ if(!utf32__boundary_ignorable(wbafter)) {
+ /* X (Extend|Format)* -> X */
+ while(nn < it->ns
+ && utf32__boundary_ignorable(utf32__iterator_word_break(it,
+ it->s[nn])))
+ ++nn;
+ }
+ /* It's possible now that nn=ns */
+ if(nn < it->ns)
+ wbtwoafter = utf32__iterator_word_break(it, it->s[nn]);
+ else
+ wbtwoafter = unicode_Word_Break_Other;
+
+ /* We've already recorded the non-ignorable code points before the proposed
+ * boundary */
+ wbbefore = utf32__iterator_word_break(it, it->last[1]);
+ wbtwobefore = utf32__iterator_word_break(it, it->last[0]);
+
+ /* WB5 */
+ if(wbbefore == unicode_Word_Break_ALetter
+ && wbafter == unicode_Word_Break_ALetter)
+ return 0;
+ /* WB6 */
+ if(wbbefore == unicode_Word_Break_ALetter
+ && (wbafter == unicode_Word_Break_MidLetter
+ || wbafter == unicode_Word_Break_MidNumLet)
+ && wbtwoafter == unicode_Word_Break_ALetter)
+ return 0;
+ /* WB7 */
+ if(wbtwobefore == unicode_Word_Break_ALetter
+ && (wbbefore == unicode_Word_Break_MidLetter
+ || wbbefore == unicode_Word_Break_MidNumLet)
+ && wbafter == unicode_Word_Break_ALetter)
+ return 0;
+ /* WB8 */
+ if(wbbefore == unicode_Word_Break_Numeric
+ && wbafter == unicode_Word_Break_Numeric)
+ return 0;
+ /* WB9 */
+ if(wbbefore == unicode_Word_Break_ALetter
+ && wbafter == unicode_Word_Break_Numeric)
+ return 0;
+ /* WB10 */
+ if(wbbefore == unicode_Word_Break_Numeric
+ && wbafter == unicode_Word_Break_ALetter)
+ return 0;
+ /* WB11 */
+ if(wbtwobefore == unicode_Word_Break_Numeric
+ && (wbbefore == unicode_Word_Break_MidNum
+ || wbbefore == unicode_Word_Break_MidNumLet)
+ && wbafter == unicode_Word_Break_Numeric)
+ return 0;
+ /* WB12 */
+ if(wbbefore == unicode_Word_Break_Numeric
+ && (wbafter == unicode_Word_Break_MidNum
+ || wbafter == unicode_Word_Break_MidNumLet)
+ && wbtwoafter == unicode_Word_Break_Numeric)
+ return 0;
+ /* WB13 */
+ if(wbbefore == unicode_Word_Break_Katakana
+ && wbafter == unicode_Word_Break_Katakana)
+ return 0;
+ /* WB13a */
+ if((wbbefore == unicode_Word_Break_ALetter
+ || wbbefore == unicode_Word_Break_Numeric
+ || wbbefore == unicode_Word_Break_Katakana
+ || wbbefore == unicode_Word_Break_ExtendNumLet)
+ && wbafter == unicode_Word_Break_ExtendNumLet)
+ return 0;
+ /* WB13b */
+ if(wbbefore == unicode_Word_Break_ExtendNumLet
+ && (wbafter == unicode_Word_Break_ALetter
+ || wbafter == unicode_Word_Break_Numeric
+ || wbafter == unicode_Word_Break_Katakana))
+ return 0;
+ /* WB14 */
+ return 1;
+}
+
/*@}*/
/** @defgroup utf32 Functions that operate on UTF-32 strings */
/*@{*/
@@ -204,16 +753,6 @@ size_t utf32_len(const uint32_t *s) {
return (size_t)(t - s);
}
-/** @brief Return the combining class of @p c
- * @param c Code point
- * @return Combining class of @p c
- */
-static inline int utf32__combining_class(uint32_t c) {
- if(c < UNICODE_NCHARS)
- return unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS].ccc;
- return 0;
-}
-
/** @brief Stably sort [s,s+ns) into descending order of combining class
* @param s Start of array
* @param ns Number of elements, must be at least 1
@@ -245,7 +784,7 @@ static void utf32__sort_ccc(uint32_t *s, size_t ns, uint32_t *buffer) {
/* Merge them back into one, via the buffer */
bp = buffer;
while(na > 0 && nb > 0) {
- /* We want descending order of combining class (hence <)
+ /* We want ascending order of combining class (hence <)
* and we want stability within combining classes (hence <=)
*/
if(utf32__combining_class(*a) <= utf32__combining_class(*b)) {
@@ -272,13 +811,13 @@ static void utf32__sort_ccc(uint32_t *s, size_t ns, uint32_t *buffer) {
/** @brief Put combining characters into canonical order
* @param s Pointer to UTF-32 string
* @param ns Length of @p s
- * @return 0 on success, -1 on error
+ * @return 0 on success, non-0 on error
*
* @p s is modified in-place. See Unicode 5.0 s3.11 for details of the
* ordering.
*
* Currently we only support a maximum of 1024 combining characters after each
- * base character. If this limit is exceeded then -1 is returned.
+ * base character. If this limit is exceeded then a non-0 value is returned.
*/
static int utf32__canonical_ordering(uint32_t *s, size_t ns) {
size_t nc;
@@ -320,10 +859,7 @@ static int utf32__canonical_ordering(uint32_t *s, size_t ns) {
/** @brief Guts of the decomposition lookup functions */
#define utf32__decompose_one_generic(WHICH) do { \
- const uint32_t *dc = \
- (c < UNICODE_NCHARS \
- ? unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS].WHICH \
- : 0); \
+ const uint32_t *dc = utf32__decomposition_##WHICH(c); \
if(dc) { \
/* Found a canonical decomposition in the table */ \
while(*dc) \
@@ -346,7 +882,7 @@ static int utf32__canonical_ordering(uint32_t *s, size_t ns) {
/** @brief Recursively compute the canonical decomposition of @p c
* @param d Dynamic string to store decomposition in
* @param c Code point to decompose (must be a valid!)
- * @return 0 on success, -1 on error
+ * @return 0 on success, non-0 on error
*/
static void utf32__decompose_one_canon(struct dynstr_ucs4 *d, uint32_t c) {
utf32__decompose_one_generic(canon);
@@ -355,14 +891,159 @@ static void utf32__decompose_one_canon(struct dynstr_ucs4 *d, uint32_t c) {
/** @brief Recursively compute the compatibility decomposition of @p c
* @param d Dynamic string to store decomposition in
* @param c Code point to decompose (must be a valid!)
- * @return 0 on success, -1 on error
+ * @return 0 on success, non-0 on error
*/
static void utf32__decompose_one_compat(struct dynstr_ucs4 *d, uint32_t c) {
utf32__decompose_one_generic(compat);
}
-/** @brief Guts of the decomposition functions */
-#define utf32__decompose_generic(WHICH) do { \
+/** @brief Magic utf32__compositions() return value for Hangul Choseong */
+static const uint32_t utf32__hangul_L[1];
+
+/** @brief Return the list of compositions that @p c starts
+ * @param c Starter code point
+ * @return Composition list or NULL
+ *
+ * For Hangul leading (Choseong) jamo we return the special value
+ * utf32__hangul_L. These code points are not listed as the targets of
+ * canonical decompositions (make-unidata checks) so there is no confusion with
+ * real decompositions here.
+ */
+static const uint32_t *utf32__compositions(uint32_t c) {
+ const uint32_t *compositions = utf32__unidata(c)->composed;
+
+ if(compositions)
+ return compositions;
+ /* Special-casing for Hangul */
+ switch(utf32__grapheme_break(c)) {
+ default:
+ return 0;
+ case unicode_Grapheme_Break_L:
+ return utf32__hangul_L;
+ }
+}
+
+/** @brief Composition step
+ * @param s Start of string
+ * @param ns Length of string
+ * @return New length of string
+ *
+ * This is called from utf32__decompose_generic() to compose the result string
+ * in place.
+ */
+static size_t utf32__compose(uint32_t *s, size_t ns) {
+ const uint32_t *compositions;
+ uint32_t *start = s, *t = s, *tt, cc;
+
+ while(ns > 0) {
+ uint32_t starter = *s++;
+ int block_starters = 0;
+ --ns;
+ /* We don't attempt to compose the following things:
+ * - final characters whatever kind they are
+ * - non-starter characters
+ * - starters that don't take part in a canonical decomposition mapping
+ */
+ if(ns == 0
+ || utf32__combining_class(starter)
+ || !(compositions = utf32__compositions(starter))) {
+ *t++ = starter;
+ continue;
+ }
+ if(compositions != utf32__hangul_L) {
+ /* Where we'll put the eventual starter */
+ tt = t++;
+ do {
+ /* See if we can find composition of starter+*s */
+ const uint32_t cchar = *s, *cp = compositions;
+ while((cc = *cp++)) {
+ const uint32_t *decomp = utf32__decomposition_canon(cc);
+ /* We know decomp[0] == starter */
+ if(decomp[1] == cchar)
+ break;
+ }
+ if(cc) {
+ /* Found a composition: cc decomposes to starter,*s */
+ starter = cc;
+ compositions = utf32__compositions(starter);
+ ++s;
+ --ns;
+ } else {
+ /* No composition found. */
+ const int class = utf32__combining_class(*s);
+ if(class) {
+ /* Transfer the uncomposable combining character to the output */
+ *t++ = *s++;
+ --ns;
+ /* All the combining characters of the same class of the
+ * uncomposable character are blocked by it, but there may be
+ * others of higher class later. We eat the uncomposable and
+ * blocked characters and go back round the loop for that higher
+ * class. */
+ while(ns > 0 && utf32__combining_class(*s) == class) {
+ *t++ = *s++;
+ --ns;
+ }
+ /* Block any subsequent starters */
+ block_starters = 1;
+ } else {
+ /* The uncombinable character is itself a starter, so we don't
+ * transfer it to the output but instead go back round the main
+ * loop. */
+ break;
+ }
+ }
+ /* Keep going while there are still characters and the starter takes
+ * part in some composition */
+ } while(ns > 0 && compositions
+ && (!block_starters || utf32__combining_class(*s)));
+ /* Store any remaining combining characters */
+ while(ns > 0 && utf32__combining_class(*s)) {
+ *t++ = *s++;
+ --ns;
+ }
+ /* Store the resulting starter */
+ *tt = starter;
+ } else {
+ /* Special-casing for Hangul
+ *
+ * If there are combining characters between the L and the V then they
+ * will block the V and so no composition happens. Similarly combining
+ * characters between V and T will block the T and so we only get as far
+ * as LV.
+ */
+ if(utf32__grapheme_break(*s) == unicode_Grapheme_Break_V) {
+ const uint32_t V = *s++;
+ const uint32_t LIndex = starter - LBase;
+ const uint32_t VIndex = V - VBase;
+ uint32_t TIndex;
+ --ns;
+ if(ns > 0
+ && utf32__grapheme_break(*s) == unicode_Grapheme_Break_T) {
+ /* We have an L V T sequence */
+ const uint32_t T = *s++;
+ TIndex = T - TBase;
+ --ns;
+ } else
+ /* It's just L V */
+ TIndex = 0;
+ /* Compose to LVT or LV as appropriate */
+ starter = (LIndex * VCount + VIndex) * TCount + TIndex + SBase;
+ } /* else we only have L or LV and no V or T */
+ *t++ = starter;
+ /* There could be some combining characters that belong to the V or T.
+ * These will be treated as non-starter characters at the top of the loop
+ * and thuss transferred to the output. */
+ }
+ }
+ return t - start;
+}
+
+/** @brief Guts of the composition and decomposition functions
+ * @param WHICH @c canon or @c compat to choose decomposition
+ * @param COMPOSE @c 0 or @c 1 to compose
+ */
+#define utf32__decompose_generic(WHICH, COMPOSE) do { \
struct dynstr_ucs4 d; \
uint32_t c; \
\
@@ -376,6 +1057,8 @@ static void utf32__decompose_one_compat(struct dynstr_ucs4 *d, uint32_t c) {
} \
if(utf32__canonical_ordering(d.vec, d.nvec)) \
goto error; \
+ if(COMPOSE) \
+ d.nvec = utf32__compose(d.vec, d.nvec); \
dynstr_ucs4_terminate(&d); \
if(ndp) \
*ndp = d.nvec; \
@@ -389,46 +1072,94 @@ error: \
* @param s Pointer to string
* @param ns Length of string
* @param ndp Where to store length of result
- * @return Pointer to result string, or NULL
+ * @return Pointer to result string, or NULL on error
*
- * Computes the canonical decomposition of a string and stably sorts combining
- * characters into canonical order. The result is in Normalization Form D and
- * (at the time of writing!) passes the NFD tests defined in Unicode 5.0's
- * NormalizationTest.txt.
+ * Computes NFD (Normalization Form D) of the string at @p s. This implies
+ * performing all canonical decompositions and then normalizing the order of
+ * combining characters.
*
* Returns NULL if the string is not valid for either of the following reasons:
* - it codes for a UTF-16 surrogate
* - it codes for a value outside the unicode code space
+ *
+ * See also:
+ * - utf32_decompose_compat()
+ * - utf32_compose_canon()
*/
uint32_t *utf32_decompose_canon(const uint32_t *s, size_t ns, size_t *ndp) {
- utf32__decompose_generic(canon);
+ utf32__decompose_generic(canon, 0);
}
/** @brief Compatibility decompose @p [s,s+ns)
* @param s Pointer to string
* @param ns Length of string
* @param ndp Where to store length of result
- * @return Pointer to result string, or NULL
+ * @return Pointer to result string, or NULL on error
*
- * Computes the compatibility decomposition of a string and stably sorts
- * combining characters into canonical order. The result is in Normalization
- * Form KD and (at the time of writing!) passes the NFKD tests defined in
- * Unicode 5.0's NormalizationTest.txt.
+ * Computes NFKD (Normalization Form KD) of the string at @p s. This implies
+ * performing all canonical and compatibility decompositions and then
+ * normalizing the order of combining characters.
*
* Returns NULL if the string is not valid for either of the following reasons:
* - it codes for a UTF-16 surrogate
* - it codes for a value outside the unicode code space
+ *
+ * See also:
+ * - utf32_decompose_canon()
+ * - utf32_compose_compat()
*/
uint32_t *utf32_decompose_compat(const uint32_t *s, size_t ns, size_t *ndp) {
- utf32__decompose_generic(compat);
+ utf32__decompose_generic(compat, 0);
+}
+
+/** @brief Canonically compose @p [s,s+ns)
+ * @param s Pointer to string
+ * @param ns Length of string
+ * @param ndp Where to store length of result
+ * @return Pointer to result string, or NULL on error
+ *
+ * Computes NFC (Normalization Form C) of the string at @p s. This implies
+ * performing all canonical decompositions, normalizing the order of combining
+ * characters and then composing all unblocked primary compositables.
+ *
+ * Returns NULL if the string is not valid for either of the following reasons:
+ * - it codes for a UTF-16 surrogate
+ * - it codes for a value outside the unicode code space
+ *
+ * See also:
+ * - utf32_compose_compat()
+ * - utf32_decompose_canon()
+ */
+uint32_t *utf32_compose_canon(const uint32_t *s, size_t ns, size_t *ndp) {
+ utf32__decompose_generic(canon, 1);
+}
+
+/** @brief Compatibility compose @p [s,s+ns)
+ * @param s Pointer to string
+ * @param ns Length of string
+ * @param ndp Where to store length of result
+ * @return Pointer to result string, or NULL on error
+ *
+ * Computes NFKC (Normalization Form KC) of the string at @p s. This implies
+ * performing all canonical and compatibility decompositions, normalizing the
+ * order of combining characters and then composing all unblocked primary
+ * compositables.
+ *
+ * Returns NULL if the string is not valid for either of the following reasons:
+ * - it codes for a UTF-16 surrogate
+ * - it codes for a value outside the unicode code space
+ *
+ * See also:
+ * - utf32_compose_canon()
+ * - utf32_decompose_compat()
+ */
+uint32_t *utf32_compose_compat(const uint32_t *s, size_t ns, size_t *ndp) {
+ utf32__decompose_generic(compat, 1);
}
/** @brief Single-character case-fold and decompose operation */
#define utf32__casefold_one(WHICH) do { \
- const uint32_t *cf = \
- (c < UNICODE_NCHARS \
- ? unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS].casefold \
- : 0); \
+ const uint32_t *cf = utf32__unidata(c)->casefold; \
if(cf) { \
/* Found a case-fold mapping in the table */ \
while(*cf) \
@@ -441,7 +1172,7 @@ uint32_t *utf32_decompose_compat(const uint32_t *s, size_t ns, size_t *ndp) {
* @param s Pointer to string
* @param ns Length of string
* @param ndp Where to store length of result
- * @return Pointer to result string, or NULL
+ * @return Pointer to result string, or NULL on error
*
* Case-fold the string at @p s according to full default case-folding rules
* (s3.13) for caseless matching. The result will be in NFD.
@@ -461,13 +1192,9 @@ uint32_t *utf32_casefold_canon(const uint32_t *s, size_t ns, size_t *ndp) {
* normalize before we fold. In Unicode 5.0.0 this means 0345 COMBINING
* GREEK YPOGEGRAMMENI in its decomposition and the various characters that
* canonically decompose to it. */
- for(n = 0; n < ns; ++n) {
- c = s[n];
- if(c < UNICODE_NCHARS
- && (unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS].flags
- & unicode_normalize_before_casefold))
+ for(n = 0; n < ns; ++n)
+ if(utf32__unidata(s[n])->flags & unicode_normalize_before_casefold)
break;
- }
if(n < ns) {
/* We need a preliminary decomposition */
if(!(ss = utf32_decompose_canon(s, ns, &ns)))
@@ -494,11 +1221,11 @@ error:
return 0;
}
-/** @brief Compatibilit case-fold @p [s,s+ns)
+/** @brief Compatibility case-fold @p [s,s+ns)
* @param s Pointer to string
* @param ns Length of string
* @param ndp Where to store length of result
- * @return Pointer to result string, or NULL
+ * @return Pointer to result string, or NULL on error
*
* Case-fold the string at @p s according to full default case-folding rules
* (s3.13) for compatibility caseless matching. The result will be in NFKD.
@@ -513,13 +1240,9 @@ uint32_t *utf32_casefold_compat(const uint32_t *s, size_t ns, size_t *ndp) {
size_t n;
uint32_t *ss = 0;
- for(n = 0; n < ns; ++n) {
- c = s[n];
- if(c < UNICODE_NCHARS
- && (unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS].flags
- & unicode_normalize_before_casefold))
+ for(n = 0; n < ns; ++n)
+ if(utf32__unidata(s[n])->flags & unicode_normalize_before_casefold)
break;
- }
if(n < ns) {
/* We need a preliminary _canonical_ decomposition */
if(!(ss = utf32_decompose_canon(s, ns, &ns)))
@@ -573,84 +1296,6 @@ int utf32_cmp(const uint32_t *a, const uint32_t *b) {
return *a < *b ? -1 : (*a > *b ? 1 : 0);
}
-/** @brief Return the General_Category value for @p c
- * @param Code point
- * @return General_Category property value
- */
-static inline enum unicode_gc_cat utf32__general_category(uint32_t c) {
- if(c < UNICODE_NCHARS) {
- const struct unidata *const ud = &unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS];
- return ud->gc;
- } else
- return unicode_gc_Cn;
-}
-
-/** @brief Check Grapheme_Cluster_Break property
- * @param c Code point
- * @return 0 if it is as described, 1 otherwise
- */
-static int utf32__is_control_or_cr_or_lf(uint32_t c) {
- switch(utf32__general_category(c)) {
- default:
- return 0;
- case unicode_gc_Zl:
- case unicode_gc_Zp:
- case unicode_gc_Cc:
- return 1;
- case unicode_gc_Cf:
- if(c == 0x200C || c == 0x200D)
- return 0;
- return 1;
- }
-}
-
-#define Hangul_Syllable_Type_NA 0
-#define Hangul_Syllable_Type_L 0x1100
-#define Hangul_Syllable_Type_V 0x1160
-#define Hangul_Syllable_Type_T 0x11A8
-#define Hangul_Syllable_Type_LV 0xAC00
-#define Hangul_Syllable_Type_LVT 0xAC01
-
-/** @brief Determine Hangul_Syllable_Type of @p c
- * @param c Code point
- * @return Equivalance class of @p c, or Hangul_Syllable_Type_NA
- *
- * If this is a Hangul character then a representative member of its
- * equivalence class is returned. Otherwise Hangul_Syllable_Type_NA is
- * returned.
- */
-static uint32_t utf32__hangul_syllable_type(uint32_t c) {
- /* Dispose of the bulk of the non-Hangul code points first */
- if(c < 0x1100) return Hangul_Syllable_Type_NA;
- if(c > 0x1200 && c < 0xAC00) return Hangul_Syllable_Type_NA;
- if(c >= 0xD800) return Hangul_Syllable_Type_NA;
- /* Now we pick out the assigned Hangul code points */
- if((c >= 0x1100 && c <= 0x1159) || c == 0x115F) return Hangul_Syllable_Type_L;
- if(c >= 0x1160 && c <= 0x11A2) return Hangul_Syllable_Type_V;
- if(c >= 0x11A8 && c <= 0x11F9) return Hangul_Syllable_Type_T;
- if(c >= 0xAC00 && c <= 0xD7A3) {
- if(c % 28 == 16)
- return Hangul_Syllable_Type_LV;
- else
- return Hangul_Syllable_Type_LVT;
- }
- return Hangul_Syllable_Type_NA;
-}
-
-/** @brief Determine Word_Break property
- * @param c Code point
- * @return Word_Break property value of @p c
- */
-static enum unicode_Word_Break utf32__word_break(uint32_t c) {
- if(c < 0xAC00 || c > 0xD7A3) {
- if(c < UNICODE_NCHARS)
- return unidata[c / UNICODE_MODULUS][c % UNICODE_MODULUS].word_break;
- else
- return unicode_Word_Break_Other;
- } else
- return unicode_Word_Break_ALetter;
-}
-
/** @brief Identify a grapheme cluster boundary
* @param s Start of string (must be NFD)
* @param ns Length of string
@@ -658,57 +1303,18 @@ static enum unicode_Word_Break utf32__word_break(uint32_t c) {
* @return 1 at a grapheme cluster boundary, 0 otherwise
*
* This function identifies default grapheme cluster boundaries as described in
- * UAX #29 s3. It returns 1 if @p n points at the code point just after a
+ * UAX #29 s3. It returns non-0 if @p n points at the code point just after a
* grapheme cluster boundary (including the hypothetical code point just after
* the end of the string).
+ *
+ * This function uses utf32_iterator_set() internally; see that function for
+ * remarks on performance.
*/
-int utf32_is_gcb(const uint32_t *s, size_t ns, size_t n) {
- uint32_t before, after;
- uint32_t hbefore, hafter;
- /* GB1 and GB2 */
- if(n == 0 || n == ns)
- return 1;
- /* Now we know that s[n-1] and s[n] are safe to inspect */
- /* GB3 */
- before = s[n-1];
- after = s[n];
- if(before == 0x000D && after == 0x000A)
- return 0;
- /* GB4 and GB5 */
- if(utf32__is_control_or_cr_or_lf(before)
- || utf32__is_control_or_cr_or_lf(after))
- return 1;
- hbefore = utf32__hangul_syllable_type(before);
- hafter = utf32__hangul_syllable_type(after);
- /* GB6 */
- if(hbefore == Hangul_Syllable_Type_L
- && (hafter == Hangul_Syllable_Type_L
- || hafter == Hangul_Syllable_Type_V
- || hafter == Hangul_Syllable_Type_LV
- || hafter == Hangul_Syllable_Type_LVT))
- return 0;
- /* GB7 */
- if((hbefore == Hangul_Syllable_Type_LV
- || hbefore == Hangul_Syllable_Type_V)
- && (hafter == Hangul_Syllable_Type_V
- || hafter == Hangul_Syllable_Type_T))
- return 0;
- /* GB8 */
- if((hbefore == Hangul_Syllable_Type_LVT
- || hbefore == Hangul_Syllable_Type_T)
- && hafter == Hangul_Syllable_Type_T)
- return 0;
- /* GB9 */
- if(utf32__word_break(after) == unicode_Word_Break_Extend)
- return 0;
- /* GB10 */
- return 1;
-}
+int utf32_is_grapheme_boundary(const uint32_t *s, size_t ns, size_t n) {
+ struct utf32_iterator_data it[1];
-/** @brief Return true if @p c is ignorable for boundary specifications */
-static inline int utf32__boundary_ignorable(enum unicode_Word_Break wb) {
- return (wb == unicode_Word_Break_Extend
- || wb == unicode_Word_Break_Format);
+ utf32__iterator_init(it, s, ns, n);
+ return utf32_iterator_grapheme_boundary(it);
}
/** @brief Identify a word boundary
@@ -718,127 +1324,75 @@ static inline int utf32__boundary_ignorable(enum unicode_Word_Break wb) {
* @return 1 at a word boundary, 0 otherwise
*
* This function identifies default word boundaries as described in UAX #29 s4.
- * It returns 1 if @p n points at the code point just after a word boundary
+ * It returns non-0 if @p n points at the code point just after a word boundary
* (including the hypothetical code point just after the end of the string).
+ *
+ * This function uses utf32_iterator_set() internally; see that function for
+ * remarks on performance.
*/
int utf32_is_word_boundary(const uint32_t *s, size_t ns, size_t n) {
- enum unicode_Word_Break twobefore, before, after, twoafter;
- size_t nn;
+ struct utf32_iterator_data it[1];
- /* WB1 and WB2 */
- if(n == 0 || n == ns)
- return 1;
- /* WB3 */
- if(s[n-1] == 0x000D && s[n] == 0x000A)
- return 0;
- /* WB4 */
- /* (!Sep) x (Extend|Format) as in UAX #29 s6.2 */
- switch(s[n-1]) { /* bit of a bodge */
- case 0x000A:
- case 0x000D:
- case 0x0085:
- case 0x2028:
- case 0x2029:
- break;
- default:
- if(utf32__boundary_ignorable(utf32__word_break(s[n])))
- return 0;
- break;
- }
- /* Gather the property values we'll need for the rest of the test taking the
- * s6.2 changes into account */
- /* First we look at the code points after the proposed boundary */
- nn = n; /* X */
- while(nn < ns && utf32__boundary_ignorable(utf32__word_break(s[nn])))
- ++nn;
- }
- /* It's possible now that nn=ns */
- if(nn < ns)
- twoafter = utf32__word_break(s[nn]);
- else
- twoafter = unicode_Word_Break_Other;
-
- /* Next we look at the code points before the proposed boundary. This is a
- * bit fiddlier. */
- nn = n;
- while(nn > 0 && utf32__boundary_ignorable(utf32__word_break(s[nn - 1])))
- --nn;
- if(nn == 0) {
- /* s[nn] must be ignorable */
- before = utf32__word_break(s[nn]);
- twobefore = unicode_Word_Break_Other;
- } else {
- /* s[nn] is ignorable or after the proposed boundary; but s[nn-1] is not
- * ignorable. */
- before = utf32__word_break(s[nn - 1]);
- --nn;
- /* Repeat the exercise */
- while(nn > 0 && utf32__boundary_ignorable(utf32__word_break(s[nn - 1])))
- --nn;
- if(nn == 0)
- twobefore = utf32__word_break(s[nn]);
- else
- twobefore = utf32__word_break(s[nn - 1]);
- }
+ utf32__iterator_init(it, s, ns, n);
+ return utf32_iterator_word_boundary(it);
+}
- /* WB5 */
- if(before == unicode_Word_Break_ALetter
- && after == unicode_Word_Break_ALetter)
- return 0;
- /* WB6 */
- if(before == unicode_Word_Break_ALetter
- && after == unicode_Word_Break_MidLetter
- && twoafter == unicode_Word_Break_ALetter)
- return 0;
- /* WB7 */
- if(twobefore == unicode_Word_Break_ALetter
- && before == unicode_Word_Break_MidLetter
- && after == unicode_Word_Break_ALetter)
- return 0;
- /* WB8 */
- if(before == unicode_Word_Break_Numeric
- && after == unicode_Word_Break_Numeric)
- return 0;
- /* WB9 */
- if(before == unicode_Word_Break_ALetter
- && after == unicode_Word_Break_Numeric)
- return 0;
- /* WB10 */
- if(before == unicode_Word_Break_Numeric
- && after == unicode_Word_Break_ALetter)
- return 0;
- /* WB11 */
- if(twobefore == unicode_Word_Break_Numeric
- && before == unicode_Word_Break_MidNum
- && after == unicode_Word_Break_Numeric)
- return 0;
- /* WB12 */
- if(before == unicode_Word_Break_Numeric
- && after == unicode_Word_Break_MidNum
- && twoafter == unicode_Word_Break_Numeric)
- return 0;
- /* WB13 */
- if(before == unicode_Word_Break_Katakana
- && after == unicode_Word_Break_Katakana)
- return 0;
- /* WB13a */
- if((before == unicode_Word_Break_ALetter
- || before == unicode_Word_Break_Numeric
- || before == unicode_Word_Break_Katakana
- || before == unicode_Word_Break_ExtendNumLet)
- && after == unicode_Word_Break_ExtendNumLet)
- return 0;
- /* WB13b */
- if(before == unicode_Word_Break_ExtendNumLet
- && (after == unicode_Word_Break_ALetter
- || after == unicode_Word_Break_Numeric
- || after == unicode_Word_Break_Katakana))
- return 0;
- /* WB14 */
- return 1;
+/** @brief Split [s,ns) into multiple words
+ * @param s Pointer to start of string
+ * @param ns Length of string
+ * @param nwp Where to store word count, or NULL
+ * @param wbreak Word_Break property tailor, or NULL
+ * @return Pointer to array of pointers to words
+ *
+ * The returned array is terminated by a NULL pointer and individual
+ * strings are 0-terminated.
+ */
+uint32_t **utf32_word_split(const uint32_t *s, size_t ns, size_t *nwp,
+ unicode_property_tailor *wbreak) {
+ struct utf32_iterator_data it[1];
+ size_t b1 = 0, b2 = 0 ,i;
+ int isword;
+ struct vector32 v32[1];
+ uint32_t *w;
+
+ vector32_init(v32);
+ utf32__iterator_init(it, s, ns, 0);
+ it->word_break = wbreak;
+ /* Work our way through the string stopping at each word break. */
+ do {
+ if(utf32_iterator_word_boundary(it)) {
+ /* We've found a new boundary */
+ b1 = b2;
+ b2 = it->n;
+ /*fprintf(stderr, "[%zu, %zu) is a candidate word\n", b1, b2);*/
+ /* Inspect the characters between the boundary and form an opinion as to
+ * whether they are a word or not */
+ isword = 0;
+ for(i = b1; i < b2; ++i) {
+ switch(utf32__iterator_word_break(it, it->s[i])) {
+ case unicode_Word_Break_ALetter:
+ case unicode_Word_Break_Numeric:
+ case unicode_Word_Break_Katakana:
+ isword = 1;
+ break;
+ default:
+ break;
+ }
+ }
+ /* If it's a word add it to the list of results */
+ if(isword) {
+ const size_t len = b2 - b1;
+ w = xcalloc_noptr(len + 1, sizeof(uint32_t));
+ memcpy(w, it->s + b1, len * sizeof (uint32_t));
+ w[len] = 0;
+ vector32_append(v32, w);
+ }
+ }
+ } while(!utf32_iterator_advance(it, 1));
+ vector32_terminate(v32);
+ if(nwp)
+ *nwp = v32->nvec;
+ return v32->vec;
}
/*@}*/
@@ -864,17 +1418,19 @@ error: \
* @param s Pointer to string
* @param ns Length of string
* @param ndp Where to store length of result
- * @return Pointer to result string, or NULL
+ * @return Pointer to result string, or NULL on error
*
- * Computes the canonical decomposition of a string and stably sorts combining
- * characters into canonical order. The result is in Normalization Form D and
- * (at the time of writing!) passes the NFD tests defined in Unicode 5.0's
- * NormalizationTest.txt.
+ * Computes NFD (Normalization Form D) of the string at @p s. This implies
+ * performing all canonical decompositions and then normalizing the order of
+ * combining characters.
*
* Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
* this might be.
*
- * See also utf32_decompose_canon().
+ * See also:
+ * - utf32_decompose_canon().
+ * - utf8_decompose_compat()
+ * - utf8_compose_canon()
*/
char *utf8_decompose_canon(const char *s, size_t ns, size_t *ndp) {
utf8__transform(utf32_decompose_canon);
@@ -884,27 +1440,74 @@ char *utf8_decompose_canon(const char *s, size_t ns, size_t *ndp) {
* @param s Pointer to string
* @param ns Length of string
* @param ndp Where to store length of result
- * @return Pointer to result string, or NULL
+ * @return Pointer to result string, or NULL on error
*
- * Computes the compatibility decomposition of a string and stably sorts
- * combining characters into canonical order. The result is in Normalization
- * Form KD and (at the time of writing!) passes the NFKD tests defined in
- * Unicode 5.0's NormalizationTest.txt.
+ * Computes NFKD (Normalization Form KD) of the string at @p s. This implies
+ * performing all canonical and compatibility decompositions and then
+ * normalizing the order of combining characters.
*
* Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
* this might be.
*
- * See also utf32_decompose_compat().
+ * See also:
+ * - utf32_decompose_compat().
+ * - utf8_decompose_canon()
+ * - utf8_compose_compat()
*/
char *utf8_decompose_compat(const char *s, size_t ns, size_t *ndp) {
utf8__transform(utf32_decompose_compat);
}
+/** @brief Canonically compose @p [s,s+ns)
+ * @param s Pointer to string
+ * @param ns Length of string
+ * @param ndp Where to store length of result
+ * @return Pointer to result string, or NULL on error
+ *
+ * Computes NFC (Normalization Form C) of the string at @p s. This implies
+ * performing all canonical decompositions, normalizing the order of combining
+ * characters and then composing all unblocked primary compositables.
+ *
+ * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
+ * this might be.
+ *
+ * See also:
+ * - utf32_compose_canon()
+ * - utf8_compose_compat()
+ * - utf8_decompose_canon()
+ */
+char *utf8_compose_canon(const char *s, size_t ns, size_t *ndp) {
+ utf8__transform(utf32_compose_canon);
+}
+
+/** @brief Compatibility compose @p [s,s+ns)
+ * @param s Pointer to string
+ * @param ns Length of string
+ * @param ndp Where to store length of result
+ * @return Pointer to result string, or NULL on error
+ *
+ * Computes NFKC (Normalization Form KC) of the string at @p s. This implies
+ * performing all canonical and compatibility decompositions, normalizing the
+ * order of combining characters and then composing all unblocked primary
+ * compositables.
+ *
+ * Returns NULL if the string is not valid; see utf8_to_utf32() for reasons why
+ * this might be.
+ *
+ * See also:
+ * - utf32_compose_compat()
+ * - utf8_compose_canon()
+ * - utf8_decompose_compat()
+ */
+char *utf8_compose_compat(const char *s, size_t ns, size_t *ndp) {
+ utf8__transform(utf32_compose_compat);
+}
+
/** @brief Case-fold @p [s,s+ns)
* @param s Pointer to string
* @param ns Length of string
* @param ndp Where to store length of result
- * @return Pointer to result string, or NULL
+ * @return Pointer to result string, or NULL on error
*
* Case-fold the string at @p s according to full default case-folding rules
* (s3.13). The result will be in NFD.
@@ -920,7 +1523,7 @@ char *utf8_casefold_canon(const char *s, size_t ns, size_t *ndp) {
* @param s Pointer to string
* @param ns Length of string
* @param ndp Where to store length of result
- * @return Pointer to result string, or NULL
+ * @return Pointer to result string, or NULL on error
*
* Case-fold the string at @p s according to full default case-folding rules
* (s3.13). The result will be in NFKD.
@@ -932,6 +1535,47 @@ char *utf8_casefold_compat(const char *s, size_t ns, size_t *ndp) {
utf8__transform(utf32_casefold_compat);
}
+/** @brief Split [s,ns) into multiple words
+ * @param s Pointer to start of string
+ * @param ns Length of string
+ * @param nwp Where to store word count, or NULL
+ * @param wbreak Word_Break property tailor, or NULL
+ * @return Pointer to array of pointers to words
+ *
+ * The returned array is terminated by a NULL pointer and individual
+ * strings are 0-terminated.
+ */
+char **utf8_word_split(const char *s, size_t ns, size_t *nwp,
+ unicode_property_tailor *wbreak) {
+ uint32_t *to32 = 0, **v32 = 0;
+ size_t nto32, nv, n;
+ char **v8 = 0, **ret = 0;
+
+ if(!(to32 = utf8_to_utf32(s, ns, &nto32))) goto error;
+ if(!(v32 = utf32_word_split(to32, nto32, &nv, wbreak))) goto error;
+ v8 = xcalloc(sizeof (char *), nv + 1);
+ for(n = 0; n < nv; ++n)
+ if(!(v8[n] = utf32_to_utf8(v32[n], utf32_len(v32[n]), 0)))
+ goto error;
+ ret = v8;
+ *nwp = nv;
+ v8 = 0; /* don't free */
+error:
+ if(v8) {
+ for(n = 0; n < nv; ++n)
+ xfree(v8[n]);
+ xfree(v8);
+ }
+ if(v32) {
+ for(n = 0; n < nv; ++n)
+ xfree(v32[n]);
+ xfree(v32);
+ }
+ xfree(to32);
+ return ret;
+}
+
+
/*@}*/
/*