chiark / gitweb /
math/scaf.c: Fix trivial typo.
[catacomb] / math / mp-jacobi.c
CommitLineData
5b00a0ea 1/* -*-c-*-
5b00a0ea 2 *
3 * Compute Jacobi symbol
4 *
5 * (c) 1999 Straylight/Edgeware
6 */
7
45c0fd36 8/*----- Licensing notice --------------------------------------------------*
5b00a0ea 9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
45c0fd36 16 *
5b00a0ea 17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
45c0fd36 21 *
5b00a0ea 22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
5b00a0ea 28/*----- Header files ------------------------------------------------------*/
29
30#include "mp.h"
31
32/*----- Main code ---------------------------------------------------------*/
33
34/* --- @mp_jacobi@ --- *
35 *
6791ed17
MW
36 * Arguments: @mp *a@ = an integer
37 * @mp *n@ = another integer
5b00a0ea 38 *
39 * Returns: @-1@, @0@ or @1@ -- the Jacobi symbol %$J(a, n)$%.
40 *
6791ed17
MW
41 * Use: Computes the Kronecker symbol %$\jacobi{a}{n}$%. If @n@ is
42 * prime, this is the Legendre symbol and is equal to 1 if and
43 * only if @a@ is a quadratic residue mod @n@. The result is
44 * zero if and only if @a@ and @n@ have a common factor greater
45 * than one.
46 *
47 * If @n@ is composite, then this computes the Kronecker symbol
48 *
49 * %$\jacobi{a}{n}=\jacobi{a}{u}\prod_i\jacobi{a}{p_i}^{e_i}$%
50 *
51 * where %$n = u p_0^{e_0} \ldots p_{n-1}^{e_{n-1}}$% is the
52 * prime factorization of %$n$%. The missing bits are:
53 *
54 * * %$\jacobi{a}{1} = 1$%;
55 * * %$\jacobi{a}{-1} = 1$% if @a@ is negative, or 1 if
56 * positive;
57 * * %$\jacobi{a}{0} = 0$%;
075af359 58 * * %$\jacobi{a}{2}$ is 0 if @a@ is even, 1 if @a@ is
6791ed17
MW
59 * congruent to 1 or 7 (mod 8), or %$-1$% otherwise.
60 *
61 * If %$n$% is positive and odd, then this is the Jacobi
27b1fbee 62 * symbol. (The Kronecker symbol is a consistent domain
6791ed17
MW
63 * extension; the Jacobi symbol was implemented first, and the
64 * name stuck.)
5b00a0ea 65 */
66
67int mp_jacobi(mp *a, mp *n)
68{
69 int s = 1;
6791ed17
MW
70 size_t p2;
71
72 /* --- Handle zero specially --- *
73 *
74 * I can't find any specific statement for what to do when %$n = 0$%; PARI
75 * opts to set %$\jacobi{\pm1}{0} = \pm 1$% and %$\jacobi{a}{0} = 0$% for
76 * other %$a$%.
77 */
78
79 if (MP_ZEROP(n)) {
80 if (MP_EQ(a, MP_ONE)) return (+1);
81 else if (MP_EQ(a, MP_MONE)) return (-1);
82 else return (0);
83 }
84
85 /* --- Deal with powers of two --- *
86 *
87 * This implicitly takes a copy of %$n$%. Copy %$a$% at the same time to
88 * make cleanup easier.
89 */
90
91 MP_COPY(a);
92 n = mp_odd(MP_NEW, n, &p2);
93 if (p2) {
94 if (MP_EVENP(a)) {
95 s = 0;
96 goto done;
97 } else if ((p2 & 1) && ((a->v[0] & 7) == 3 || (a->v[0] & 7) == 5))
98 s = -s;
99 }
100
101 /* --- Deal with negative %$n$% --- */
102
103 if (MP_NEGP(n)) {
104 n = mp_neg(n, n);
105 if (MP_NEGP(a))
106 s = -s;
107 }
108
109 /* --- Check for unit %$n$% --- */
5b00a0ea 110
6791ed17
MW
111 if (MP_EQ(n, MP_ONE))
112 goto done;
c76161cc 113
6791ed17 114 /* --- Reduce %$a$% modulo %$n$% --- */
5b00a0ea 115
6791ed17
MW
116 if (MP_NEGP(a) || MP_CMP(a, >=, n))
117 mp_div(0, &a, a, n);
5b00a0ea 118
119 /* --- Main recursive mess, flattened out into something nice --- */
120
121 for (;;) {
774d32a5 122 mpw nn;
123 size_t e;
5b00a0ea 124
125 /* --- Some simple special cases --- */
126
127 MP_SHRINK(a);
a69a3efd 128 if (MP_ZEROP(a)) {
5b00a0ea 129 s = 0;
130 goto done;
131 }
132
aa997933 133 /* --- Strip out powers of two from %$a$% --- */
5b00a0ea 134
774d32a5 135 a = mp_odd(a, a, &e);
136 nn = n->v[0] & 7;
137 if ((e & 1) && (nn == 3 || nn == 5))
138 s = -s;
139 if (MP_LEN(a) == 1 && a->v[0] == 1)
140 goto done;
5b00a0ea 141
aa997933 142 /* --- Reduce and swap, applying quadratic residuosity --- */
5b00a0ea 143
aa997933
MW
144 if ((nn & 3) == 3 && (a->v[0] & 3) == 3)
145 s = -s;
5b00a0ea 146 mp_div(0, &n, n, a);
147 { mp *t = n; n = a; a = t; }
148 }
149
150 /* --- Wrap everything up --- */
151
152done:
153 MP_DROP(a);
154 MP_DROP(n);
155 return (s);
156}
157
158/*----- Test rig ----------------------------------------------------------*/
159
160#ifdef TEST_RIG
161
162#include <mLib/testrig.h>
163
164static int verify(dstr *v)
165{
166 mp *a = *(mp **)v[0].buf;
167 mp *n = *(mp **)v[1].buf;
168 int s = *(int *)v[2].buf;
169 int j = mp_jacobi(a, n);
170 int ok = 1;
171
172 if (s != j) {
173 fputs("\n*** fail", stderr);
174 fputs("a = ", stderr); mp_writefile(a, stderr, 10); fputc('\n', stderr);
175 fputs("n = ", stderr); mp_writefile(n, stderr, 10); fputc('\n', stderr);
176 fprintf(stderr, "s = %i\n", s);
177 fprintf(stderr, "j = %i\n", j);
178 ok = 0;
179 }
180
181 mp_drop(a);
182 mp_drop(n);
0e895689 183 assert(mparena_count(MPARENA_GLOBAL) == 0);
5b00a0ea 184 return (ok);
185}
186
187static test_chunk tests[] = {
188 { "jacobi", verify, { &type_mp, &type_mp, &type_int, 0 } },
189 { 0, 0, { 0 } }
190};
191
192int main(int argc, char *argv[])
193{
194 sub_init();
0f00dc4c 195 test_run(argc, argv, tests, SRCDIR "/t/mp");
5b00a0ea 196 return (0);
197}
198
199#endif
200
201/*----- That's all, folks -------------------------------------------------*/