chiark / gitweb /
Don't use the @pgen@ random number generator for generating primes: it's
[catacomb] / mp-modsqrt.c
CommitLineData
9f11b970 1/* -*-c-*-
2 *
4b536f42 3 * $Id: mp-modsqrt.c,v 1.2 2000/10/08 12:02:21 mdw Exp $
9f11b970 4 *
5 * Compute square roots modulo a prime
6 *
7 * (c) 2000 Straylight/Edgeware
8 */
9
10/*----- Licensing notice --------------------------------------------------*
11 *
12 * This file is part of Catacomb.
13 *
14 * Catacomb is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU Library General Public License as
16 * published by the Free Software Foundation; either version 2 of the
17 * License, or (at your option) any later version.
18 *
19 * Catacomb is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU Library General Public License for more details.
23 *
24 * You should have received a copy of the GNU Library General Public
25 * License along with Catacomb; if not, write to the Free
26 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
27 * MA 02111-1307, USA.
28 */
29
30/*----- Revision history --------------------------------------------------*
31 *
32 * $Log: mp-modsqrt.c,v $
4b536f42 33 * Revision 1.2 2000/10/08 12:02:21 mdw
34 * Use @MP_EQ@ instead of @MP_CMP@.
35 *
9f11b970 36 * Revision 1.1 2000/06/22 19:01:31 mdw
37 * Compute square roots in a prime field.
38 *
39 */
40
41/*----- Header files ------------------------------------------------------*/
42
43#include "fibrand.h"
44#include "grand.h"
45#include "mp.h"
46#include "mpmont.h"
47#include "mprand.h"
48
49/*----- Main code ---------------------------------------------------------*/
50
51/* --- @mp_modsqrt@ --- *
52 *
53 * Arguments: @mp *d@ = destination integer
54 * @mp *a@ = source integer
55 * @mp *p@ = modulus (must be prime)
56 *
57 * Returns: If %$a$% is a quadratic residue, a square root of %$a$%; else
58 * a null pointer.
59 *
60 * Use: Returns an integer %$x$% such that %$x^2 \equiv a \pmod{p}$%,
61 * if one exists; else a null pointer. This function will not
62 * work if %$p$% is composite: you must factor the modulus, take
63 * a square root mod each factor, and recombine the results
64 * using the Chinese Remainder Theorem.
65 */
66
67mp *mp_modsqrt(mp *d, mp *a, mp *p)
68{
69 mpmont mm;
70 mp *t;
71 size_t s;
72 mp *b;
73 mp *ainv;
74 mp *c, *r;
75 size_t i, j;
76 mp *dd, *mone;
77
78 /* --- Cope if %$a \not\in Q_p$% --- */
79
80 if (mp_jacobi(a, p) != 1) {
81 if (d)
82 mp_drop(d);
83 return (0);
84 }
85
86 /* --- Choose some quadratic non-residue --- */
87
88 {
89 grand *g = fibrand_create(0);
90
91 b = MP_NEW;
92 do
93 b = mprand_range(b, p, g, 0);
94 while (mp_jacobi(b, p) != -1);
95 g->ops->destroy(g);
96 }
97
98 /* --- Find the inverse of %$a$% --- */
99
100 ainv = MP_NEW;
101 mp_gcd(0, &ainv, 0, a, p);
102
103 /* --- Split %$p - 1$% into a power of two and an odd number --- */
104
105 t = mp_sub(MP_NEW, p, MP_ONE);
106 t = mp_odd(t, t, &s);
107
108 /* --- Now to really get going --- */
109
110 mpmont_create(&mm, p);
111 c = mpmont_expr(&mm, b, b, t);
112 t = mp_add(t, t, MP_ONE);
113 t = mp_lsr(t, t, 1);
114 r = mpmont_expr(&mm, t, a, t);
115 ainv = mpmont_mul(&mm, ainv, ainv, mm.r2);
116
117 mone = mp_sub(MP_NEW, p, mm.r);
118
119 dd = MP_NEW;
120
121 for (i = 1; i < s; i++) {
122
123 /* --- Compute %$d_0 = r^2a^{-1}$% --- */
124
125 dd = mp_sqr(dd, r);
126 dd = mpmont_reduce(&mm, dd, dd);
127 dd = mpmont_mul(&mm, dd, dd, ainv);
128
129 /* --- Now %$d = d_0^{s - i - 1}$% --- */
130
131 for (j = i; j < s - 1; j++) {
132 dd = mp_sqr(dd, dd);
133 dd = mpmont_reduce(&mm, dd, dd);
134 }
135
136 /* --- Fiddle at the end --- */
137
4b536f42 138 if (MP_EQ(dd, mone))
9f11b970 139 r = mpmont_mul(&mm, r, r, c);
140 c = mp_sqr(c, c);
141 c = mpmont_reduce(&mm, c, c);
142 }
143
144 /* --- Done, so tidy up --- */
145
146 d = mpmont_reduce(&mm, d, r);
147 mp_drop(ainv);
148 mp_drop(r); mp_drop(c);
149 if (dd)
150 mp_drop(dd);
151 mp_drop(mone);
152 mpmont_destroy(&mm);
153
154 return (d);
155}
156
157/*----- Test rig ----------------------------------------------------------*/
158
159#ifdef TEST_RIG
160
161#include <mLib/testrig.h>
162
163static int verify(dstr *v)
164{
165 mp *a = *(mp **)v[0].buf;
166 mp *p = *(mp **)v[1].buf;
167 mp *rr = *(mp **)v[2].buf;
168 mp *r = mp_modsqrt(MP_NEW, a, p);
169 int ok = 0;
170
171 if (!r)
172 ok = 0;
4b536f42 173 else if (MP_EQ(r, rr))
9f11b970 174 ok = 1;
175 else {
176 r = mp_sub(r, p, r);
4b536f42 177 if (MP_EQ(r, rr))
9f11b970 178 ok = 1;
179 }
180
181 if (!ok) {
182 fputs("\n*** fail\n", stderr);
183 fputs("a = ", stderr); mp_writefile(a, stderr, 10); fputc('\n', stderr);
184 fputs("p = ", stderr); mp_writefile(p, stderr, 10); fputc('\n', stderr);
185 if (r) {
186 fputs("r = ", stderr);
187 mp_writefile(r, stderr, 10);
188 fputc('\n', stderr);
189 } else
190 fputs("r = <undef>\n", stderr);
191 fputs("rr = ", stderr); mp_writefile(rr, stderr, 10); fputc('\n', stderr);
192 ok = 0;
193 }
194
195 mp_drop(a);
196 mp_drop(p);
197 if (r)
198 mp_drop(r);
199 mp_drop(rr);
200 assert(mparena_count(MPARENA_GLOBAL) == 0);
201 return (ok);
202}
203
204static test_chunk tests[] = {
205 { "modsqrt", verify, { &type_mp, &type_mp, &type_mp, 0 } },
206 { 0, 0, { 0 } }
207};
208
209int main(int argc, char *argv[])
210{
211 sub_init();
212 test_run(argc, argv, tests, SRCDIR "/tests/mp");
213 return (0);
214}
215
216#endif
217
218/*----- That's all, folks -------------------------------------------------*/