X-Git-Url: http://www.chiark.greenend.org.uk/ucgi/~mdw/git/catacomb-python/blobdiff_plain/e91150b266bbd768905258166601fdf333d3d987..553d59fec08fd9102b21fd0dc83ba708862a6090:/t/t-algorithms.py diff --git a/t/t-algorithms.py b/t/t-algorithms.py new file mode 100644 index 0000000..8e073f2 --- /dev/null +++ b/t/t-algorithms.py @@ -0,0 +1,576 @@ +### -*- mode: python, coding: utf-8 -*- +### +### Test symmetric algorithms +### +### (c) 2019 Straylight/Edgeware +### + +###----- Licensing notice --------------------------------------------------- +### +### This file is part of the Python interface to Catacomb. +### +### Catacomb/Python is free software: you can redistribute it and/or +### modify it under the terms of the GNU General Public License as +### published by the Free Software Foundation; either version 2 of the +### License, or (at your option) any later version. +### +### Catacomb/Python is distributed in the hope that it will be useful, but +### WITHOUT ANY WARRANTY; without even the implied warranty of +### MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +### General Public License for more details. +### +### You should have received a copy of the GNU General Public License +### along with Catacomb/Python. If not, write to the Free Software +### Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, +### USA. + +###-------------------------------------------------------------------------- +### Imported modules. + +import catacomb as C +import unittest as U +import testutils as T + +###-------------------------------------------------------------------------- +### Utilities. + +def bad_key_size(ksz): + if isinstance(ksz, C.KeySZAny): return None + elif isinstance(ksz, C.KeySZRange): + if ksz.mod != 1: return ksz.min + 1 + elif ksz.max != 0: return ksz.max + 1 + elif ksz.min != 0: return ksz.min - 1 + else: return None + elif isinstance(ksz, C.KeySZSet): + for sz in sorted(ksz.set): + if sz + 1 not in ksz.set: return sz + 1 + assert False, "That should have worked." + else: + return None + +def different_key_size(ksz, sz): + if isinstance(ksz, C.KeySZAny): return sz + 1 + elif isinstance(ksz, C.KeySZRange): + if sz > ksz.min: return sz - ksz.mod + elif ksz.max == 0 or sz < ksz.max: return sz + ksz.mod + else: return None + elif isinstance(ksz, C.KeySZSet): + for sz1 in sorted(ksz.set): + if sz != sz1: return sz1 + return None + else: + return None + +class HashBufferTestMixin (U.TestCase): + """Mixin class for testing all of the various `hash...' methods.""" + + def check_hashbuffer_hashn(me, w, bigendp, makefn, hashfn): + """Check `hashuN'.""" + + ## Check encoding an integer. + h0, donefn0 = makefn(w + 2) + hashfn(h0.hashu8(0x00), T.bytes_as_int(w, bigendp)).hashu8(w + 1) + h1, donefn1 = makefn(w + 2) + h1.hash(T.span(w + 2)) + me.assertEqual(donefn0(), donefn1()) + + ## Check overflow detection. + h0, _ = makefn(w) + me.assertRaises((OverflowError, ValueError), + hashfn, h0, 1 << 8*w) + + def check_hashbuffer_bufn(me, w, bigendp, makefn, hashfn): + """Check `hashbufN'.""" + + ## Go through a number of different sizes. + for n in [0, 1, 7, 8, 19, 255, 12345, 65535, 123456]: + if n >= 1 << 8*w: continue + h0, donefn0 = makefn(2 + w + n) + hashfn(h0.hashu8(0x00), T.span(n)).hashu8(0xff) + h1, donefn1 = makefn(2 + w + n) + h1.hash(T.prep_lenseq(w, n, bigendp, True)) + me.assertEqual(donefn0(), donefn1()) + + ## Check blocks which are too large for the length prefix. + if w <= 3: + n = 1 << 8*w + h0, _ = makefn(w + n) + me.assertRaises((ValueError, OverflowError, TypeError), + hashfn, h0, C.ByteString.zero(n)) + + def check_hashbuffer(me, makefn): + """Test the various `hash...' methods.""" + + ## Check `hashuN'. + me.check_hashbuffer_hashn(1, True, makefn, lambda h, n: h.hashu8(n)) + me.check_hashbuffer_hashn(2, True, makefn, lambda h, n: h.hashu16(n)) + me.check_hashbuffer_hashn(2, True, makefn, lambda h, n: h.hashu16b(n)) + me.check_hashbuffer_hashn(2, False, makefn, lambda h, n: h.hashu16l(n)) + if hasattr(makefn(0)[0], "hashu24"): + me.check_hashbuffer_hashn(3, True, makefn, lambda h, n: h.hashu24(n)) + me.check_hashbuffer_hashn(3, True, makefn, lambda h, n: h.hashu24b(n)) + me.check_hashbuffer_hashn(3, False, makefn, lambda h, n: h.hashu24l(n)) + me.check_hashbuffer_hashn(4, True, makefn, lambda h, n: h.hashu32(n)) + me.check_hashbuffer_hashn(4, True, makefn, lambda h, n: h.hashu32b(n)) + me.check_hashbuffer_hashn(4, False, makefn, lambda h, n: h.hashu32l(n)) + if hasattr(makefn(0)[0], "hashu64"): + me.check_hashbuffer_hashn(8, True, makefn, lambda h, n: h.hashu64(n)) + me.check_hashbuffer_hashn(8, True, makefn, lambda h, n: h.hashu64b(n)) + me.check_hashbuffer_hashn(8, False, makefn, lambda h, n: h.hashu64l(n)) + + ## Check `hashbufN'. + me.check_hashbuffer_bufn(1, True, makefn, lambda h, x: h.hashbuf8(x)) + me.check_hashbuffer_bufn(2, True, makefn, lambda h, x: h.hashbuf16(x)) + me.check_hashbuffer_bufn(2, True, makefn, lambda h, x: h.hashbuf16b(x)) + me.check_hashbuffer_bufn(2, False, makefn, lambda h, x: h.hashbuf16l(x)) + if hasattr(makefn(0)[0], "hashbuf24"): + me.check_hashbuffer_bufn(3, True, makefn, lambda h, x: h.hashbuf24(x)) + me.check_hashbuffer_bufn(3, True, makefn, lambda h, x: h.hashbuf24b(x)) + me.check_hashbuffer_bufn(3, False, makefn, lambda h, x: h.hashbuf24l(x)) + me.check_hashbuffer_bufn(4, True, makefn, lambda h, x: h.hashbuf32(x)) + me.check_hashbuffer_bufn(4, True, makefn, lambda h, x: h.hashbuf32b(x)) + me.check_hashbuffer_bufn(4, False, makefn, lambda h, x: h.hashbuf32l(x)) + if hasattr(makefn(0)[0], "hashbuf64"): + me.check_hashbuffer_bufn(8, True, makefn, lambda h, x: h.hashbuf64(x)) + me.check_hashbuffer_bufn(8, True, makefn, lambda h, x: h.hashbuf64b(x)) + me.check_hashbuffer_bufn(8, False, makefn, lambda h, x: h.hashbuf64l(x)) + +###-------------------------------------------------------------------------- +class TestKeysize (U.TestCase): + + def test_any(me): + + ## A typical one-byte spec. + ksz = C.seal.keysz + me.assertEqual(type(ksz), C.KeySZAny) + me.assertEqual(ksz.default, 20) + me.assertEqual(ksz.min, 0) + me.assertEqual(ksz.max, 0) + for n in [0, 12, 20, 5000]: + me.assertTrue(ksz.check(n)) + me.assertEqual(ksz.best(n), n) + + ## A typical two-byte spec. (No published algorithms actually /need/ a + ## two-byte key-size spec, but all of the HMAC variants use one anyway.) + ksz = C.sha256_hmac.keysz + me.assertEqual(type(ksz), C.KeySZAny) + me.assertEqual(ksz.default, 32) + me.assertEqual(ksz.min, 0) + me.assertEqual(ksz.max, 0) + for n in [0, 12, 20, 5000]: + me.assertTrue(ksz.check(n)) + me.assertEqual(ksz.best(n), n) + + ## Check construction. + ksz = C.KeySZAny(15) + me.assertEqual(ksz.default, 15) + me.assertEqual(ksz.min, 0) + me.assertEqual(ksz.max, 0) + me.assertRaises(ValueError, lambda: C.KeySZAny(-8)) + me.assertEqual(C.KeySZAny(0).default, 0) + + def test_set(me): + ## Note that no published algorithm uses a 16-bit `set' spec. + + ## A typical spec. + ksz = C.salsa20.keysz + me.assertEqual(type(ksz), C.KeySZSet) + me.assertEqual(ksz.default, 32) + me.assertEqual(ksz.min, 10) + me.assertEqual(ksz.max, 32) + me.assertEqual(set(ksz.set), set([10, 16, 32])) + for x, best, pad in [(9, None, 10), (10, 10, 10), (11, 10, 16), + (15, 10, 16), (16, 16, 16), (17, 16, 32), + (31, 16, 32), (32, 32, 32), (33, 32, None)]: + if x == best == pad: me.assertTrue(ksz.check(x)) + else: me.assertFalse(ksz.check(x)) + if best is None: me.assertRaises(ValueError, ksz.best, x) + else: me.assertEqual(ksz.best(x), best) + + ## Check construction. + ksz = C.KeySZSet(7) + me.assertEqual(ksz.default, 7) + me.assertEqual(set(ksz.set), set([7])) + me.assertEqual(ksz.min, 7) + me.assertEqual(ksz.max, 7) + ksz = C.KeySZSet(7, [3, 6, 9]) + me.assertEqual(ksz.default, 7) + me.assertEqual(set(ksz.set), set([3, 6, 7, 9])) + me.assertEqual(ksz.min, 3) + me.assertEqual(ksz.max, 9) + + def test_range(me): + ## Note that no published algorithm uses a 16-bit `range' spec, or an + ## unbounded `range'. + + ## A typical spec. + ksz = C.rijndael.keysz + me.assertEqual(type(ksz), C.KeySZRange) + me.assertEqual(ksz.default, 32) + me.assertEqual(ksz.min, 4) + me.assertEqual(ksz.max, 32) + me.assertEqual(ksz.mod, 4) + for x, best in [(3, None), (4, 4), (5, 4), + (15, 12), (16, 16), (17, 16), + (31, 28), (32, 32), (33, 32)]: + if x == best: me.assertTrue(ksz.check(x)) + else: me.assertFalse(ksz.check(x)) + if best is None: me.assertRaises(ValueError, ksz.best, x) + else: me.assertEqual(ksz.best(x), best) + + ## Check construction. + ksz = C.KeySZRange(28, 21, 35, 7) + me.assertEqual(ksz.default, 28) + me.assertEqual(ksz.min, 21) + me.assertEqual(ksz.max, 35) + me.assertEqual(ksz.mod, 7) + me.assertRaises(ValueError, C.KeySZRange, 29, 21, 35, 7) + me.assertRaises(ValueError, C.KeySZRange, 28, 20, 35, 7) + me.assertRaises(ValueError, C.KeySZRange, 28, 21, 34, 7) + me.assertRaises(ValueError, C.KeySZRange, 28, -7, 35, 7) + me.assertRaises(ValueError, C.KeySZRange, 28, 35, 21, 7) + me.assertRaises(ValueError, C.KeySZRange, 35, 21, 28, 7) + me.assertRaises(ValueError, C.KeySZRange, 21, 28, 35, 7) + + def test_conversions(me): + me.assertEqual(C.KeySZ.fromec(256), 128) + me.assertEqual(C.KeySZ.fromschnorr(256), 128) + me.assertEqual(round(C.KeySZ.fromdl(2958.6875)), 128) + me.assertEqual(round(C.KeySZ.fromif(2958.6875)), 128) + me.assertEqual(C.KeySZ.toec(128), 256) + me.assertEqual(C.KeySZ.toschnorr(128), 256) + me.assertEqual(C.KeySZ.todl(128), 2958.6875) + me.assertEqual(C.KeySZ.toif(128), 2958.6875) + +###-------------------------------------------------------------------------- +class TestCipher (T.GenericTestMixin): + """Test basic symmetric ciphers.""" + + def _test_cipher(me, ccls): + + ## Check the class properties. + me.assertEqual(type(ccls.name), str) + me.assertTrue(isinstance(ccls.keysz, C.KeySZ)) + me.assertEqual(type(ccls.blksz), int) + + ## Check round-tripping. + k = T.span(ccls.keysz.default) + iv = T.span(ccls.blksz) + m = T.span(253) + enc = ccls(k) + dec = ccls(k) + try: enc.setiv(iv) + except ValueError: can_setiv = False + else: + can_setiv = True + dec.setiv(iv) + c0 = enc.encrypt(m[0:57]) + m0 = dec.decrypt(c0) + c1 = enc.encrypt(m[57:189]) + m1 = dec.decrypt(c1) + try: enc.bdry() + except ValueError: can_bdry = False + else: + dec.bdry() + can_bdry = True + c2 = enc.encrypt(m[189:253]) + m2 = dec.decrypt(c2) + me.assertEqual(len(c0) + len(c1) + len(c2), len(m)) + me.assertEqual(m0, m[0:57]) + me.assertEqual(m1, m[57:189]) + me.assertEqual(m2, m[189:253]) + + ## Check the `enczero' and `deczero' methods. + c3 = enc.enczero(32) + me.assertEqual(dec.decrypt(c3), C.ByteString.zero(32)) + m4 = dec.deczero(32) + me.assertEqual(enc.encrypt(m4), C.ByteString.zero(32)) + + ## Check that ciphers which support a `boundary' operation actually + ## need it. + if can_bdry: + dec = ccls(k) + if can_setiv: dec.setiv(iv) + m01 = dec.decrypt(c0 + c1) + me.assertEqual(m01, m[0:189]) + + ## Check that the boundary actually does something. + if can_bdry: + dec = ccls(k) + if can_setiv: dec.setiv(iv) + m012 = dec.decrypt(c0 + c1 + c2) + me.assertNotEqual(m012, m) + + ## Check that bad key lengths are rejected. + badlen = bad_key_size(ccls.keysz) + if badlen is not None: me.assertRaises(ValueError, ccls, T.span(badlen)) + +TestCipher.generate_testcases((name, C.gcciphers[name]) for name in + ["des-ecb", "rijndael-cbc", "twofish-cfb", "serpent-ofb", + "blowfish-counter", "rc4", "seal", "salsa20/8", "shake128-xof"]) + +###-------------------------------------------------------------------------- +class BaseTestHash (HashBufferTestMixin): + """Base class for testing hash functions.""" + + def check_hash(me, hcls, need_bufsz = True): + """ + Check hash class HCLS. + + If NEED_BUFSZ is false, then don't insist that HCLS have working `bufsz', + `name', or `hashsz' attributes. This test is mostly reused for MACs, + which don't have these attributes. + """ + ## Check the class properties. + if need_bufsz: + me.assertEqual(type(hcls.name), str) + me.assertEqual(type(hcls.bufsz), int) + me.assertEqual(type(hcls.hashsz), int) + + ## Set some initial values. + m = T.span(131) + h = hcls().hash(m).done() + + ## Check that hash length comes out right. + if need_bufsz: me.assertEqual(len(h), hcls.hashsz) + + ## Check that we get the same answer if we split the message up. + me.assertEqual(h, hcls().hash(m[0:73]).hash(m[73:131]).done()) + + ## Check the `check' method. + me.assertTrue(hcls().hash(m).check(h)) + me.assertFalse(hcls().hash(m).check(h ^ len(h)*C.bytes("aa"))) + + ## Check the menagerie of random hashing methods. + def mkhash(_): + h = hcls() + return h, h.done + me.check_hashbuffer(mkhash) + +class TestHash (BaseTestHash, T.GenericTestMixin): + """Test hash functions.""" + def _test_hash(me, hcls): me.check_hash(hcls, need_bufsz = True) + +TestHash.generate_testcases((name, C.gchashes[name]) for name in + ["md5", "sha", "whirlpool", "sha256", "sha512/224", "sha3-384", "shake256", + "crc32"]) + +###-------------------------------------------------------------------------- +class TestMessageAuthentication (BaseTestHash, T.GenericTestMixin): + """Test message authentication codes.""" + + def _test_mac(me, mcls): + + ## Check the MAC properties. + me.assertEqual(type(mcls.name), str) + me.assertTrue(isinstance(mcls.keysz, C.KeySZ)) + me.assertEqual(type(mcls.tagsz), int) + + ## Test hashing. + k = T.span(mcls.keysz.default) + key = mcls(k) + me.check_hash(key, need_bufsz = False) + + ## Check that bad key lengths are rejected. + badlen = bad_key_size(mcls.keysz) + if badlen is not None: me.assertRaises(ValueError, mcls, T.span(badlen)) + +TestMessageAuthentication.generate_testcases \ + ((name, C.gcmacs[name]) for name in + ["sha-hmac", "rijndael-cmac", "twofish-pmac1", "kmac128"]) + +class TestPoly1305 (HashBufferTestMixin): + """Check the Poly1305 one-time message authentication function.""" + + def test_poly1305(me): + + ## Check the MAC properties. + me.assertEqual(C.poly1305.name, "poly1305") + me.assertEqual(type(C.poly1305.keysz), C.KeySZSet) + me.assertEqual(C.poly1305.keysz.default, 16) + me.assertEqual(set(C.poly1305.keysz.set), set([16])) + me.assertEqual(C.poly1305.tagsz, 16) + me.assertEqual(C.poly1305.masksz, 16) + + ## Set some initial values. + k = T.span(16) + u = T.span(64)[-16:] + m = T.span(149) + key = C.poly1305(k) + t = key(u).hash(m).done() + + ## Check the key properties. + me.assertEqual(len(t), 16) + + ## Check that we get the same answer if we split the message up. + me.assertEqual(t, key(u).hash(m[0:86]).hash(m[86:149]).done()) + + ## Check the `check' method. + me.assertTrue(key(u).hash(m).check(t)) + me.assertFalse(key(u).hash(m).check(t ^ 16*C.bytes("cc"))) + + ## Check the menagerie of random hashing methods. + def mkhash(_): + h = key(u) + return h, h.done + me.check_hashbuffer(mkhash) + + ## Check that we can't complete hashing without a mask. + me.assertRaises(ValueError, key().hash(m).done) + + ## Check `concat'. + h0 = key().hash(m[0:96]) + h1 = key().hash(m[96:117]) + me.assertEqual(t, key(u).concat(h0, h1).hash(m[117:149]).done()) + key1 = C.poly1305(k) + me.assertRaises(TypeError, key().concat, key1().hash(m[0:96]), h1) + me.assertRaises(TypeError, key().concat, h0, key1().hash(m[96:117])) + me.assertRaises(ValueError, key().concat, key().hash(m[0:93]), h1) + +###-------------------------------------------------------------------------- +class TestHLatin (U.TestCase): + """Test the `hsalsa20' and `hchacha20' functions.""" + + def test_hlatin(me): + kk = [T.span(sz) for sz in [32]] + n = T.span(16) + bad_k = T.span(18) + bad_n = T.span(13) + for fn in [C.hsalsa208_prf, C.hsalsa2012_prf, C.hsalsa20_prf, + C.hchacha8_prf, C.hchacha12_prf, C.hchacha20_prf]: + for k in kk: + h = fn(k, n) + me.assertEqual(len(h), 32) + me.assertRaises(ValueError, fn, bad_k, n) + me.assertRaises(ValueError, fn, k, bad_n) + +###-------------------------------------------------------------------------- +class TestKeccak (HashBufferTestMixin): + """Test the Keccak-p[1600, n] sponge function.""" + + def test_keccak(me): + + ## Make a state and feed some stuff into it. + m0 = T.bin("some initial string") + m1 = T.bin("awesome follow-up string") + st0 = C.Keccak1600() + me.assertEqual(st0.nround, 24) + st0.mix(m0).step() + + ## Make another step with a different round count. + st1 = C.Keccak1600(23) + st1.mix(m0).step() + me.assertNotEqual(st0.extract(32), st1.extract(32)) + + ## Check error conditions. + _ = st0.extract(200) + me.assertRaises(ValueError, st0.extract, 201) + st0.mix(T.span(200)) + me.assertRaises(ValueError, st0.mix, T.span(201)) + + def check_shake(me, xcls, c, done_matches_xof = True): + """ + Test the SHAKE and cSHAKE XOFs. + + This is also used for testing KMAC, but that sets DONE_MATCHES_XOF false + to indicate that the XOF output is range-separated from the fixed-length + outputs (unlike the basic SHAKE functions). + """ + + ## Check the hash attributes. + x = xcls() + me.assertEqual(x.rate, 200 - c) + me.assertEqual(x.buffered, 0) + me.assertEqual(x.state, "absorb") + + ## Set some initial values. + func = T.bin("TESTXOF") + perso = T.bin("catacomb-python test") + m = T.span(167) + h0 = xcls().hash(m).done(193) + me.assertEqual(len(h0), 193) + h1 = xcls(func = func, perso = perso).hash(m).done(193) + me.assertEqual(len(h1), 193) + me.assertNotEqual(h0, h1) + + ## Check input and output in pieces, and the state machine. + if done_matches_xof: h = h0 + else: h = xcls().hash(m).xof().get(len(h0)) + x = xcls().hash(m[0:76]).hash(m[76:167]).xof() + me.assertEqual(h, x.get(98) + x.get(95)) + + ## Check masking. + x = xcls().hash(m).xof() + me.assertEqual(x.mask(m), C.ByteString(m) ^ C.ByteString(h[0:len(m)])) + + ## Check the `check' method. + me.assertTrue(xcls().hash(m).check(h0)) + me.assertFalse(xcls().hash(m).check(h1)) + + ## Check the menagerie of random hashing methods. + def mkhash(_): + x = xcls(func = func, perso = perso) + return x, lambda: x.done(100 - x.rate//2) + me.check_hashbuffer(mkhash) + + ## Check the state machine tracking. + x = xcls(); me.assertEqual(x.state, "absorb") + x.hash(m); me.assertEqual(x.state, "absorb") + xx = x.copy() + h = xx.done(100 - x.rate//2) + me.assertEqual(xx.state, "dead") + me.assertRaises(ValueError, xx.done, 1) + me.assertRaises(ValueError, xx.get, 1) + me.assertEqual(x.state, "absorb") + me.assertRaises(ValueError, x.get, 1) + x.xof(); me.assertEqual(x.state, "squeeze") + me.assertRaises(ValueError, x.done, 1) + _ = x.get(1) + yy = x.copy(); me.assertEqual(yy.state, "squeeze") + + def test_shake128(me): me.check_shake(C.Shake128, 32) + def test_shake256(me): me.check_shake(C.Shake256, 64) + + def check_kmac(me, mcls, c): + k = T.span(32) + me.check_shake(lambda func = None, perso = T.bin(""): + mcls(k, perso = perso), + c, done_matches_xof = False) + + def test_kmac128(me): me.check_kmac(C.KMAC128, 32) + def test_kmac256(me): me.check_kmac(C.KMAC256, 64) + +###-------------------------------------------------------------------------- +class TestPRP (T.GenericTestMixin): + """Test pseudorandom permutations (PRPs).""" + + def _test_prp(me, pcls): + + ## Check the PRP properties. + me.assertEqual(type(pcls.name), str) + me.assertTrue(isinstance(pcls.keysz, C.KeySZ)) + me.assertEqual(type(pcls.blksz), int) + + ## Check round-tripping. + k = T.span(pcls.keysz.default) + key = pcls(k) + m = T.span(pcls.blksz) + c = key.encrypt(m) + me.assertEqual(len(c), pcls.blksz) + me.assertEqual(m, key.decrypt(c)) + + ## Check that bad key lengths are rejected. + badlen = bad_key_size(pcls.keysz) + if badlen is not None: me.assertRaises(ValueError, pcls, T.span(badlen)) + + ## Check that bad blocks are rejected. + badblk = T.span(pcls.blksz + 1) + me.assertRaises(ValueError, key.encrypt, badblk) + me.assertRaises(ValueError, key.decrypt, badblk) + +TestPRP.generate_testcases((name, C.gcprps[name]) for name in + ["desx", "blowfish", "rijndael"]) + +###----- That's all, folks -------------------------------------------------- + +if __name__ == "__main__": U.main()