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Abstract:

We present fourteen basic FORTRAN subroutines for large-scale optimization with simple
bounds and large-scale systems of nonlinear equations. Subroutines PLIS and PLIP, intended
for dense general optimization problems, are based on limited-memory variable metric meth-
ods. Subroutine PNET, also intended for dense general optimization problems, is based on an
inexact truncated Newton method. Subroutines PNED and PNEC, intended for sparse general
optimization problems, are based on modifications of the discrete Newton method. Sub-
routines PSED and PSEC, intended for partially separable optimization problems, are based
on partitioned variable metric updates. Subroutine PSEN, intended for nonsmooth partially
separable optimization problems, is based on partitioned variable metric updates and on an
aggregation of subgradients. Subroutines PGAD and PGAC, intended for sparse nonlinear least
squares problems, are based on modifications and corrections of the Gauss-Newton method.
Subroutine PMAX, intended for minimization of a maximum value (minimax), is based on the
primal line-search interior-point method. Subroutine PSUM, intended for minimization of a sum
of absolute values, is based on the primal trust-region interior-point method. Subroutines PEQN
and PEQL, intended for sparse systems of nonlinear equations, are based on the discrete New-
ton method and the inverse column-update quasi-Newton method, respectively. Besides the
description of methods and codes, we propose computational experiments which demonstrate
the efficiency of the proposed algorithms.
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1 Introduction

We propose fourteen basic subroutines which implement selected large-scale optimization
algorithms. The double-precision FORTRAN 77 subroutines PLIS, PLIP, PNET are de-
signed to find a close approximation to a local minimum of a general twice continuously
differentiable function F': R" — R with unknown or dense Hessian matrix. Subroutines
PLIS, PLIP are based on limited-memory variable metric updates: PLIS uses Strang re-
currences [13], [26] and PLIP uses shifted limited-memory variable metric updates [38].
Subroutine PNET is based on an inexact truncated Newton method [8].

The double-precision FORTRAN 77 subroutines PNED, PNEC are designed to find a close
approximation to a local minimum of a general twice continuously differentiable function
F : R" — R with the sparse Hessian matrix. These subroutines are based on inexact
discrete Newton methods [5], [7]: PNED uses matrix direct methods (Dennis-Mei [9] or
Moré-Sorensen [25]) and PNEC uses matrix iterative methods (Steihaug-Toint [31], [32] or
shifted Stethaug—Toint [16]) for computing a trust region step.

The double-precision FORTRAN 77 subroutines PSED, PSEC are designed to find a close
approximation to a local minimum of a smooth partially separable objective function

Here x € R™ is a vector of n variables and f; : R* — R, 1 < 1 < n,, are twice con-
tinuously differentiable functions. These subroutines are based on partitioned variable
metric updates [12], [19]: PSED uses a matrix direct method (Gill-Murray [10]) and PSEC
uses a matrix iterative method (safeguarded conjugate gradient method) for computing a
line-search step.

The double-precision FORTRAN 77 subroutine PSEN is designed to find a close ap-
proximation to a local minimum of a nonsmooth partially separable objective function

F(e) =Y fila)

Here x € R" is a vector of n variables and f; : R" — R, 1 < i < n,, are locally Lipschitz
nondifferentiable functions. This subroutine is based on a bundle variable metric method
described in [23].

The double-precision FORTRAN 77 subroutines PGAD, PGAC are designed to find a close
approximation to a local minimum of the least-square function

F)= 3 fG)

Here z € R" is a vector of n variables and f; : R — R, 1 < i < n,, are twice continuously
differentiable functions. These subroutines are based on hybrid methods that combine the
Gauss-Newton method with the Newton or the variable metric corrections [15], [19]: PGAD
uses matrix direct methods (Dennis-Mei [9] or Moré—Sorensen [25]) and PGAC uses matrix
iterative methods (Steithaug—Toint [31], [32] or shifted Steihaug—Toint [16]) for computing
a trust region step.



The double-precision FORTRAN 77 subroutine PMAX is designed to find a close ap-
proximation to a local minimum of maximum functions

F(z) = max fi(x)

1<i<ng

or

F(z) = max [fi(z)].

1<i<ng

Here x € R™ is a vector of n variables and f; : R — R, 1 <1 < n,, are twice continu-
ously differentiable functions. This subroutine is based on primal interior point methods
described in [17].

The double-precision FORTRAN 77 subroutine PSUM is designed to find a close ap-
proximation to a local minimum of a sum of absolute values

F(a) = Y 1@l

Here x € R™ is a vector of n variables and f; : R* — R, 1 <1 < n,, are twice continu-
ously differentiable functions. This subroutine is based on primal interior point methods
described in [18].

The double-precision FORTRAN 77 subroutines PEQN, PEQL are designed to find a
solution of a system of nonlinear equations

fi(z) =0, 1<i<n.

Here x € R™ is a vector of n variables and f; : R® — R, 1 < ¢ < n, are continuously
differentiable functions. Subroutine PEQN is based on the inexact discrete Newton method
2], [6], [22] and subroutine PEQL is based on the inverse column-update quasi-Newton
method [22], [24].

Subroutines PLIS, PLIP, PNET, PNED, PNEC, PSED, PSEC, PGAD, PGAC allow us to work
with box constraints in the form

x; —unbounded , I =0,
xi <z, , I'=1,
v <wm o, I =2,
, I7 =3,
x; —fixed | I7 =05,

l u
r S Sy

where 1 <14 < n (I* corresponds to array IX in Appendix A).

To simplify the user’s work, additional easy-to-use subroutines are added. These sub-
routines, written in FORTRAN 90 (they use a dynamic allocation of working arrays),
call general subroutines PLIS, PLIP, PNET, PNED, PNEC, PSED, PSEC, PSEN, PGAD, PGAC,
PMAX, PSUM, PEQN, PEQL. These subroutines can be easily changed to FORTRAN 77 codes
by deleting statements ALLOCATABLE, ALLOCATE, DEALLOCATE, adding working arrays IA,
RA into formal parameters and declaring their dimensions in the main program. Table 1
summarizes properties of easy-to-use subroutines.

Each subroutine contains a description of formal parameters and extensive comments.
Moreover, text files PLIS.TXT, PLIP.TXT, PNET.TXT, PNED.TXT, PNEC.TXT, PSED.TXT,



Subroutine Problem Constraints | Strategy | Matrices | Solver
PLISU general no line-search no no
PLISS general yes line-search no no
PLIPU general no line-search no no
PLIPS general yes line-search no no
PNETU general no line-search no iterative
PNETS general yes line-search no iterative
PNEDU general no trust-region yes direct
PNEDS general yes trust-region yes direct
PNECU general no trust-region yes iterative
PNECS general yes trust-region yes iterative
PSEDU partially separable no line-search yes direct
PSEDS partially separable yes line-search yes direct
PSECU partially separable no line-search yes iterative
PSECS partially separable yes line-search yes iterative
PSENU nonsmooth no line-search yes direct
PGADU sum of squares no trust-region yes direct
PGADS sum of squares yes trust-region yes direct
PGACU sum of squares no trust-region yes iterative
PGACS sum of squares yes trust-region yes iterative
PMAXU minimax and [, no line-search yes direct
PSUMU Iy no trust-region yes direct
PEQNU nonlinear equations no line-search yes iterative
PEQLU nonlinear equations no line-search yes iterative

Table 1: Easy-to-use subroutines

PSEC.TXT, PSEN.TXT, PGAD.TXT, PGAC.TXT, PMAX.TXT, PSUM.TXT, PEQN.TXT, PEQL.TXT
containing a detailed description of all important subroutines are added. Finally, test pro-
grams TLISU, TLISS, TLIPU, TLIPS, TNETU, TNETS, TNEDU, TNEDS, TNECU, TNECS, TSEDU,
TSEDS, TSECU, TSECS, TSENU, TGADU, TGADS, TGACU, TGACS, TMAXU, TSUMU, TEQNU, TEQLU
that use extensive collections of test problems are included. These test programs serve
as examples for using the subroutines, verify their correctness and demonstrate their
efficiency.

Subroutines presented in this report were generated using the UFO system [20]. We se-
lected the most efficient methods from this system to prepare individual problem-oriented
subroutines. This point of view gives a reason for our selection of optimization methods
and choice of line-search or trust-region strategies (the UFO system contains many addi-
tional methods and strategies which were also tested and compared). This also explains
the fact that PNET uses line-search while PNED, PNEC use trust-region strategies and the
fact that some methods and strategies are implemented in slightly different ways than
those described in the original papers (we have carefully tuned them to obtain the best
results). Subroutines PLIS, PNET, PNED, PNEC, PSED, PSEC, PGAD, PGAC, PEQN, PEQL imple-
ment classic optimization methods and have equivalents, e.g., L-BFGS [40], TNPACK [30],
VEO8 [33], VE10 [34], NITSOL [28], NLEQ1S [27]. Numerical comparisons with these equiva-
lents are given in Section 9 (we also used HOMPACK90 [39] for a comparison, but this code



was unable to solve a large number of our test problems). Subroutines PLIP, PSEN, PMAX,
PSUM are based on new original methods proposed in [38], [23], [17], [18].

All subroutines described in this report are free for academic use and can be downloaded
from www.cs.cas.cz/"luksan/subroutines.html.

2 Matrix-free methods for general problems

Consider a general continuously differentiable function F' : R™ — R, where n is large,
and assume that the structure of the Hessian matrix of F' is unknown. In this case,
subroutines PLIS, PLIP, and PNET based on matrix-free methods can be used for seeking
a local minimum of F. These methods are realized in the line-search framework so that
they generate a sequence of points z, € R", k € N, by the simple process

Tpy1 = Tk + apdy, (1)

where d, € R" is a direction vector and 0 < «j < @y, is a scalar step-size. The direction
vector is determined in such a way that

—dy. g(wx) > elldillllg () (2)

(the uniform descent condition) holds, where 0 < £ < 1 (we use the value ¢ = 10~* in our
subroutines). The step-size is chosen in such a way that

Flazpp) — Fzy) < erondig(a),  dfg(ze) > eadf g(zy) (3)

(the weak Wolfe conditions) hold, where 0 < €1 < 1/2 is a tolerance for the function
value decrease and €1 < €5 < 1 is a tolerance for the directional derivative increase (we
use the values 1 = 0.0001 and €5 = 0.9 in our subroutines). The maximum step-size
ay is given by the formula @, = A/||dy|, where A is an upper bound for the norm
|xri1 — zx|| (parameter XMAX in our subroutines). The step-size «y is chosen iteratively
either by bisection (MES = 1), or by quadratic interpolation with two function values
(MES = 2), or by quadratic interpolation with two directional derivatives (MES = 3), or
by cubic interpolation (MES = 4). We start with the initial estimate oy = 1 if IEST = 0
or the initial estimate is derived by using the lower bound for F' (parameter FMIN in our
subroutines) if IEST = 1.

The direction vector dj, is usually computed by the formula d, = —H} g, or by solving
the linear system Bydy, = —gx, where g, = g(z), By is an approximation of the Hessian
matrix G(xy) and Hy is an approximation of its inverse. Limited-memory variable metric
methods use the matrix Hj, implicitly (it is not stored). Similarly, the truncated Newton
method uses the matrix B, which is not stored as well. If the direction vector computed
by using the above way does not satisfy the uniform descent condition (2), a restart is
performed, which implies that the direction vector dy = —gy, satisfying (2), is used.

2.1 Limited-memory BFGS method

Subroutine PLIS is an implementation of the limited-memory BFGS method proposed in
[13], [26]. This method works with matrices Hy = HF, where HY = = I, 7 > 0 and
1

1
HYy = V]IHV; + b—jsjsz, Vi=1- b—jyjs]T

4



for k—m < j <k—1. Here s; = zj41 — 2, Y; = gj+1 — g, aj = y;‘»FH]’?yj, b = y;fpsj. Thus
by [ L Ty i1 [ r j
k - T
k=1 \izk—m i—k—m I=k—m * \i=i41 =141

(we use 7, = bg_1/ar_1 in our implementation). The matrix H;, = HJ need not be
constructed explicitly since we need only a vector d, = —H gi, which can be computed
by using two recurrences (the Strang formula). First, vectors

k—1
B <H w) "
i=j

k—12> 4 >k—m, are computed by using the backward recurrence

o T
o; = s;u1/bj,
uj = Ujt1 — 05Yj,
where u, = —g;. Then vectors
b j T i1 (Y r
k—1 T
Vjy1 = —— H Vil tp—m + E b H Vil sis; wisa,
Ar—1 \ .- = o\ T
i=k—m l=k—m i=l+1

k—m < j <k—1, are computed by using the forward recurrence
Vit = 05+ (05 = yjvi/by)s;,

where vy, = (by—1/ag_1)ug_r,. Finally, we set dy = v;. Note that 2m vectors s;, y;,
k—m < j < k —1 are used and stored. The number of consecutive variable metric
updates is defined as m = min(MF, k — k), where MF is a parameter of the subroutine PLIS
and k is an index of the iteration corresponding to the last restart.

2.2 Shifted limited-memory variable metric methods

Subroutine PLIP is an implementation of shifted limited-memory variable metric methods
proposed in [38]. These methods work with matrices Hy, = (I + UpU], where n x m
matrix Uy is updated by formula Uy, = V.U, with a low rank matrix Vj, chosen in such a
way that the (modified) quasi-Newton condition Uyy1 UL jyx = piSk with §p = s — Cey1ye
is satisfied (we use the same notation, namely sy, vy, ag, by as in Section 2.1). This
condition can be replaced by equations

Ugﬂyk = Zk, Ukt12k = piSi, ||Zl<:||2 = pky;%k-

where z; is an optional vector parameter. Note that the last equality, which is a conse-
quence of the first two equalities, is the only restriction laid on the vector z;. To simplify
the notation, we define vectors uy = ULy, and vy = UL H, 'sy, = —, UL gy..

The choice of a shift parameter ;. is a crucial part of shifted limited-memory variable

metric methods. The value

by, V1= |lug?/ax

Chr1 = kT35 M =
[7Als 14 /1T =6/ ([[sePlyl?)
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is used in subroutine PLIP. The most efficient shifted limited-memory variable metric
methods can be derived by a variational principle. Let T}, be a symmetric positive definite
matrix. It can be shown (see [38]) that the Frobenius norm ||Tk_l/2(Uk+1—Uk) ||% is minimal
on the set of all matrices satisfying the quasi-Newton condition if and only if

Ty

Upi1 =U, —
i Y Tey

T T

T = Yy, Uz, 2L
Y U + <pk3k — Upzi + =51, k:) — .
g i Ty AR

Here Ty, and z are vector parameters defining a class of shifted limited-memory variable
metric methods. Using suitable values of these vectors, we obtain particular methods of
this class.

Assuming that Ty and pgSp — Ugzp are linearly dependent and setting

2 = Vg, Uy = i\/ pky,fék/Hka?

we obtain rank 1 variationally derived method (VAR1), where

PrSk — ViUguy,

Uk+1 = Uk — (uk - ﬁkvk>Ta

pk?/;{gk - ﬁkuka
which gives the best results for the choice sgn(dulvy) = —1. Method VARI is chosen
if MET = 1 in the subroutine PLIP. Using z; given above and setting Tpyr = Sk, which

corresponds to the BFGS method in the full-memory case, we obtain rank 2 variationally
derived method (VAR2), where

: : T T
Sk T Sk Up Vg - Vg
Uky1=Ur — ——u;, + </Jk— — Upvp + —= Sk) :
! yise " s yrse ) loell?
Method VAR2 is chosen if MET = 2 in the subroutine PLIP. The efficiency of both these
methods depends on the value of the correction parameter py. This value is determined
by the formula p, = \/vxer. Here vy = pg/(1—px), px is a relative shift parameter defined

above and
er = V1 — [lugl[*/ax

is a damping factor of p. The number of columns of the matrix Uy is defined as m =
min(MF, k — k), where MF is a parameter of the subroutine PLIP and k is an index of the
iteration corresponding to the last restart.

2.3 Inexact truncated Newton method

Subroutine PNET is based on a line-search realization of the Newton method, which uses
conjugate gradient (CG) iterations for solving a system of linear equations G(z)d = —g(z)
(9(x) and G(z) are the gradient and the Hessian matrix of function F': R" — R at the
point x, respectively). Since the matrix G(x) can be indefinite, a modification of the
(possibly preconditioned) CG method is used, which terminates if a negative curvature is
detected. More precisely, we set d; =0, g; = g(z), hy = Clgy, pr = —hy, 01 = g1 hy and
for i = 1,2,3,... we proceed in the following way. If ||g;|| < @(x)| g(x)]|, then set d = d;
and terminate the computation, otherwise set

qi = G(x)pz', T = piTCIz'.



If 7, <7 then set d = —g(z) (ifi = 1) or d = d; (if i > 1) and terminate the computation,
otherwise set o; = 0;/7; and compute

diy1 = d; + op;,
9i+1 = i + g,
Clgit, Oir1 = g} 1hi

—hit1 + (0ig1/00)pi.

hi-i—l

Di+1

The principal feature of the inexact truncated Newton method is the fact that the
Hessian matrix G(z) is not used explicitly, but the vector G(x)p; is computed by numerical
differentiation using the formula

.T+5ZZ — X
Glayp = SO0 —9l0)

(4)

where §; = \/ear/||pil| (ear is the machine precision). Thus one extra gradient evaluation
is needed in every CG iteration.

The CG method is terminated if 7; < 7 (a negative curvature is detected) or if ||g;]| <
w(x)|lg(z)| (a sufficient precision is achieved). We use the value 7 = 107% in subroutine
PNET. The value @(z) is chosen according to the inexact Newton approach [7]. In the k-th
Newton iteration we use the value

@(w) = min (Vg 1/k.3) (5)

where w = 0.8 in subroutine PNET

The matrix C serving as a preconditioner (symmetric and positive definite) cannot be
derived from the Hessian matrix, which is not known explicitly. If MOS2 = 1 (MOS2 is a
parameter of the subroutine PNET), the unpreconditioned CG method (C' = I) is used. If
MOS2 = 2, we use the preconditioner obtained by the limited memory BFGS method. In
this case C~' = Hy = Hf, where H} is a matrix defined in Subsection 2.1. This matrix
need not be constructed explicitly, since we need only the vector h; = C~lg; = HYg; (i
is an inner index of the CG method), which can be computed by using two recurrences
(the Strang formula). First, vectors u;, k —1 > j > k — m, are computed by using the
backward recurrence

o T
oj = sjuju1/bj,

Uj = Ujr1 — 05Yj,

where uj, = g;. Then vectors vj1, k —m < j < k—1, are computed by using the forward
recurrence

vis1 = v+ (05 —y;v;/bj)s;,

where v, = (bp_1/ax_1)ug_r,. Finally, we set h; = vp. Note that 2m additional vectors
S; = Tjy1 — Tj, Y; = Gj+1 — G5, k—m Sj < k — 1, has to be stored if MOS2 = 2.



2.4 Active set strategy for box constraints

If box constraints are considered, then a simple active set strategy is used. To simplify
the notation, we omit iteration index k in the following description. Every iteration is
started by the detection of new candidates for active constraints. Thus we set

vi=al, IF=-1 if If'=1x;<azl+e max(|z}],1),
r=af, IF=-2 if I'=2x;>x—¢e.max(|z}], 1),
vi=ab, IF=-3 if I'=3 x; <azl+e max(|zl],1),
v=uaf, [F=-4 if ['=3, x;>uz!—¢e. max(|z}],1),

[F=—5 if I'=5

for 1 <1 <mn, where ¢, is a required precision (we use value . = 10~% in our subroutines).
After computing gradient g = g(z), we determine projected gradient g and chopped
gradient ¢¢ in such a way that

g =0, ¢f=max(0,g;) for I'=-1 or I[F=-3,
g'=0, ¢f=min(0,g;) for I'=-2 or I'=-4,
g¢=0, ¢gi=0 for IF=-5
=g, g=0 for I'>0.

If [[g)ls0 > ||9”]loc and the previous step was successful, we delete redundant active con-
straints by setting

I'=1 if I'=-1 and g; >0,
I7 =2 it [=-2 and g¢; <0,
I'=3 if I'=-3 and g; >0,
I'=3 if I'=-4 and ¢g; <O0.

In this way, we have obtained a current set of active constraints for the direction determi-
nation, step-size selection and variable metric update. This active set defines a reduced
problem with variables z;, I < 0, fixed. If we introduce matrix Z containing columns
e;, I7 > 0 (e; is the i-th column of the unit matrix), we can define reduced gradient
g" = Z7 g and reduced matrices H" or B” to obtain reduced direction vectors d” = —H"¢"
or B"d" = —¢". Finally, we use the direction vector d = Zd". In this way, we can adapt
an arbitrary line-search or trust-region method to solve the reduced problem. Since the
set of active constraints can change, we have to use a suitable restart strategy (conditions
for setting B" = I, H. = I or d" = —g"). To guarantee descent, the restart is always per-
formed when more then one redundant active constraint is deleted. The preconditioned
truncated Newton method is restarted after every change of the set of active constraints.

From a practical point of view, it is not advantageous to construct reduced quantities.
A better way is to construct projected gradients ¢ = ZZ7¢ and projected matrices
HY = ZZTHZZT + YY" or B» = ZZ"BZZ" +YY”, where Y contains columns e;,
I¥ < 0, to obtain direction vectors d = —HP?g” or BPd = —gP. Matrices H? or B? are
block diagonal (with blocks H", I or B", I) and they can be updated by using projected
vectors 8P = ZZTs = ZZT (2t — x) and y? = ZZT(g" — g). Thus it suffices to use
projected quantities instead of standard ones. Diagonal blocks of matrices H? or BP can



be easily derived from their sparsity pattern by considering only the elements H}; or B},
for which I > 0, I ]’” > 0 hold simultaneously. These blocks are then used in matrix
multiplications and matrix decompositions.

Before step-size selection, we have to determine the maximum step-size @ to assure the
feasibility. This is computed by the formula @ = min(ay, @, a3, @y, A/||d||), where

_ . at—uay _ .ot —
;] = min , 0 = min ,
Ir=1,d;<0 d; 7=2d;>0 d;
_ .ol —wy _ ) Ty — w;
i3 = Imin , a4 = min
17=3,d;<0 d; 17=3,d;>0 d;

(if a corresponding set is empty we use the value c0).

3 Inexact discrete Newton methods for sparse problems

Consider a general twice continuously differentiable function F' : R® — R, where n is large,
and assume that the Hessian matrix G(z) = [Gy;(2)] = [0*F(x)/(0x;0x;)] is sparse. In
this case, discrete versions of the Newton method can be efficiently used for seeking a
local minimum of F'. These methods are based on the fact that sufficiently sparse Hessian
matrices can be estimated by using a small number of gradient differences [5]. We use the
algorithm proposed in [36] in subroutines PNED, PNEC. The sparsity pattern of the Hessian
matrix (only the upper part) is stored in the coordinate form (if ISPAS = 1) or in the
standard compressed row format (if ISPAS = 2) using arrays IH and JH. For example, if
the Hessian matrix has the pattern

Q

I
* O % % %
o % O % %
* O % O %
O ¥ O *x O
*¥ © % O %

(asterisks denote nonzero elements), then arrays IH and JH contain elements
IH=[1 11122 3345], JH=[12352437545]
if ISPAS =1 or

IH=[1 5 7 9 10 11], JH=[1 2352435 45|

if ISPAS = 2. In the first case, nonzero elements in the upper part of the Hessian matrix
can be sorted in an arbitrary order (not only by rows as in the above example) and arrays
IH and JH have to be declared with lengths n 4+ m, where m is the number of nonzero
elements. In the second case, nonzero elements can be sorted only by rows. Components
of IH contain addresses of the diagonal elements in this sequence and components of
JH contain corresponding column indices (note that IH has n + 1 elements and the last
element is equal to m + 1). Arrays IH and JH have to be declared with lengths n + 1 and
m, respectively.



Since the Hessian matrix can be indefinite, discrete versions of the Newton method are
realized in the trust-region framework. Let By be a gradient-difference approximation of
the Hessian matrix Gy = G(xy). Denote

1
Qr(d) = §dTBkd +gid
the quadratic function which locally approximates the difference F'(zy + d) — F'(zy),
wi(d) = (Brd + gr)/l 9l
the accuracy of the direction determination and
F(z, +d) — F(xy,
puld) = T D= T
Qr(d)
the ratio of the actual and the predicted decrease of the objective function. Trust-region

methods (used in subroutines PNED, PNEC, PGAD, PGAC) generate points x; € R", k € N,
in such a way that z; is arbitrary and

Tpy1 = T + agdy, k€N, (6)

where d, € R" are direction vectors and «y > 0 are step-sizes. Direction vectors d, € R"
are chosen to satisfy conditions

ldell < Ay, (7)

ldell < Ar = wk(di)| < W, (8)

—Qu(dr) = allgell min([|dl], [lgx /1| Brl), (9)

where 0 <, <@ < 1land 0 < g <1 (we use value @ = 0.9 in our subroutines; ¢ is a

theoretical value given implicitly). Step-sizes ay, > 0 are selected so that

Trust-region radii 0 < A, < A are chosen in such a way that 0 < A; < A (A; and A are
given by parameters XDEL and XMAX in our subroutines) and

prldy) <p = Bldill < Apsr < Blldill, (12)
p<peldy) <p = A=Ay (13)
P < pr(dy) = Appr = min(yAg41, A), (14)

where 0 < 3 < B <1l <vyand 0 < p < p <1 (weuse values 3 = 0.05, 3 = 0.75,
v=2,p=0.1,75=09in our subroutine_s). Note that the initial trust-region radius A; is
computed by a simple formula when XDEL = 0. This formula depends on a gradient norm
|lgx|| and contains a lower bound for F' (parameter FMIN in our subroutines) if INITS = 1.
If INITS = 0, parameter FMIN need not be defined.

The direction vector satisfying (7)—(9) can be computed by four different strategies.
Subroutines PNED,PGAD are based on matrix decomposition methods. They use either
the Dennis-Mei (double dog-leg) method [9](if MOS = 1) or Moré-Sorensen method [25]
(if MOS = 2). Subroutines PNEC,PGAC are based on matrix iterative methods. They use
either the Steihaug—Toint method [31], [32] (if MOS1 = 1) or the shifted Steihaug—Toint
method [16] (if MOS1 = 2). To simplify the description of these methods, we omit the
outer index k£ and denote the inner index by 4.
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3.1 Matrix decomposition Moré-Sorensen trust region method

The most sophisticated methods are based on a computation of the optimal locally con-
strained step. A vector d € R" is obtained by solving a subproblem

1
minimize Q(d) = idTBd—l— g'd subject to ||d|| < A. (15)

Necessary and sufficient conditions for this solution are
ld|| <A, (B+MX)d+g=0, B+X =0, AX>0, AMA—-]d])=0 (16)

(we use the symbol = for ordering by positive semidefiniteness). The Moré-Sorensen
method [25] is based on solving a nonlinear equation

1/[ldN)|| = 1/A  with (B + M)d(\) = —g

by the Newton method using a modification of the sparse Choleski decomposition of
B+ Al (we use the Gill-Murray decomposition [10]). More precisely, we determine p, as

the maximal diagonal element of the matrix —B, set A; = max(u ,0), A= lgll/A+ | B,
A1 = Ay and for i = 1,2, 3, ... we proceed in the following way. Carry out the Gill-Murray
decomposition B + M\, + E; = RI'R;. If E; # 0, determine a vector v; € R™ such that
Jvill = 1 and v] (B + Nl )v; < 0, set p. = N\ — o] (B + N\il)vi, A; = ., A = A; and repeat
this process (i.e., carry out the new Gill-Murray decomposition B+ NI + E; = RI'R;). If
E; = 0, compute a vector d; € R" by solving the equation R R;d; + g = 0. If ||d;|| > dA,
set Ai—i—l = )\; and Xz'—i—l = Xz If éA < HdZH < SA or ||dzH < éA and \; = 0, set d = d; and
terminate the computation. If ||d;|| < dA and X\; # 0, set A\, = A, Ait1 = Ai, determine
a vector v; € R™ such that ||v;]] = 1 and v!d; > 0, which is a good approximation of
an eigenvector of the matrix B corresponding to its minimal eigenvalue, and compute a
number «; > 0 such that ||d; + au;|| = A. If

oF||[Rivi||? < (1 = &) (|| Ridi]|* + NiA?),

set d = d; + o;v; and terminate the computation, otherwise set . = A; — | R;vi||>. In this
case or if ||d;]| > 0A, compute a vector v; € R by solving the equation R v; = d; and set

oy il il — A
A=A+ s (R )

£f >\z'+1 < Ai-‘,—l’ set )‘Z’—i-l = Ai—i—l‘ If )‘Z'—i-l > Xz'—i-lu set >\z'+1 = Xz'—l—l‘ We use values é = 0.9 and
0 = 1.1 in our subroutines.

3.2 Matrix decomposition Dennis—Mei trust region method

The Moré—Sorensen method is very robust but requires 2-3 Choleski-type decompositions
per iteration on average. Simpler methods are based on minimization of Q(d) on a two-
dimensional subspace containing the Cauchy step dc = —(g97¢g/g” Bg)g and the Newton
step dy = —B~'g. The Dennis-Mei double dog-leg method described in [9] seeks d as a
linear combination of these two steps. This method uses vectors d = dy if ||dy|| < A or
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d = (A/||dc||)de if [|de|| > A. In the remaining case (if ||dco|| < A < ||dy]|), d is a convex
combination of d¢ and 7dy, where 7 = max(didc/dLdy, A/||dy]|), such that ||d|| = A.

The Newton step is computed by using the sparse Gill-Murray decomposition [10],
which has the form B + F = LDLT = RTR, where E is a positive semidefinite diagonal
matrix (equal to zero when B is positive definite), L is a lower triangular matrix, D is
a positive definite diagonal matrix and R is an upper triangular matrix. The matrix
LDLT = RTR then replaces B in Q(d). The Dennis—Mei method requires only one
Choleski-type decomposition per iteration.

3.3 Matrix iterative Steihaug—Toint trust region method

If B is not sufficiently sparse, then the sparse Choleski-type decomposition of B is expen-
sive. In this case, methods based on preconditioned conjugate gradient (CG) iterations
are more suitable. Steihaug [31] and Toint [32] proposed a method based on the fact that
Q(div1) < Q(d;) and ||dis1|lc > ||dil|c (where ||d;||2 = dF Cd;) hold in the preconditioned
CG iterations if CG coefficients are positive. We either obtain an unconstrained solution
with a sufficient precision or stop on the trust-region boundary if a negative curvature is
indicated or if the trust-region is left. More precisely, we set d; =0, g1 = g, p1 = —C1g
and for i = 1,2,3,... we proceed in the following way. If ||g;||] < @||g||, then set d = d;
and terminate the computation, otherwise set

q; = Bp, o = giTC_lgi/pqui'

If a; < 0, determine a; > 0 in such a way that ||d; + a;p;|| = A, set d := d; + a;p;
and terminate the computation, otherwise compute d;1; = d; + a;p;. If ||diq]] > A,
determine «; > 0 in such a way that ||d; + q;pi|]| = A, set d := d; + a;p; and terminate
the computation, otherwise compute

gi+1 = i + Q;q;, B = gﬁlc_lgiﬂ/giTC_lgi
pir1i = —C7 g1+ Bips.

The matrix C serves as a preconditioner (symmetric and positive definite). If MOS2 = 1
(MOS2 is a parameter of subroutines PNEC,PGAC), then no preconditioning is performed
(C =1),if MOS2 = 2, an incomplete Choleski decomposition of the matrix B is used, and
if M0OS2 = 3, a preliminary solution obtained by the incomplete Choleski decomposition
can be accepted. In this case, we first compute p; = —C~'g. If || Bp; + g|| < ©l|g]|, we set
d = p; and terminate the computation, otherwise we continue by CG iterations as above.

There are two possible ways that the Steihaug—Toint method can be preconditioned.
The first way uses norms ||d;||¢; (instead of ||d;||) in (7)—(14), where C; are preconditioners
chosen. This possibility has been tested in [11] and showed that such a way is not always
efficient. This is caused by the fact that norms ||d;||¢,, ¢ € N, vary considerably in the
major iterations and preconditioners C;, i € N, can be ill-conditioned. The second way
uses Euclidean norms in (7)—(14) even if arbitrary preconditioners C;, i € N, are used.
In this case the trust region can be left prematurely and the direction vector obtained
can be farther from the optimal locally-constrained step than that obtained without pre-
conditioning. This shortcoming is usually compensated by the rapid convergence of the
preconditioned CG method. Our computational experiments indicated that the second
way is more efficient in general and we use it in our subroutines.
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3.4 Matrix iterative shifted Steihaug—Toint trust region method

Since the optimal locally constrained step has to satisfy the equation (B 4+ Al)d + g = 0,
where A\ > 0 is the optimal Lagrange multiplier (see (16)), it seems to be advantageous
to apply the Steihaug—Toint method to the subproblem

minimize  O(d) = Qs (d) %dT(B FADd+gTd st <A, (17)

where \ > 0 is an approximation of the optimal A\. The number \ > 0 is found by solving
a small-size subproblem

SATTd+ gl (1)

with the tridiagonal matrix T obtained by using a small number of Lanczos steps. This
method combines good properties of the Moré—Sorensen and the Steihaug—Toint meth-
ods and can be successfully preconditioned by the second way described in the previous
subsection. The point on the trust-region boundary obtained by this method is usu-
ally closer to the optimal solution in comparison with the point obtained by the original
Steihaug—Toint method.

The above considerations form a basis for the shifted Steihaug—Toint method proposed
in [16]. This method consists of the three steps:

1. Let m = M0OS1 (the default value is MOS1 = 5). Determine a tridiagonal matrix 7'
of order m by using m steps of the (unpreconditioned) Lanczos method (described,
e.g., in [11], [14]) applied to the matrix B with the initial vector g.

2. Solve the subproblem
1o~ - -
minimize idTTd +lgllefd subject to ||d|| < A (19)

by using the Moré-Sorensen method described in Section 3.1 to obtain a Lagrange
multiplier A.

3. Apply the (preconditioned) Steihaug—Toint method described in Section 3.3 to the
subproblem

1 -
minimize §dT(B + A)d + g'd subject to ||d|| <A (20)

to obtain a direction vector d = d(\).

Let A be the Lagrange multiplier of small-size subproblem (19) and A be the Lagrange
multiplier obtained by the Moré-Sorensen method applied to the original trust-region
subproblem (15). It can be shown (see [16]) that 0 < XA < A\. This inequality assures
that A = 0 implies A\ = 0 so ||d|| < A implies A = 0. Thus the shifted Steihaug Toint
method reduces to the standard one in this case. At the same time, if B is positive
definite and A > 0, then one has A < ||(B + M)~'g|| < ||B~"'g||. Thus the unconstrained
minimizer of the shifted quadratic function (20) is closer to the trust-region boundary than
the unconstrained minimizer of the original quadratic function (15) and we can expect
that d(S\) is closer to the optimal locally constrained step than d(0). Finally, if A > 0,
then the matrix B 4+ A is better conditioned than B and we can expect that the shifted
Steihaug—Toint method will converge more rapidly than the original one.
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4 Methods for partially separable problems

Consider a function of the form
F(z)=>_ fi(»), (21)
i=1

where f;(z), 1 <i < n, (n, is usually large), are smooth particular functions depending
on a small number of variables (n;, say). In this case, the Jacobian matrix J(z) =
[Jij(x)] = [0fi(x)/0x;] is sparse. In subroutines PSED, PSEC, and PSEN, the sparsity
pattern of the Jacobian matrix is stored in the coordinate form (if ISPAS = 1) or in the
standard compressed row format (if ISPAS = 2) using arrays IAG and JAG. For example,
if the Jacobian matrix has the pattern

¥ x 0 =x
¥ % x 0
J=1|*% 0 0 =x
0 = % 0
* 0 % 0

(asterisks denote nonzero elements) then arrays IAG and JAG contain elements

IAG = [111222334455],
JAG = [1 2412314231 3],

if ISPAS = 1 or
IAG=[14 7911 13], JAG=[1 24123 142313],

if ISPAS = 2. In the first case, nonzero elements can be sorted in an arbitrary order (not
only by rows as in the above example). Arrays IAG and JAG have to be declared with
lengths n, +m, and m,, respectively, where m, is the number of nonzero elements. In the
second case, nonzero elements can be sorted only by rows. Components of TAG contain
total numbers of nonzero elements in all previous rows increased by 1 and elements of
JAG contain corresponding column indices (note that IAG has n, + 1 elements and the
last element is equal to m, + 1). Arrays IAG and JAG have to be declared with lengths
n, + 1 and m,, respectively. This representation of sparse Jacobian matrices is also used
in subroutines PGAD, PGAC, PMAX, PSUM, PEQN, PEQL described in the subsequent sections.

Using the sparsity pattern of the Jacobian matrix, we can define packed gradients
gi(z) € R™ and packed Hessian matrices G;(z) € R™*" of functions fi(z), 1 < i <
ng, as dense but small-size vectors and matrices. Note that §;(x) = Z7gi(x), Gi(z) =
Z}Gi(2)Z; and gi(v) = Z;gi(v), Gi(z) = Ziéi(x)ZiTa 1 < i < ng, where gi(x) and
Gi(z) are original gradients and Hessian matrices of functions f;(z), respectively, and
Z; € R™™ are matrices containing columns of the unit matrix corresponding to the
variables appearing in f;(x).

Methods for partially separable problems are implemented in the line-search framework
mentioned in Section 2. A direction vector dj, is computed by solving a system of linear
equations with a matrix By, which is an approximation of the Hessian matrix computed
from approximations of packed Hessian matrices, see (24). Subroutines PSED and PSEN
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use the Gill-Murray matrix decomposition. In this case, By is replaced by LD LI =

By + E}, where Ly is a lower triangular matrix, Dy, is a positive definite diagonal matrix,
and E} is a positive semidefinite diagonal matrix chosen in such a way that B + Ej is
positive definite (more details are given in [10]). Subroutine PSEC uses the preconditioned
conjugate gradient method described in Subsection 2.3, where multiplications by By, are
explicitly used instead of (4) and @ = 0.9 in (5).

4.1 Partitioned variable metric methods

Subroutines PSED, PSEC are based on partitioned variable metric updates [12], which
consider each particular function separately. Thus approximations éi, 1 <i < ng, of
the packed Hessian matrices Gz(x) are updated by using the quasi-Newton conditions
Bf3; = 4, where §; = ZTs; and §; = g — §; (we omit outer index k and replace index
k+1 by + in this section). Therefore, a variable metric update can be used for each of the
particular functions. However, there is a difference between the classic and the partitioned
approach, since conditions §¢; > 0, which are necessary for positive definiteness of B;r ,
are not guaranteed for all 1 < ¢ < n,. This difficulty is unavoidable and an efficient
algorithm has to handle this situation.

Subroutines PSED, PSEC use three strategies. If MET = 1, then the safeguarded parti-
tioned BFGS updates

. 00T B.s:(B.g)T
B = Bﬁg;yé - ‘:T(BSS) . 85> 0, (22)
Bf = B, 89, <0

are used. If MET = 2, then the BFGS updates are combined with the rank-one updates

» > Az_ ZA’L Ai_BZAzT ~ ~ D A AT D A
Bf = B+ v 37( )(_yB.g 2 o180 — Bisi)l = eml3] Bidil, (23)
Bf = B, 187 (5 — Bigi)| < em|8] Bisil,

where €); is the machine precision. We use a strategy, which is based on the observation
that (22) usually leads to the loss of convergence if too many particular functions have
indefinite Hessian matrices. We start with the partitioned BFGS update (22). If n_ >
Ong, where n_ is a number of particular functions with a negative curvature and 6 is a
threshold value, then (23) is used for all particular functions in all subsequent iterations
(we use value = 1/2 in the subroutines PSED, PSEC). If MET = 3, then packed matrices
B; ~ G(z) are computed by using gradient differences. This strategy is in fact the
partitioned discrete Newton method.

A disadvantage of partitioned variable metric methods (MET = 1, MET = 2) is the fact
that approximations of packed Hessian matrices need to be stored. Therefore, the number
of stored elements can be much greater than the number of nonzero elements in the sparse
Hessian matrix. Moreover, operations with packed Hessian matrices (decomposition, mul-
tiplication) are usually unsuitable (time consuming). Thus the sparse approximation of
the Hessian matrix

B=Y 7Bz (24)

=1
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(stored as in Section 3) is constructed in subroutines PSED, PSEC. Then a direction vector
d, used in line search, is computed by solving the linear system Bd = —g. The partitioned
Newton method (MET = 3) does not store packed matrices Bi, 1 <1 < ng, since they are
immediately added to matrix (24).

4.2 Partitioned variable metric method for nonsmooth functions

Assume that functions f;(z), 1 < i < n,, appearing in (21), are nonsmooth, locally
Lipschitz, and we are able to compute (Clarke) subgradients g; € df;(x), 1 < i < n,,
at any point x € R". Then also F(x) is locally Lipschitz and since locally Lipschitz
function is differentiable almost everywhere by the Rademacher theorem, usually OF (z) =
{VF(z)}. A special feature of nonsmooth functions is the fact that the gradient VF'(z)
changes discontinuously and is not small in the neighborhood of a local minimum. Thus
the standard optimization methods cannot be used efficiently.

The most commonly used approach for solving nonsmooth optimization problems is
based on the bundle principle. In this case, values F(xy), g(x) € OF (1) at a single
point xj, are replaced by a bundle of values F; = F'(z;), g; € OF(z;) obtained at trial points
zi, j € T C {1,...,k}. This bundle of values serves for defining a piecewise quadratic
function (with a quadratic regularizing term), which is used for direction determination by
solving a quadratic programming subproblem. Usually, the bundle contains many dense
subgradients. Thus a dense quadratic programming subproblem with many constraints
has to be solved, which is unsuitable in the large-scale cases. This disadvantage can be
overcome by the bundle variable metric method described in [37], which uses a bundle with
three subgradients at most for defining a quadratic programming subproblem. Subroutine
PSEN is based on the partitioned bundle variable metric method described in [23], which
combines ideas from [37] with partitioned variable metric updates.

Using aggregate subgradients g and aggregated subgradient locality measures By (where
g1 = g1 and Bl = 0 in the first iteration), the partitioned bundle variable metric method
generates a sequence of basic points {2} C R™ and a sequence of trial points {z;} C R"
such that

Tl = Tk + Oé;%dk, Zk+1 — Tk + Oélljdk,

where dj, = — (B, '+pI) . is a direction vector and aff > 0, aff > af > (0 are appropriately
chosen step-sizes. At the same time, By, is a matrix obtained by partitioned variable metric
updates and p is a correction parameter (parameter ETA3 in subroutine PSEN). Step-sizes
aff and af are chosen by a special line-search procedure in such a way that either

F(xy, + apdy) < Fxy) — epafwy

or
di g(xp + afidy) > Y1 — ERWY.

Here 0 < e < 1/2, e1 < eg < 1 are suitable constants (we use values e, = 1074,
er = 0.25 in our subroutine), g(zy + aftdy) € OF (zy + altdy), wy = —(gx) " di + 25, and

Y1 = max (|F(z") = F(zy + aiidy) + agidig(ay + afdy)|, vl agidy]*)

where 7 is a subgradient locality measure parameter (parameter ETA5 in subroutine PSEN).
In the first case (descent step) we set zp41 = Tpy1 = Tf + a,%dk, Or+1 = 0 and substitute
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Brs1 =0, Jrs1 = Gt € OF (z41). In the second case (null step) we set 2,11 = x5+ aiidy,
Tha1 = Tk, Pre1 = Yer1 and determine Bkﬂ, Jr+1 by the aggregation procedure.

The aggregation procedure is very simple. Denoting by [ the lowest index satisfying
x; = xp, (index of the iteration after the last descent step) and using the subgradients g,
Jr+1, gr and the subgradient locality measures §; = 0, [r1, By, we determine multipliers

Ae=0, AZ>0, AP>0, AN+ A+ =1,
which minimize the quadratic function
(N gi 4+ Ngern + X) (B + pD)(AN' gy + Ngigr + NGr) + 2N By + N Brrs + A B),

and set . .
i1 = )\zlfgl + Aigzm + Aiék, Br1 = Allcﬂl + )‘iﬂk—i-l + Aiﬁk.

After obtaining points zj,1, zxr1 and subgradient gr.1 € OF(zpy1), the matrix By
is updated. To satisfy conditions for the global convergence, we use special symmetric
rank-one updates after null steps. This guarantees that elements of B; do not decrease.
After descent steps, the safeguarded BFGS updates can be used. As the function F'(x) is
partially separable, the matrix By can be expressed in the form (24) (we omit outer index
k and replace index k + 1 by +). Thus we set

. . 4T R4 (B.6)T
R . L
Bf = B+t -

gzyz stz(Bzgz) ~T
AT ~ I SZ' yZ > 07
Si Yi s; B;3;
Bf = B, sT9: <0
after a descent step or
) (0= Bis) (i — Bis)T o
B;r = B+ (yz - Z)(yZA " - Z) ) S;I(?/z - Bisi) > €M3;7FBi3u
5; (9; — B;s;
» » AT/~ D A T H »
B = B, §; (U; — Bi&;) < em$; Bis;

after a null step (gjs is the machine precision). Here 3, = ZI's; and §; = g — i =
ZI(g — g;), where g and g, are subgradients computed at points 2™ and x, respectively
(aggregated subgradients g;” and g; are not used in variable metric updates).

Since the quadratic programming subproblem used in the aggregation procedure is
very simple, initial step-size @« = 1 need not be a good choice in connection with its
solution. Therefore we store and use a bundle of values F; = F(z;), g; € OF(z;) obtained
at trial points z;, j € J, = {k —m,...,k}. Here m is a size of the bundle (parameter
MB of subroutine PSEN). These values are used for the construction of a piecewise linear
function which serves for determination of better initial step-size. More details are given
in [23].

5 Hybrid methods for nonlinear least-squares

Consider a function of the form

F) =53 f20) = 307 @) @) (25)



(sum of squares), where f;(z), 1 < i < n, (n, is usually large), are smooth functions
depending on a small number of variables (n;, say). In this case, the Jacobian matrix
J(z) = [Jij(x)] = [0fi(x)/0x;] is sparse. The sparsity pattern of the Jacobian matrix is
stored using arrays IAG and JAG in the way described in Section 4.

Using the Jacobian matrix, we can express the gradient g(x) and the Hessian matrix
G(z) in the form

g(z) = Y filw)gi(z) = J"(2) f (),
i=1
Ga) = S (5(@)gl (@) + Fi@)Gilx)) = JT(@)J(x) + C()
i=1
(G;(z) are Hessian matrices of f;(x), 1 <i < n,). The well-known Gauss-Newton method
uses the matrix J7 (z)J(z) instead of the Hessian matrix G(x) = JT(z)J(z) + C(x) (i.e.,
it omits the second order information contained in C'(z)). We assume that the matrix
JT(x)J(z) is sparse (then also C(x) is sparse).

The matrix J*(x)J(x) is frequently ill-conditioned (even singular) so that the Gauss-
Newton method and its modifications require trust-region realizations. For computing
a trust-region step, subroutine PGAD uses matrix decomposition methods and subroutine
PGAC uses matrix iterative methods. These methods and their choices (using variables
MOS and M0OS1), are described in Section 3.

If the minimum value F(z*) is large (large residual problem), the Gauss-Newton
method can be inefficient. Therefore, modifications that use the estimation of the second-
order term have been developed. These modifications are based on the fact (proven in
[1]) that (Fy — Fy11)/Fr — 1if F, — 0 Q-superlinearly and (F), — Fyy1)/Fr — 0 if
F, — F* > 0. Thus we can use the following philosophy. Let xp.; be a vector ob-
tained by the trust-region strategy described in Section 3. If z,.1 # z3, we compute
Fk+1 = F(l’k+1), Jk—i—l = J(l’k+1) and set

Brn = J;?+1Jk+1> Fy — Fyp1 > 0F,

Bivi = Jhidkir + Cryr, By — Frg <OF,
where Cyyq is an approximation of the second order term and ¥ is a suitable value (pa-
rameter ETA in subroutines PGAD and PGAC).

Large-scale correction matrix Cj; cannot be efficiently obtained by dense variable met-
ric updates [1], which are frequently used for medium-size problems. Fortunately, simple
corrections utilizing sparsity also increase the efficiency of the Gauss-Newton method. In
subroutines PGAD and PGAC we have implemented three hybrid methods proposed in [15]

(specified by the variable MEC), which are described in the subsequent subsections. To
simplify the notation, we omit outer index k and replace index k£ + 1 by +.

5.1 Gauss-Newton method with sparse variable metric corrections

If MEC = 1, the sparse variable metric corrections (Marwil updates) are used. In the first
iteration (or after a restart) we use the matrix B = J*J. In the subsequent iterations we
set

BT = (JH'JT, F —F" > 9F,
Bt = PsPoc((JNHTJT), F—Ft<JF,
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where Pg realizes an orthogonal projection into the subspace of symmetric matrices of
order n and Py realizes an orthogonal projection into the intersection of the subspace
of matrices having the same sparsity pattern as J7.J and the linear manifold of matrices
satisfying the quasi-Newton condition Ws =y with s = 27 — 2, y = g* — ¢g. Thus

PsW = (W +WT)/2,
(PcW)y; = 0, (J"J);; =0,
for a given square matrix W, and

Poc((J1)"J") =Pa((JH)'T* +us’),

where u € R" is a solution of the linear system Du — (JH)TJ*s with a diagonal
matrix D such that
Dz’i = Z (6?8)2
(JTJ)i#0

(e; is the j-th column of the unit matrix).

5.2 Gauss-Newton method with the Newton corrections

If MEC = 2, the Newton corrections are used. In the first iteration (or after a restart) we
use the matrix B = J7J. In the subsequent iterations we set

Bt = (JHTJT, F—F">9F,
Bt = (JNY'JT+Y G, F—F'<yF,
=1

where G, 1 < i < n,, are approximations of Hessian matrices determined by using
gradient differences at the point z.

5.3 Gauss-Newton method with partitioned variable metric corrections

If MEC = 3, the partitioned variable metric corrections (symmetric rank-one updates) are
used. In the first iteration (or after a restart) we use the matrix B = J7J. In the
subsequent iterations we set

Bt = (JHTJT, F—F">9F,

BY = (JN'UY+Y ffzBrzl. F-Ft<9F,

i=1

where Z;, 1 <1 < n,, are matrices defined in Section 4 and B:F , 1 <1 <n,, are packed
matrices updated using symmetric rank-one formulas

Bf = B+ a s7 éé >5Ms Bs
1 ? §T( — Bléz ) | 1 ( )| ‘ Z|
B = B, 181 (9 — Bidi)| < emlsi Bisil

19



(ep is the machine precision), where B; = I, 1 < i < ng, in the first iteration (or
after a restart). A disadvantage of partitioned variable metric corrections is the fact that
approximations of packed Hessian matrices need to be stored. Thus the choice MEC = 3
is usually less suitable than choices MEC = 1 and MEC = 2.

6 Primal interior point methods for minimax optimization

Consider a function of the form

F(z) = max fi(z) (26)
(pointwise maximum), where f;(z), 1 <1i < n, (n, is usually large), are smooth functions
depending on a small number of variables (n;, say). In this case, the Jacobian matrix
J(z) = [Jij(x)] = [0fi(x)/O0x;] is sparse. The sparsity pattern of the Jacobian matrix is
stored using arrays IAG and JAG in the way described in Section 4.
Primal interior point methods for minimax optimization, proposed in [17], are based
on three basic ideas. First, minimization of F' is equivalent to the nonlinear programming
problem with n + 1 variables z € R", z € R:

minimize 2z subject to fi(x) <z, 1<i<n,.

Secondly, this constrained problem is replaced by a sequence of unconstrained problems
minimize B,(z,2) =z — ,uz log(z — fi(x)),
i=1

where z > F(z) and p > 0 (we assume that x4 — 0 monotonically). Finally, the extra
variable z is eliminated by solving the scalar nonlinear equation

Na

r
2w " 0

which follows from the first-order necessary conditions for the barrier function B, (z, 2)
with fixed # € R™. The above equation has a unique root z,(x) such that F(z) + p <
2,(z) < F(x) 4+ ngu. This approach leads to inexact unconstrained minimizations of
functions B, (z) = B, (x, z,(x)) for suitable values of n using the fact that

VB, (x) = gu(z) = J" (v)u,(2)

and
V2B, (2) = Gy() + I @)V (2) I () — 2 (x)vuéfﬁixﬁ(x)J(x),
where
(@) w/(zu(z) — fi(z)) 1
) 1) (zu(@) — fu(2) | e
Gulz) = a L, (2)V2 fi(x),



V(o) = diag (1/(z(2) = fi(@))% s 1/ (2u(@) = fra(2))?) -
The Hessian matrix V?B,,(z) of the barrier function B, (x) is positive definite if G,(x)
(the Hessian matrix of the Lagrangian function) is positive definite.

Subroutine PMAX is based on a line search realization of the Newton-like methods. Thus
't = + ad, where V?B,(x)d = —g,(z) and « is a suitable step-size. In fact, we use an
approximation of V2B, (x), such that G,(x) is determined either by partitioned variable
metric updates described in Section 4 (if MED = 1) or by gradient differences as in [5] (if
MED = 2). In the second case, the matrix G, (z) is not positive definite in general so a
restart strategy guaranteeing descent is used (more details are given in [17]). If MED = 1,
then we define reduced approximations of the Hessian matrices C;'Z =71'GZ;,1 <i <y,
as in Section 4. New reduced approximations of the Hessian matrices are computed by
the formulas

- 1 (- G.5.57¢G. g9

G = — G — —==— |+, §g:>0, 28
' i ( STG5; ) Ty Y (28)
GH = G, 510 <0,

where

§= 20" —a), Gi=ZN(VAE) - Vi), 1<i<n,

and where either 7, = 1 or 7 = EZTGZEZ / §ZT;&Z The particular choice of 7; is determined
by the controlled scaling strategy described in [19]. In the first iteration we set G; = I,
1 < i < n,, where I are unit matrices of suitable orders. Finally, G = Z,GfZT,
1< <n,.

A very important part of the primal interior point method is an update of the barrier
parameter p. There are two requirements, which play opposite roles. First, u — 0 should
hold, since this is the main property of every interior-point method. On the other hand,
round-off errors can cause that z,(x) = F'(z) when p is too small and |F'(x)| is sufficiently
large (since F(z) + p < z,(x) < F(x) + ngu), which leads to a breakdown (division by
2,(z) — F(xz) = 0). Thus a lower bound f for the barrier parameter (parameter ETA5 in
subroutine PMAX) is used. B

The efficiency of the primal interior point method is also sensitive to the way in which
the barrier parameter decreases. Subroutine PMAX uses the formula

fis1 = max (figs1, pt, 10 0| F(2041)]) 5

where F'(xp41) = maxi<;<m fi(Tr+1), €p is the machine precision, and

fir41 = min [max(Aug, ./ (100, + 1)), max(|| g, (z1)[|%, 10729)]

where \ is the rate of the barrier parameter decrease (parameter ETA4 in subroutine PMAX).
Subroutine PMAX serves for minimization of three particular functions. If IEXT < 0,
then function (26) is considered. If IEXT = 0, then
F(z) = max |fi(z)] = max [max(fi(z),—fi(z))].
If IEXT > 0, then
F(z) = max (—fi(z)).

1<i<ng
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7 Primal interior point methods for [; optimization

Consider a function of the form

Ta

F(z) =Y _|fi(z)l (29)

i=1

(a sum of absolute values), where f;(x), 1 < i < n, (n, is usually large), are smooth
functions depending on a small number of variables (n;, say). In this case, the Jacobian
matrix J(z) = [J;;(z)] = [0fi(x)/0z;] is sparse. The sparsity pattern of the Jacobian
matrix is stored using arrays IAG and JAG in the way described in Section 4.

Primal interior point methods for [; optimization, proposed in [18], are based on three
basic ideas. First, minimization of F' is equivalent to the nonlinear programming problem
with n + n, variables z € R", z € R":

Na
minimize ZZ’ subject to —z; < fi(x) <z, 1<i<n,.
i=1
Secondly, this constrained problem is replaced by a sequence of unconstrained problems

Na

minimize B,(z,z) = Z 2 — Za: log(zi — fi(z)) — p Za: log(zi + fi(x))
i=1 i=1

=1
= S n Y log(s - £2(2)
=1 =1

where z; > |fi(z)|, 1 <i < n,, and g > 0 (we assume that ;1 — 0 monotonically). Finally,
the extra variables z;, 1 <7 < n,, are eliminated by solving the set of quadratic equations

=1, 1<1<ng,,

22— fi(z)

which follow from the first-order necessary conditions for the barrier function B, (z, 2)
with fixed z € R". Solutions of the above equations define a vector z,(x) € R"*, where

2u(@); = €l z0(@) = 4\ 12 + f2(x), 10 <, (30)

This approach leads to inexact unconstrained minimizations of functions B,,(z) = B,(z, 2,(z))
for suitable values of p using the fact that

VB, (z) = gu(z) = JT(x)“u(x)
and
V2B, (x) = Gu(x) + T (2)V,(2)J (),

where
() 20 f1(x)/(z(2)? — f3(2))

2pfn, (1)) (2u(2)7, — [, ()
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:Z ;‘F V2fz )

V() = diag (21/ (zu(2)} + f1(2)), ... 208/ (zu(2)7, + [, (2))) -
The Hessian matrix V2B, (z) of the barrier function B, (x) is positive definite if G,(x)
(the Hessian matrix of the Lagrangian function) is positive definite.
Subroutine PSUM is based on a trust-region realization of the Newton-like methods.
The Dennis-Mei (dog-leg) method described in Section 3 is used for computation of the
trust-region step d using the quadratic model

Q(d) = %dTVZ’BH(m)d + g, (z)d

(more details are given in [18]). In fact, we use an approximation of V2B, (z), such that
G (z) is determined either by partitioned variable metric updates described in Section 4
(if MED = 1) or by gradient differences as in [5] (if MED = 2). If MED = 1, then we define
reduced approximations of the Hessian matrices G; = ZIG:Z;, 1 < i < ng, asin Section 4.
New reduced approximations of the Hessian matrices are computed by the formulas (28)
described in Section 6.

A very important part of the primal interior point method is an update of the barrier
parameter p. There are two requirements, which play opposite roles. First, u — 0 should
hold, since this is the main property of every interior-point method. On the other hand,
round-off errors can cause that z,(z)? = f?(x) when f is too small and | f;(x)] is sufficiently
large (see (30)), which leads to a breakdown (division by z,(z)? — f*(z) = 0). Thus a
lower bound g for the barrier parameter (parameter ETA5 in subroutine PSUM) is used.

The efficiency of the primal interior point method is also sensitive to the way in which
the barrier parameter decreases. Subroutine PSUM uses the formula

s = max(ps, o)) B p(de) = p and |lgn(a) | < jus/100,
and pix41 = . otherwise (p(dx) and p are defined in Section 3).

8 Methods for sparse systems of nonlinear equations

Consider the system of nonlinear equations

fx) =0, (31)

where f: R — R" is a continuously differentiable mapping and assume that the Jacobian
matrix J(z) = [J;;(x)] = [0fi(x)/0x;] is sparse. The sparsity pattern of the Jacobian
matrix is stored using arrays IAG and JAG in the way described in Section 4 (where
ne, = n). Let A be an approximation of the Jacobian matrix J = J(x) and let F' =
F(x) = (1/2)||f(z)]|>. Methods considered in this section are realized in the line-search
framework. They generate a sequence of points x; € R", i € N, such that

Tpy1 = T + Oékdk, ke N, (32)

where d;, € R" is a direction vector determined as an approximate solution of the linear
system Apd + f = 0 such that

[Ardi + fell < Wil fll (33)
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with the precision 0 <, <w < 1 and oy, is the step-size chosen in.such a way Ehat it is
the first Elember of the sequence o, j € N, where oy = 1 and foy, < o™t < Baj with
0 < B < B <1, satisfying

Fiy — By < —s1anfi Awdy, (34)

with the line search parameter 0 < e; < 1/2. We use the values 3 = 0.1, B=09and e =
10~* in our subroutines. The value ;"' can be determined by a bisection (MES = 1) or by
a two-point quadratic interpolation (MES = 2) or by a three-point quadratic interpolation
(MES = 3) or by a three-point cubic interpolation (MES = 4).

To obtain a superlinear rate of convergence, the condition @y, — 0 has to be satisfied.
Therefore, we set

@ = min (max(|[ fell”, Y (Lll /1 fe-1 1)), 1/k, @),

where v =1/2, vy =1, a = (1++/5)/2 and T = 1/2.

If Aj, # Ji, then a safeguard based on restarts is used. It consists in setting A1 = Jpi1
if j > j or Aj, = Ji (with repeating the k-th iteration) if j > j, where 0 < j < j. We use
the values j = 1 and j = 5. The restart of the form A, = Jj, is also used whenever

—di JF fre < ellde ||| fell,

where 0 < £ < 1 is a restart tolerance (we use the value ¢ = 1072 in our subroutines).

The direction vector dj, (an approximate solution of the linear system Apd + fr = 0)
is determined by using the preconditioned smoothed CGS method described in [35]. To
simplify the description of this method, we omit the outer index k& and denote the inner
index by i. Let h = ATf. Weset s, =0,5, =0,7=f, 71 =f,pp=f,u; = f and
for i = 1,2,3,... we proceed in the following way. If ||r;|| < @||f]|, then set d = s; and
terminate the process. Otherwise compute

Vi = AC_lpi, oy = hTFZ‘/hTUZ',

qi = U — QU
Sit1 = Si+oC  (wi+ ),
Tivn = Ti+qAC N u; +q), Bi=h"Ti/h'T,
Uiy1 = Tip1 + Bits,
pir1 = Uiy + Bi(q + Bipi),
Niw]t = arg [MILT]lTilele [Ti1 + A(ri = Tigr) + pvil]
Siv1 = Sip1 + Ni(si — Si1) + wC 'y,
Tig1 = Tig1 T Ni(1i — Tig1) + p40;.

The matrix C' serves as a preconditioner. The choice C' = [ is used if M0S2 = 1 or
C' is defined as an incomplete LU decomposition of the matrix A if MOS2 = 2 (MOS2
is a parameter of the subroutines PEQN and PEQL). If MOS2 = 3, a preliminary solution
obtained by the incomplete LU decomposition can be accepted. In this case, we first
compute vectors dy = —C~'f, 1y = Ady + f. TIf ||ry]] < @ f]], then we set d = d; and
terminate the process, otherwise we continue by CGS iterations as above.

More details concerning globally convergent line-search methods for systems of nonlin-
ear equations can be found in [22].
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8.1 Inexact discrete Newton method

Subroutine PEQN is an implementation of the inexact discrete Newton method. This simple
method is based on the elementwise differentiation. We always set Ay = J(xy), where

filz +de5) — fi(x)

Jij(x) = 5, (35)

for all pairs (7, j) corresponding to structurally nonzero elements of J(z). Thus we need
m scalar function evaluations (i.e. m/n equivalent vector function evaluations), where m
is the number of structurally nonzero elements of J(x).

Nonzero elements of sparse Jacobian matrix J(z) can be also derived by using the
groupwise differentiation [4]. Since our comparative tests have shown that the efficiencies
of both these approaches are practically the same (see [22]), we use the simpler elementwise
differentiation in our subroutines.

8.2 Inverse column-update quasi-Newton method

Subroutine PEQL is an implementation of the inverse column update method, which is
introduced in [24]. This method uses an approximation S, = A, ' of the inverse Ja-
cobian matrix J; ' in (33). Therefore, we simply set d,, = —S}.fx instead of using the
preconditioned smoothed CGS method if the restart is not used (if Ay # Ji). Denote
by Sk = Tp41 — Thy Sk—1 = Tk — Th—1, - - - Sk—m = Thom+1 — Th—m a0d yr = frp1 — fr,
V-1 = fr — fro—1s - s Yem = fr—ms1 — fr—m the last m differences of points and function
vectors, respectively, where the lower index & — m corresponds to the iteration with the
restart. Let ep_; = argmax,, [/ Yr_1], ..., ex_m = argmax, |e yx_,| (argmax is taken
over all columns e;, 1 < i < n, of the unit matrix). Then the vector Sy fr can be computed
by the formula

T T
€1 €l
k—1Jk k—mJk
Sife = Skmfe + F——vp1+ ...+ Vi,
€r—1Yk—1 Ck—mYk—m
where vp_1 = dr_1 — Sk_1Yr—1, -+ Vkem = dp—m — Sk—mYr_m are vectors computed
recursively by the formula
T T
—de— Setr = dr — S Ck—1Yk Cr—mYk
Vg = Ak — OrYk = Ak — Ok—mYk — 7 Vk—1 — - — ~p—— Uk—m-
Cr—1Yk—1 C—mYk—m

In both of these formulae we use the matrix Sy, = (Lp—mUp—m) ", where Ly Up_m
is the incomplete LU decomposition of the Jacobian matrix J(xj_.,) computed by (35).
Note that the vectors eg_1, ..., €x_, do not need to be stored. We only use indices of
their unique nonzero elements. The limited memory column update method needs to be
restarted periodically after m iterations (parameter MF in the subroutine PEQL), since at
most m vectors can be stored.
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9 Comparison of subroutines

In this section, we compare some of our subroutines with the most commonly known
subroutines that solve the same problems. The comparison has been performed by using
test collections TEST14 (with 1000 variables) for subroutines PLIS, PLIP, PNET, PNED,
PNEC, PSED, PSEC, TEST15 (With 1000 variables) for subroutines PGAD, PGAC and TEST18
(with 3000 equations and unknowns) for subroutines PEQN, PEQL. These collections can be
downloaded from www.cs.cas.cz/"luksan/test.html. Results of tests are listed in six
tables. Rows corresponding to individual test problems contain the number of iterations
NIT, the number of function evaluations NFV, the number of gradient evaluations NFG,
the final value of the objective function F, the value of the termination criterion G, and
the cause of termination ITERM. The last row of every table contains the total number
of NIT, NFV, NFG, the total computational time in seconds and the number of problems
successfully solved.

Table 2 contains the comparison of PLIS and PLIP with the subroutine L-BFGS [40].
Subroutine L-BFGS had to be slightly modified to eliminate overflows. Thus we have
added statement STPMAX=XMAX/MXVNOR(N,S) (MXVNOR(N,S) is the Euclidean norm of N
dimensional vector S) to the subroutine MCSRCH, realizing the Moré-Thuente line search,
and used XMAX=1.0D1 for some problems. The value M=10 (corresponding to MF=10 in
PLIS and PLIP) has been used in the subroutine L-BFGS.

Table 3 contains the comparison of PNET with the subroutine TNMIN from TNPACK [30].
As in the previous case, we have added statement DELH=MIN(DELH,XMAX/DNORM) to the
subroutine OURHDP and statement STPMAX=XMAX/MXVNOR(N,S) to the subroutine MLINES.
The default values of parameters in OPTLIST have been used in the subroutine TNMIN.

Table 4 contains the comparison of PSED and PSEC with the Harwell subroutine VEOSAD
[33]. The values DIFGRD=10_8, FKNOWN="FALSE’, RESTRT=’FALSE’, TESTGX=’FALSE’,
HESDIF="FALSE’, STEPL(1)=-1 and STMAX=XMAX have been used in the subroutine VEO8AD
(XMAX, which has the same meaning as in PSED, PSEC, was sometimes tuned).

Table 5 contains the comparison of PGAD and PGAC with the Harwell subroutine VE10AD
[34]. The values DIFGRD=1O_8, FKNOWN="FALSE’, RESTRT="FALSE’, TESTGX=’FALSE’,
HESDIF="FALSE’, STEPL(1)=-1 and STMAX=XMAX have been used in the subroutine VE10AD
(XMAX, which has the same meaning as in PGAD, PGAC, was sometimes tuned).

Table 6 contains the comparison of PEQN and PEQL (using only function values) with
the subroutine NITSOL [28]. Since NITSOL does not contain an internal preconditioner,
the less efficient unpreconditioned iterative method was used.

Table 7 contains the comparison of PEQN and PEQL (using function values and the
first derivatives) with the subroutine NLEQ1S [27]. Subroutine NLEQ1S frequently required
very large working arrays and a complete LU decomposition was sometimes very time-
consuming.

The results introduced in Table 2—-Table 7 demonstrate that PLIS and PLIP are compa-
rable with L-BFGS. Other our subroutines tested are more efficient then their equivalents.
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Method TLISU TLIPU LBFGS

Problem NIT NFV NFG NIT NFV NFG NIT NFV NFG

1 4988 5554 5554 | 5383 5417 5417 | 4935 5821 5821

2 425 454 454 | 530 557 5T | 4048 4375 4375

3 74 78 78| 125 128 128 88 96 96

4 103 112 112| 109 114 114 | 113 120 120

5 24 26 26 26 27 27 23 24 24

6 30 31 31 35 36 36 36 38 38

7 38 43 43 36 41 41 29 50 50

8 29 33 33 33 36 36 32 55 55

9 13 16 16 15 18 18 11 15 15

10 1540 1582 1582 | 2003 2030 2030 | 1367 1403 1403

11 114 138 138 | 157 175 175 | 174 213 213

12 248 267 267 | 337 350 350 | 278 297 297

13 7 8 8 9 10 10 12 13 13

14 10 12 12 8 10 10 1 3 3

15 2830 2929 2929 | 1226 1256 1256 | 2773 2861 2861

16 196 210 210 | 237 246 246 | 229 240 240

17 1007 1032 1032 | 598 604 604 | 968 998 998

18 1449 1474 1474 | 989 998 998 | 1685 1732 1732

19 1393 1431 1431 | 1261 1272 1272 | 1703 1759 1759

20 2129 2191 2191 | 2045 2058 2058 | 2379 2433 2433

21 2120 2169 2169 | 2175 2196 2196 | 1945 1998 1998

22 1305 1346 1346 | 1261 1292 1292 | 1652 1706 1706

x 20072 21136 21136 | 18598 18871 18871 | 24481 26250 26250

Method TLISU TLIPU LBFGS
Problem F G  ITERM F G  ITERM F G IFLAG

1 96E—15 E—06 4 60E-14 E-06 4 61E-13 E—04 0
2 14.9945 E—05 2 357277 E—-05 2 276.253 E—-04 0
3 6.6E-10 E-06 4 34E-13 E-06 4 81E-11 E-06 0
4 269.500 E—06 4 269.500 E—06 4 269.500 E-04 0
5 1.3E-12 E-06 4 71E-12 E-06 4 45E-11 E-04 0
6 22E-11 E-06 4 14E—-11 E—06 4 1.3E-11 E—05 0
7 335137 E-06 4 336.937 E—-06 4 336.937 E—-04 —1
8 761775. E—03 2 761775. E—-02 2 761775. E-03 -1
9 316.436 E—06 4 316.436 E—06 4 316436 E-04 0
10 ~124.630 E-04 2 | —124950 E-04 2 | —131.810 E-04 0
11 10.7766 E—06 4 10.7766 E—06 4 10.7766 E—04 0
12 982.274 E—04 2 982.274 E-04 2 982.274 E—04 0
13 1.7E-13 E—06 4 23E-15 E-07 4 1.6E—20 E—09 0
14 1.3E-09 E—-06 4 1.3E-09 E-06 4 1.3E—09 E—05 0
15 1.92402 E—-06 4 1.92402 E—-06 4 1.92402 E—04 -1
16 —427.404 E-05 2 | —427404 E-04 2 | —427404 E-05 0
17 —38E—02 E-06 4 |—-38E—02 E-06 4 |—-38E—02 E-05 0
18 —25E-02 E-06 4 | -25E-02 E-06 4 | —-25E—02 E—05 0
19 59.5986 E—05 2 59.5986 E—05 2 59.5986 E—04 0
20 ~1.00014 E-06 4 | —1.00014 E-06 4 | —1.00014 E-06 0
21 213867 E-06 4 2.13866 E—06 4 2.13866 E-04 0
22 1.00000 E—06 4 1.00000 E—06 4 1.00000 E—06 0
5 TIME = 8.90 22 TIME = 8.82 22 TIME = 9.34 22

Table 2: Comparison of TLISU, TLIPU and LBFGS
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Method TNETU TNMIN
Problem | NIT NFV NFG F G ITERM | NIT  NFV NFG F G INFORM
1 1481 1656 26037 1.2E-16 E-06 4 1756 2597 34032 41E-20 E-08 1
2 132 387 7945 1.50E-16 E-08 4 70 144 4166 7.0E-17 E-07 1
3 19 20 110 4.2E-10 E-06 4 19 20 145 5.2E—-10 E-06 1
4 19 20 230 269.500 E-07 4 18 19 261 269.500 E-07 1
5 12 13 49 4.7TE-12 E-06 4 11 12 60 1.0E-10 E-05 1
6 13 14 76 3.7TE-12 E-06 4 12 13 99 28E—-11 E-05 1
7 9 10 37 336.937  E-06 4 8 9 42 336.937  E-07 1
8 11 12 o8 761775.  E-07 4 6 7 30 761775. E-01 1
9 7 11 28 316.436  E-07 4 7 14 27 316.436 E-04 1
10 75 153 3213 —133.610 E-08 4 72 152 4936 —126.610 E-07 1
11 33 45 181 10.7766  E—-07 4 30 41 188 10.7766  E—-10 1
12 23 30 457 982.274  E-08 4 26 30 467 982.274 E-04 1
13 7 8 16 5.3E-16 E-07 4 7 8 17 89E-31 E-14 1
14 1 2 1005 1.2E-09 E-07 4 1 2 1002 1.2E-09 E-06 1
15 14 15 4033 1.92402 E-07 4 8 9 2765 1.92402 E-04 1
16 13 17 295 —427.404 E-08 4 13 18 473  —427.404 E-06 1
17 4 5 810 —-3.8E-02 E-06 4 3 4 996 —-3.8E—02 E-09 1
18 4 5 1146 —-2.5E-02 E-06 4 3 4 1156 —2.5E-02 E-10 1
19 10 11 1986 59.5986  E—-06 4 7 8§ 1532 59.5986  E-04 1
20 18 39 3051 -1.00014 E-07 4 14 35 4009 -1.00014 E-06 1
21 7 8 4901 2.13866  E—-08 4 7 8 5610 2.13866  E—-09 1
22 55 145 4760 1.00000 E-08 4 37 94 13588 1.00000 E-06 1
by 1967 2626 60424 TIME = 6.95 22 2135 3248 75601 TIME = 17.20 22




Method TSEDU TSECU VEO8AD

Problem NIT NFV NFG NIT NFV NFG NIT NFV NFG

1 2654 3627 3627 | 2606 3566 3566 | 4669 686 686

2 105 179 179 | 108 177 177 | 152 193 193

3 40 45 45 40 45 45 44 51 51

4 37 45 45 37 45 45 65 75 75

) 16 17 17 16 17 17| 272 416 416

6 38 40 40 38 40 40 62 76 76

7 22 26 26 26 31 31| 249 463 463

8 26 40 40 25 39 39 10 19 19

9 193 202 202 | 191 210 210 44 64 64

10 227 258 258 | 233 264 264 74 123 123

11 100 127 127 | 113 144 144 | 108 166 166

12 28 29 29 28 29 29 72 108 108

13 1 2 2 1 2 2 7 10 10

14 25 28 28 25 28 28 20 28 28

15 8 15 15 27 41 41 65 87 87

16 25 35 35 25 35 35 19 26 26

17 15 17 17 15 17 17 23 31 31

18 5 11 11 8 12 12 29 40 40

19 19 23 23 19 23 23 24 29 29

20 37 97 97 42 74 74 40 o7 o7

21 37 40 40 37 40 40 28 38 38

22 55 211 211 48 192 192 | 114 231 231

b 3713 5114 5114 | 3708 5071 5071 | 6190 3017 3017

Method TSEDU TSECU VEOSAD
Problem F G ITERM F G ITERM F G IFLAG

1 79E-17 E-06 3 6.5E-18 E-07 3 4.9E-17 E-06 1
2 83.3161  E-06 4 1111.36 E—-05 2 5.0E-17 E—-06 1
3 2.6E-13 E-06 4 2.7TE—-13 E-06 4 1.4E-13 E-06 1
4 269.500 E-06 4 269.500 E-06 4 269.500 E-06 1
5 1.1E-12 E-06 4 1.1E-12 E-06 4 1.1IE-11 E-06 1
6 5.0E-12 E-06 4 5.50E-12 E-06 4 6.8E-13 E—06 1
7 335.253  E-06 4 335.253 E-06 4 316.783  E-07 1
8 761775.  E-04 2 761775.  E-03 2 761775.  E-05 29
9 316.436  E-05 2 316.436  E-05 2 316.436  E-06 1
10 —125.810 E-04 2 —121.692 E-04 2 —125.790 E-05 29
11 10.7766  E—06 4 10.7766 ~ E-07 4 10.7766 ~ E-07 1
12 982.274  E-06 4 982.274  E-06 4 982.274  E—06 1
13 0.00000  0.000 4 0.00000  0.000 3 6.5E-21 E-09 1
14 1.0E-09 E-06 4 1.0E-09 E-06 4 1.2E-09 E-06 1
15 1.92402 E-07 4 1.92402 E-07 4 1.92402 E-06 1
16 —427.404 E-06 4 —427.404 E-06 4 —427.404 E-06 1
17 —-3.8E-02 E-06 4 —-3.8E-02 E—-06 4 —-3.8E-02 E-07 1
18 —2.5E-02 E-07 4 —0.5E-02 E-11 4 —2.5E-02 E-06 1
19 59.5986  E—-06 4 59.5986  E—-06 4 59.5986  E—-06 1
20 —1.00014 E-08 4 —1.00014 E-09 4 —1.00014 E-06 1
21 2.13866  E—-06 4 2.13866  E—-06 4 2.13866  E—-06 1
22 1.00000 E-07 4 1.00000 E-08 4 1.00000 E-06 1
Y TIME = 4.27 22 TIME = 7.63 22 TIME = 19.40 22

Table 4: Comparison of TSEDU, TSECU and VEO8AD
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Method TGADU TGACU VE10AD

Problem NIT NFV NFG NIT NFV NFG NIT NFV NFG

1 1377 1379 1379 | 1108 1110 1110 | 1456 180 180

2 41 46 46 | 624 640 649 | 348 509 509

3 11 12 14 11 12 14 17 18 18

4 13 16 21 11 13 17 23 24 24

) 4 ) 7 4 5 7 6 7 7

6 6 7 13 6 7 13 7 8 8

7 10 12 23 17 40 29 8 9 9

8 21 26 24 22 25 25 96 267 267

9 15 16 36 13 15 38 48 50 50

10 12 18 21 129 147 176 9 10 10

11 25687 2593 2649 | 3010 3016 3012 | 3233 404 404

12 16 20 23| 205 226 236 18 34 34

13 17 21 28 | 123 132 152 19 26 26

14 ) 8 18 7 8 32 6 7 7

15 6 7 15 13 20 42 8 9 9

16 15 21 40 14 15 35 13 14 14

17 15 20 19 29 34 33 18 26 26

18 42 44 45 49 53 52 | 922 2397 2397

19 15 16 23 15 16 23 18 25 25

20 26 27 29 17 18 32 18 33 33

21 10 11 17 15 18 23 26 28 28

22 26 32 45 47 59 98 24 30 30

by 4290 4357 4535 | 5489 5629 5848 | 6341 4115 4115

Method TGADU TGACU VE10AD

Problem F G ITERM F G ITERM F G IFLAG

1 7.0E-23 E-09 3 0.00000  E400 3 2.6E-16 E-06 1
2 22E-17 E-06 3 66.4089  E-07 4 4.7E-16 E-07 1
3 1.4E-10 E-06 4 2.0E-10 E-06 4 1.3E-10 E-06 1
4 134.750 E—-06 4 134.750  E-07 4 134.750 E-06 1
5 1.1IE-11 E-06 4 1.2E-11 E-06 4 79E-19 E-08 1
6 74E-27 E-12 3 7T9E-27 E-12 3 2.3E-17 E-07 1
7 60734.9 E-07 4 607349 E-05 6 60734.9 E-06 1
8 2.5E-09 E—-06 4 1.3E-08 E-06 4 1.1E-09 E-07 1
9 2216.46 E-10 4 2216.46  E—-06 4 2216.46 E-05 29
10 191.511  E-07 4 191.5611  E-07 4 191.511 E-06 1
11 6.bE—28 E-12 3 4.0E-25 E-11 3 1.0E-16 E-07 1
12 19264.6 E—-10 4 222879  E-08 4 222879 E-08 1
13 131234. E-08 4 131234. E-09 4 131234. E-07 1
14 108.518 E—-08 4 108.518  E—-07 4 108.518 E-07 1
15 18.1763  E—-06 4 18.1763  E—-05 2 18.1763 E-09 1
16 2.51110 E-06 4 2.51110 E-09 4 2.51110 E-06 1
17 2.6E-17 E-08 3 1.4E-10 E-06 4 1.2E-12 E-06 1
18 1.50E-25 E-10 3 1.2E-22 E-09 3 8.4E-14 E-05 1
19 3.5E-15 E-06 4 3.4E-14 E-06 4 8.3E-17 E—-06 1
20 3.8E—-11 E-07 4 3.4E-12 E-07 4 1.1E-17 E-08 1
21 647.829 E-11 4 647.696  E—-06 4 647.696 E—-05 29
22 4486.97  E-07 4 4486.97  E-08 4 4486.97 E—-06 1
DX TIME = 4.56 22 TIME = 5.01 22 TIME = 27.31 22

Table 5: Comparison of TGADU, TGACU and VE10AD
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TOSLIN pue NTOAL ‘NNDAL jo uostredwo)) :9 o[qef,

Method TEQNU TEQLU NITSOL
Problem | NIT NFV NFG F ITERM | NIT NFV NFG F ITERM | NIT NFV NFG F ITERM
1 10 41 0 22E-23 3 30 64 0 3.3E—-19 3 37 14095 0 1.1E-15 0
2 9 46 0 1.1E—23 3 17 57 0 7.2E—-20 3 14 967 0 0.16900 5
3 3 19 0 3.3E—-20 3 5 11 0 8.6E—17 3 4 9 0 0.00000 0
4 7 23 0 3.5E—18 3 11 19 0 1.2E—-19 3 10 44 0 0.00000 0
5 12 63 0 1.2E-17 3 20 56 0 34E-17 3 9 2548 0 142.883 5
6 17 52 0 1.1E-17 3 22 31 0 1.7BE-17 3 41 207 0 3.2E—14 6
7 13 41 0 3.4E-20 3 25 42 0 1.4E-21 3 183 570 0 0.00000 0
8 13 73 0 1.3E—26 3 21 60 0 5.0E—29 3 31 187 0 2.0E—-15 6
9 13 99 0 4.3E-22 3 32 71 0 22E-22 3 22 136 0 8.9E—15 6
10 5 41 0 8.0E—26 3 9 24 0 2.0E-21 3 9 80 0 2.8E—15 6
11 12 37 0 1.9E-26 3 16 23 0 1.2E-22 3 14 37 0 0.00000 0
12 18 55 0 1.3E-17 3 23 40 0 8.6E—17 3 31 152 0 7.3E—17 0
13 18 39 0 1.1E-17 3 24 32 0 23E-17 3 55 198 0 1.4E—14 6
14 4 13 0 7.7E-21 3 8 13 0 6.0E—22 3 10 92 0 3.2E—15 6
15 5 36 0 1.8E—18 3 12 28 0 1.2E—18 3 8 96 0 4.6E—15 6
16 53 319 0  4.6E—18 3 22 78 0 9.8E—21 3 243 706 0 0.00000 0
17 14 48 0  4.5E-23 3 17 43 0 1.3E-21 3 112 444 0 6.0E—13 6
18 26 79 0 2.5E-21 3 46 61 0 2.2E—18 3 24 1925 0 37.8584 5
19 2 7 0 3.1E—-22 3 2 5 0 7.0E—-19 3 30 15000 0 - 3
20 13 43 0 4.3E—-21 3 18 30 0 1.6E—17 3 24 15000 0 - 3
21 12 37 0 2.0E-21 3 25 34 0 2.3E-17 3 23 15000 0 - 3
22 7 50 0  2.0E-20 3 14 45 0 1.9E-18 3 12 3582 0 2.3E—02 5
23 29 262 0 3.9E—18 3 23 106 0 1.9E-19 3 20 15000 0 - 3
24 6 31 0 8.2E—-24 3 20 53 0 7.4E—18 3 16 4187 0 8.3E—15 6
25 9 46 0 1.5E—24 3 29 50 0 2.1E—18 3 15 1053 0 8.7TE—15 6
26 12 61 0 6.1E—18 3 36 67 0 1.3E—18 3 25 1326 0 1.3E—12 6
27 10 51 0 2.8E-21 3 40 75 0  6.6E—18 3 19 3434 0 8.4E—15 6
28 10 60 0 23E-17 3 27 83 0  4.6E—19 3 24 658 0 1.2E—14 6
29 4 53 0 1.2E—-20 3 12 95 0 2.1E-17 3 15 15000 0 - 3
30 12 162 0 2.2E-22 3 18 145 0 7TA4E—-17 3 33 15000 0 - 3
by 378 1987 0 TIME=381 30 624 1541 0 TIME=3.22 30 | 1113 126733 0 TIME=284.28 20
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Method TEQNU TEQLU NLEQ1S
Problem | NIT NFV NFG F ITERM | NIT NFV NFG F ITERM | NIT NFV NFG F IERR
1 10 11 10 2.2E-23 3 30 43 7 3.3E—-19 3 14 16 14 6.0E—12 0
2 9 10 9 1.1E-23 3 17 34 6 1.4E-17 3 6 8 6 1.55409 3
3 3 4 3 2.4E-20 3 ) 6 1 8.6E—17 3 4 5 4 2.4E-14 0
4 6 15 6 4.1E-17 3 10 19 4 1.3E-17 3 7 10 7 0.00000 0
) 6 12 6 9.6E—18 3 9 15 3 8.4E—18 3 1 1 1 148.879 80
6 17 18 17 1.0E-17 3 22 23 4 1.6E-17 3 24 25 24 6.1E—-13 )
7 13 15 13 3.2E-20 3 25 32 5 2.0E-21 3 44 73 44 7.7E-11 0
8 13 21 13 5.6E—-27 3 21 32 7 1.5E-30 3 29 35 29 4.3E-10 0
9 13 21 13 4.0E-22 3 32 35 6 2.5E-22 3 25 26 25 9.4E-15 0
10 5 6 5 1.4E-26 3 9 10 2 2.0E-21 3 6 7 6 1.8E—-14 0
11 12 13 12 0.00000 3 16 17 3 1.2E-22 3 13 14 13 0.00000 0
12 18 19 18 1.3E-17 3 23 30 ) 9.9E—-17 3 25 26 25 6.9E—13 )
13 21 24 21 9.2E-17 3 27 30 6 4.5E—-17 3 1 1 1 30.8162 80
14 4 5 4 7.5E-21 3 8 9 2 6.1E—-22 3 5 6 5 2.4E-14 0
15 5 6 5 1.8E—-18 3 12 16 2 1.2E-18 3 6 7 6 3.7TE—-14 0
16 34 35 34 2.1E-21 3 22 46 16 9.8E-21 3 16 17 16 0.00000 0
17 14 20 14 1.1E-24 3 17 31 6 2.4E-21 3 16 18 16 5.2E—-13 0
18 32 33 32 1.1E-17 3 37 39 6 3.6E—-21 3 19 23 19 6.4E—11 0
19 2 3 2 3.8E—-17 3 2 3 1 7.0E-19 3 4 5 4 8.0E—16 0
20 13 17 13 8.6E—24 3 18 22 4 1.6E—-17 3 15 16 15 4.1E-12 0
21 12 13 12 2.0E-21 3 25 26 4 24E-17 3 17 18 17 1.3E-15 0
22 T 22 7 2.1E-20 3 14 29 4 2.0E-18 3 9 11 9 3.3E—-14 0
23 10 11 10 1.7E-18 3 21 38 7 8.0E—-21 3 ) 7 5 1.29373 3
24 6 7 6 8.0E—24 3 20 33 ) 7.3E-18 3 7 8 7 1.3E-14 0
25 9 10 9 1.5E-24 3 29 30 ) 2.1E-18 3 ) 6 5 1.9E-14 0
26 12 13 12 1.8E-20 3 41 42 6 9.8E—-17 3 8 9 8 5.4E-11 0
27 10 11 10 1.1E-20 3 40 43 8 2.6E—18 3 9 10 9 3.2E-12 0
28 10 20 10 2.3E-17 3 27T 47 9 4.6E—19 3 8 9 8 1.7E-14 0
29 7 8 7 6.3E—-17 3 14 43 7 1.3E-17 3 14 15 14 3.6E—11 5
30 11 16 11 2.3E-17 3 23 40 9 9.8E—19 3 9 10 9 1.1E-14 0
by 344 439 344 TIME=3.31 30 616 863 160 TIME = 3.50 30 371 442 371 TIME =254.25 26




Appendix

A Description of subroutines

In this section we describe easy-to-use subroutines PLISU, PLISS, PLIPU, PLIPS, PNETU,
PNETS, PNEDU, PNEDS, PNECU, PNECS, PSEDU, PSEDS, PSECU, PSECS, PSENU, PGADU, PGADS,
PGACU, PGACS, PMAXU, PSUMU, PEQNU, PEQLU, which can be called from the user’s program.
In the description of formal parameters we introduce a type of the argument denoted by
two letters. The first letter is either I for integer arguments or R for double-precision real
arguments. The second letter specifies whether the argument must have a value defined
on the entry to the subroutine (I), whether it is a value which will be returned (0), or both
(U), or whether it is an auxiliary value (A). Beside the formal parameters, we use a COMMON
/STAT/ block containing statistical information. This block, used in each subroutine, has

the form

COMMON /STAT/ NRES,NDEC,NIN,NIT,NFV,NFG,NFH

whose elements have the following meanings:

Element Type Significance

NRES
NDEC
NIN
NIT
NFV
NFG
NFH

I0 Number of restarts.

I0 Number of matrix decompositions.

I0 Number of inner iterations (for solving linear systems).
I0 Number of iterations.

I0 Number of function evaluations.

I0 Number of gradient evaluations.

I0 Number of Hessian evaluations.

Easy-to-use subroutines are called by the following statements:

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

PLISU(NF,X,IPAR,RPAR,F,GMAX,IPRNT,ITERM)
PLISS(NF,X,IX,XL,XU,IPAR,RPAR,F,GMAX,IPRNT,ITERM)
PLIPU(NF,X,IPAR,RPAR,F,GMAX,IPRNT, ITERM)
PLIPS(NF,X,IX,XL,XU,IPAR,RPAR,F,GMAX,IPRNT, ITERM)
PNETU(NF,X,IPAR,RPAR,F,GMAX,IPRNT, ITERM)

PNETS (NF,X,IX,XL,XU,IPAR,RPAR,F,GMAX,IPRNT, ITERM)
PNEDU(NF,MH,X,IH, JH,IPAR,RPAR,F,GMAX,ISPAS,IPRNT, ITERM)

PNEDS (NF,MH,X,IX,XL,XU,IH,JH,IPAR,RPAR,F,GMAX,ISPAS,IPRNT, ITERM)
PNECU(NF,MH,X,IH, JH,IPAR,RPAR,F,GMAX,ISPAS,IPRNT, ITERM)

PNECS (NF,MH,X,IX,XL,XU,IH,JH,IPAR,RPAR,F,GMAX,ISPAS,IPRNT, ITERM)
PSEDU(NF,NA,MA,X,AF,IAG, JAG,IPAR,RPAR,F,GMAX, ISPAS, IPRNT, ITERM)

PSEDS (NF,NA,MA,X,IX,XL,XU,AF,IAG,JAG,IPAR,RPAR,F,GMAX,ISPAS, IPRNT, ITERM)

PSECU(NF,NA,MA,X,AF,TAG,JAG,IPAR,RPAR,F,GMAX, ISPAS,IPRNT, ITERM)

PSECS (NF,NA,MA,X,IX,XL,XU,AF,IAG,JAG,IPAR,RPAR,F,GMAX,ISPAS,IPRNT, ITERM)

PSENU(NF,NA,MA,X,AF,TAG, JAG,IPAR,RPAR,F,GMAX, ISPAS,IPRNT, ITERM)

PGADU(NF,NA,MA,X,AF,IAG, JAG,IPAR,RPAR,F,GMAX, IDER, ISPAS,IPRNT, ITERM)
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CALL
CALL
CALL
CALL
CALL
CALL
CALL

PGADS (NF,NA,MA,X,IX,XL,XU,AF,IAG,JAG,IPAR,RPAR,F,GMAX, IDER, ISPAS, IPRNT, ITERM)
PGACU(NF,NA,MA,X,AF,TAG, JAG,IPAR,RPAR,F,GMAX, IDER, ISPAS,IPRNT, ITERM)

PGACS (NF,NA,MA,X,IX,XL,XU,AF,IAG,JAG,IPAR,RPAR,F,GMAX, IDER, ISPAS,IPRNT, ITERM)
PMAXU(NF,NA,MA,X,AF,TAG, JAG,IPAR,RPAR,F,GMAX, IEXT,ISPAS,IPRNT, ITERM)

PSUMU (NF,NA,MA,X,AF,IAG, JAG,IPAR,RPAR,F,GMAX, ISPAS, IPRNT, ITERM)
PEQNU(N,MA,X,AF,TAG,JAG,IPAR,RPAR,F,GMAX, IDER, ISPAS,IPRNT, ITERM)
PEQLU(N,MA,X,AF,IAG, JAG,IPAR,RPAR,F,GMAX,IDER,ISPAS,IPRNT, ITERM)

Their arguments have the following meanings:

Argument Type Significance

NF
NA
N

MH

MA

X(NF)

II  Number of variables of the objective function.
II  Number of partial functions.
II  Number of nonlinear equations and unknowns.

II  Number of nonzero elements in the upper part of the Hessian matrix. This
parameter is used as input only if ISPAS = 1 (it defines dimensions of arrays
IH and JH in this case).

II  Number of nonzero elements in the Jacobian matrix. This parameter is
used as input only if ISPAS = 1 (it defines dimensions of arrays IAG and
JAG in this case).

RU  On input, vector with the initial estimate to the solution. On output, the
approximation to the minimum.

IX(NF) II  Vector containing the box constraint types (significant only if box con-

straints are considered):

IX(I) =0:  the variable X(I) is unbounded,

IX(I) =1:  the lower bound X(I) > XL(I),

IX(I) =2 the upper bound X(I) < XU(I),

IX(I) =3:  the two-side bound XL(I) < X(I) < XU(I),

IX(I) =5:  the variable X(I) is fixed (given by its initial estimate).

XL (NF) RI  Vector with lower bounds for variables (significant only if box constraints

are considered).

XU(NF) RI  Vector with upper bounds for variables (significant only if box constraints

are considered).

IH(NIH) IU Row indices of the nonzero elements in the upper part of the Hessian matrix

(NIH = NF + MH) if ISPAS = 1. Indices in array JH of the diagonal elements
of the Hessian matrix (NIH = NF + 1) if ISPAS = 2.

JH(NJH) IU  Column indices of the nonzero elements in the upper part of the Hessian

matrix (NJH = NF + MH if ISPAS = 1 or NJH = MH if ISPAS = 2).

AF (NA) RO  Vector which contains values of partial functions.

IAG(NIAG) IU Row indices of nonzero elements of the Jacobian matrix (NIAG = NA + MA)

if ISPAS = 1. Indices in array JAG of the first elements in the rows of the
Jacobian matrix (NIAG = NA 4 1) if ISPAS = 2.

JAG(NJAG) TU  Column indices of nonzero elements of the Jacobian matrix (NJAG = NA + MA

if ISPAS = 1 or NJAG = MA if ISPAS = 2).

IPAR(7) IU Integer parameters (see Table 8).
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RPAR(9) RU  Real parameters (see Table 8).

F RO  Value of the objective function at the solution X.
GMAX RO  Maximum absolute value (lo, norm) of the gradient of the Lagrangian func-
tion.
IEXT II  The type of minimax:
IEXT < O: minimization of the maximum positive value,
IEXT = O: minimization of the maximum absolute value,
IEXT > O: minimization of the maximum negative value.
IDER II  Degree of analytically computed derivatives (0 or 1).
ISPAS II  Sparse structure of the Hessian or Jacobian matrix:

ISPAS = 1:  the coordinate form is used,
ISPAS = 2: the standard row compressed format is used.

IPRNT II  Print specification:

IPRNT = 0:  print is suppressed,

IPRNT = 1:  basic print of final results,

IPRNT = —1: extended print of final results,

IPRNT = 2:  basic print of intermediate and final results,
IPRNT = —2: extended print of intermediate and final results.

ITERM I0 Variable that indicates the cause of termination:

ITERM = 1:  if ||X — X0O|| was less than or equal to TOLX in two subsequent
iterations (X0 is the vector of variables in the previous itera-
tion),

ITERM = 2:  if |F — FO| was less than or equal to TOLF in two subsequent

iterations (FO is the function value in the previous iteration),
ITERM = 3:  if F is less than or equal to TOLB,

ITERM = 4:  if GMAX is less than or equal to TOLG,
ITERM = 6: if termination criterion was not satisfied, but the solution

is probably acceptable,
ITERM = 11: if NIT exceeded MIT,

ITERM = 12: if NFV exceeded MFV,
ITERM = 13: if NFG exceeded MFG,
ITERM < 0:  if the method failed.

Integer and real parameters IPAR and RPAR need not be defined by the user who is not
familiar with details of optimization methods. If we assign zeroes to these parameters, the
suitable default values are assumed. An advanced user can change these default values by his
knowledge-based options. The individual parameters, presented in Table 8, have the following
meanings:

Argument Type Significance

MIT II Maximum number of iterations; the choice MIT = 0 causes that the default
value (see Table 9) will be taken.

MFV II  Maximum number of function evaluations; the choice MFV = 0 causes that
the default value (see Table 9) will be taken.
MFG II  Maximum number of gradient evaluations; the choice MFG = 0 causes that

the default value (see Table 9) will be taken.
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Parameter | PLIS PLIP PNET PNED PNEC PSED PSEC PSEN PGAD PGAC PMAX PSUM PEQN PEQL
IPAR(1) MiT MIT MIT MIT MIT MIT MIT MIT MIT MIT MIT MIT MIT MIT
IPAR(2) MFV MFV MFV MFV MFV MFV MFV MFV MFV MFV MFV MFV MFV MFV
IPAR(3) - - MFG MFG MFG MFG MFG - MFG MFG MFG MFG - -
IPAR(4) |IEST IEST IEST IEST IEST IEST IEST IEST MEC MEC IEST IEST - -
IPAR(5) - MET MOS1 MOS MOS1 MET MET - MOS MOS1 MED MED MOS1 MOS1
IPAR(6) - - MOS2 - MOS2 - MOS2 MB - MOS2 - - MOS2 M0OS2
IPAR(T7) MF MF MF IFIL IFIL IFIL IFIL IFIL IFIL IFIL IFIL IFIL - MF
RPAR(1) |XMAX XMAX XMAX XMAX XMAX XMAX XMAX XMAX XMAX XMAX XMAX XMAX XMAX XMAX
RPAR(2) |TOLX TOLX TOLX TOLX TOLX TOLX TOLX TOLX TOLX TOLX TOLX TOLX TOLX TOLX
RPAR(3) |TOLF TOLF TOLF TOLF TOLF TOLF TOLF TOLF TOLF TOLF TOLF TOLF TOLF TOLF
RPAR(4) |TOLB TOLB TOLB TOLB TOLB TOLB TOLB TOLB TOLB TOLB TOLB TOLB TOLB TOLB
RPAR(5) |TOLG TOLG TOLG TOLG TOLG TOLG TOLG TOLG TOLG TOLG TOLG TOLG TOLG TOLG
RPAR(6) |FMIN FMIN FMIN FMIN FMIN FMIN FMIN FMIN FMIN FMIN FMIN FMIN - -
RPAR(7) - - - XDEL XDEL - - - XDEL XDEL - XDEL - -
RPAR(8) - - - - - - - ETA3 ETA ETA ETA4 - ETA2 ETA2
RPAR(9) - - - - - - - ETAS - - ETA5 ETAS - -

Table 8: Integer and real parameters
IEST II  Estimation of the minimum function value for the line search:
IEST = O: estimation is not used,
IEST = 1: lower bound FMIN is used as an estimation for the minimum
function value.
MEC II  Variable that determines the method of a second order correction:
MEC = 1: correction by the Marwil sparse variable metric update,
MEC = 2: correction by differences of gradients (discrete Newton cor-
rection),
MEC = 3: correction by the Griewank—Toint partitioned variable metric
update (symmetric rank-one).
The choice MEC = 0 causes that the default value MEC = 2 will be taken.
MED II  Variable that specifies the method used:
MED = 1: partitioned variable metric method,
MED = 2: safeguarded discrete Newton method.
The choice MED = 0 causes that the default value MED = 1 will be taken.
MET II  In PLIP: Variable that specifies the limited-memory method:

MET = 1:
MET = 2:

rank-one method,
rank-two method.

The choice MET = 0 causes that the default value MET = 2 will be taken.
In PSED,PSEC: Variable that specifies the variable metric update:

MET = 1: safeguarded BFGS method,

MET = 2: combination of the BFGS and the symmetric rank-one
method,

MET = 3: discrete Newton method.
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MOS

MOS1

MOS2

MB

MF

IFIL

XMAX

TOLX

TOLF

TOLB

II

II

II

II

II

II

RI

RI

RI

RI

The choice MET = 0 causes that the default value MET = 2 will be taken.

Method for computing the trust-region step:

MOS = 1: double dog-leg method of Dennis and Mei,

MOS = 2: method of More and Sorensen for obtaining optimum locally
constrained step.

The choice MOS = 0 causes that the default value MOS = 2 will be taken.

In PNET: Choice of restarts after constraint change:

MOS1 = 1: restarts are suppressed,
MOS1 = 2: restarts with steepest descent directions are used.

The choice MOS1 = 0 causes that the default value MOS1 = 1 will be taken.
In PNEC, PGAC: Method for computing trust-region step:

MOS1 = 1: Steihaug—Toint conjugate gradient method,
MOS1 = 2: shifted Steihaug—Toint method with five Lanczos steps,
MOS1 > 2: shifted Steihaug—Toint method with MOS1 Lanczos steps.

The choice MOS1 = 0 causes that the default value MOS1 = 2 will be taken.

In PEQN,PEQL: Variable that specifies the smoothing strategy for the CGS

method:
MOS1 = 1: smoothing is not used,

MOS1 = 2: single smoothing strategy is used,
M0S1 = 3: double smoothing strategy is used.

The choice MOS1 = 0 causes that the default value MOS1 = 3 will be taken.

Choice of preconditioning strategy:

M0S2 = 1: preconditioning is not used,

MOS2 = 2: preconditioning by the incomplete Gill-Murray decomposi-
tion (in PNET,PNEC,PSEC,PGAC) or incomplete LU decompo-
sition in PEQN,PEQL),

MOS2 = 3: preconditioning as in case M0S2; the preliminary solution of
the preconditioned system is accepted if it satisfies the ter-

mination criteria.
The choice MOS2 = 0 causes that the default values MOS2 = 1 in PNET,

MOS2 = 2 in PNEC,PSEC,PGAC or MOS2 = 3 in PEQN,PEQL will be taken.
Dimension of a bundle used in the line search; the choice MB = 0 causes
that the default value MB = 20 will be taken.

The number of limited-memory variable metric updates in every iteration;
the choice MF = 0 causes that the default values MF = 10 in PLIS,PLIP,PNET
or MF = 6 in PEQL will be taken.

Variable that specifies a relative size of the space reserved for fill-in; the
choice IFIL = 0 causes that the default value IFIL = 1 will be taken.
Maximum stepsize; the choice XMAX = 0 causes that the default value (see
Table 9) will be taken.

Tolerance for the change of the coordinate vector X; the choice TOLX = 0
causes that the default value (see Table 9) will be taken.

Tolerance for the change of function values; the choice TOLF = 0 causes
that the default value (see Table 9) will be taken.

Minimum acceptable function value; the choice TOLB = 0 causes that the
default value (see Table 9) will be taken.
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TOLG RI  Tolerance for the Lagrangian function gradient; the choice TOLG = 0 causes
that the default value (see Table 9) will be taken.

FMIN RI  Lower bound for the minimum function value. This value is not used if
IEST=0.

XDEL RI  Trust region step-size; the choice XDEL = 0 causes that a suitable default
value will be computed.

ETA RI  Parameter for switch between the Gauss-Newton method and variable
metric correction; the choice ETA = 0 causes that the default value
ETA = 1.5 - 10~* will be taken.

ETA2 RI Damping parameter for an incomplete LU preconditioner; the choice
ETA2 = 0 causes that the default value ETA2 = 0 will be taken.

ETA3 RI  Correction parameter; the choice ETA3 = 0 causes that the default value
ETA3 = 10~ "2 will be taken.

ETA4 RI  Coefficient for the barrier parameter decrease; the choice ETA4 = 0 causes
that the default value ETA4 = 0.85 will be taken.

ETA5 RI  In PSEN: Parameter for subgradient locality measure; the choice ETA5 = (

causes that the default value ETA5 = 10™!2 will be taken.
In PMAX,PSUM: Minimum permitted value of the barrier parameter; the

choice ETA5 = 0 causes that the default value ETA5 = 10~ !0 in PMAX and
ETA5 = 1078 in PSUM will be taken.

PLIS PNED PSED PGAD PEQL
Value PLIP PNET PNEC  PSEC PSEN PGAC PMAX PSUM PEQN

MIT | 9000 5000 5000 9000 20000 5000 10000 10000 1000
MFV | 9000 5000 5000 9000 20000 5000 10000 10000 1000
MFG | 9000 30000 10000 9000 20000 10000 20000 20000 10000
XMAX | 106 106 10% 106 106 10'® 106 10'6 106
TOLX | 10716 10~'¢ 1016 10716 10-'6 1076 10716 10716 1016
TOLF | 10~* 10~ 10~ 1074 107'2 10~ 107 107'2 1016
TOLB | 10716 10-%¢ 10716 10716 10-!2 1076 10716 10712 1016
TOLG | 10°¢ 10=¢ 10°¢ 10°¢ 10°% 10°¢ 10°¢ 10°¢ 107

Table 9: Default values

The subroutines PLISU,PLISS,PLIPU,PLIPS,PNETU,PNETS,PNEDU,PNEDS,PNECU,PNECS require
the user supplied subroutines 0BJ,DOBJ that define the objective function and its gradient and
have the form

SUBROUTINE O0BJ(NF,X,F)
SUBROUTINE DOBJ(NF,X,G)

The subroutines PSEDU, PSEDS, PSECU, PSECS, PSENU, PGADU, PGADS,PGACU,PGACS , PMAXU, PSUMU,
PEQNU,PEQLU require the user supplied subroutines FUN,DFUN that define particular functions
and their gradients and have the form

SUBROUTINE FUN(NF,KA,X,FA)
SUBROUTINE DFUN(NF,KA,X,GA)
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If IDER = 0, the subroutine DFUN can be empty. The arguments of the user supplied subroutines
have the following meanings:

Argument Type Significance

NF II  Number of variables, equations and unknowns.
KA II  Index of the partial function.

X(NF) RI  An estimate to the solution.

F RO  Value of the objective function at the point X.

FA RO  Value of the KA-th partial function at the point X.
G(NF) RO  Gradient of the objective function at the point X.

GA(NF) RO  Gradient of the KA-th smooth partial function (or an arbitrary subgradient
of the KA-th nonsmooth partial function) at the point X.

B Verification of subroutines

In this section we report the results obtained by using test programs TLISU, TLISS, TLIPU,
TLIPS, TNETU, TNETS, TNEDU, TNEDS, TNECU, TNECS, TSEDU, TSEDS, TSECU, TSECS, TSENU, TGADU,
TGADS, TGACU, TGACS, TMAXU, TSUMU, TEQNU, TEQLU, which serve for demonstration, verification
and testing of subroutines PLISU, PLISS, PLIPU, PLIPS, PNETU, PNETS, PNEDU, PNEDS, PNECU,
PNECS, PSEDU, PSEDS, PSECU, PSECS, PSENU, PGADU, PGADS, PGACU, PGACS, PMAXU, PSUMU, PEQNU,
PEQLU. These results are listed in the following tables (rows corresponding to individual test
problems contain the number of iterations NIT, the number of function evaluations NFV, the
number of gradient evaluations NFG, the final value of the objective function F, the value of
the termination criterion G, and the cause of termination ITERM). The last row of every table
contains the total number of NIT, NFV, NFG, and, moreover, for programs TNECU, TNECS, TSECU,
TSECS, TGACU, TGACS, TEQNU, TEQLU also the total number of conjugate gradient iterations NCG.
The total computational time in seconds is included. All computations reported were performed
on a Pentium PC computer, under the Windows XP system using the Digital Visual Fortran
(Version 6) compiler, in double-precision arithmetic.

The above test programs are based on test collections TEST14, TEST15, TEST18 described in
[21], which can be downloaded from www.cs.cas.cz/ luksan/test.html. The box constraints
are assumed in the form —1 < z; < 1, 1 < i < n. Subroutines for nonlinear equations were tested
by problems with 3000 equations and unknowns. Subroutines for nonsmooth unconstrained
optimization were tested by problems with 200 variables. The remaining subroutines were
tested by problems with 1000 variables.

39



Problem | NIT NFV  NFG F G ITERM
1 4988 55564 5554  0.963780013E—14 0.891E—-06 4
2 425 454 454 14.9944763 0.773E—05 2
3 74 78 78  0.655101686E—09 0.539E—06 4
4 103 112 112 269.499543 0.899E—06 4
b) 24 26 26 0.130639280E—11 0.671E—06 4
6 30 31 31 0.216102227E—-10 0.946E—06 4
7 38 43 43 335.137433 0.730E—06 4
8 29 33 33 761774.954 0.432E—03 2
9 13 16 16  316.436141 0.369E—06 4
10 1540 1582 1582 —124.630000 0.124E—-04 2
11 114 138 138  10.7765879 0.380E—06 4
12 248 267 267  982.273617 0.123E—-04 2
13 7 8 8 0.165734137E—12 0.453E—-06 4
14 10 12 12 0.128729169E—08 0.916E—06 4
15 2830 2929 2929  1.92401599 0.936E—-06 4
16 196 210 210 —427.404476 0.991E—-05 2
17 1007 1032 1032 —0.379921091E—01 0.876E—06 4
18 1449 1474 1474 —0.245741193E—-01 0.862E—06 4
19 1393 1431 1431  59.5986241 0.259E—05 2
20 2129 2191 2191 —1.00013520 0.908E—06 4
21 2120 2169 2169  2.13866377 0.927E—-06 4
22 1305 1346 1346  1.00000000 0.982E—-06 4
¥ 20072 21136 21136 TIME = 8.90

Table 10: Results obtained by program TLISU

Problem | NIT NFV NFG F G ITERM
1 5055 5595 5595  0.00000000 0.000E+00 3
2 2016 2289 2289  3926.45961 0.304E—04 2
3 95 106 106 0.217616100E-12 0.780E—06 4
4 58 64 64 269.522686 0.124E-05 2
5 24 26 26 0.130639280E-11 0.671E—06 4
6 30 31 31 0.216102227E-10 0.946E—06 4
7 31 35 35 337.722479 0.776E—06 4
8 50 58 58  761925.725 0.257E—03 2
9 504 506 506  428.056916 0.940E—07 4
10 1152 1211 1211 —82.0207503 0.176E—04 2
11 13 23 23 96517.2947 0.126E—08 4
12 79 88 88 4994.21410 0.325E-06 4
13 7 8 8  0.165734137E-12 0.453E—06 4
14 10 12 12 0.128729169E-08 0.916E—06 4
15 2830 2929 2929  1.92401599 0.936E—06 4
16 176 184 184 —427.391653 0.348E—04 2
17 1007 1032 1032 —0.379921091E-01 0.876E—06 4
18 1449 1474 1474 —0.245741193E-01 0.862E—06 4
19 1150 1183 1183  1654.94525 0.908E—05 2
20 2211 2274 2274 —1.00013520 0.886E—06 4
21 1280 1303 1303  2.41354873 0.997E—06 4
22 1562 1598 1598  1.00000000 0.786E—06 4
¥ 20789 22029 22029 TIME = 11.37

Table 11: Results obtained by program TLISS
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Problem | NIT NFV  NFG F G ITERM
1 5383 5417 5417  0.601022658E—-13 0.599E—06 4
2 530 557 557  3.57276719 0.124E—05 2
3 125 128 128 0.338270284E—12 0.518E—06 4
4 109 114 114 269.499543 0.669E—06 4
) 26 27 27 0.710072396E—11 0.951E—06 4
6 35 36 36 0.142942272E—-10 0.737TE—06 4
7 36 41 41 336.937181 0.956E—06 4
8 33 36 36 761774.954 0.192E—02 2
9 15 18 18 316.436141 0.264E—06 4
10 2003 2030 2030 —124.950000 0.116E—04 2
11 157 175 175 10.7765879 0.299E—-06 4
12 337 350 350  982.273617 0.145E—-04 2
13 9 10 10 0.230414406E—14 0.642E—07 4
14 8 10 10 0.128834241E—-08 0.977E—06 4
15 1226 1256 1256  1.92401599 0.970E—-06 4
16 237 246 246 —427.404476 0.501E—04 2
17 998 604 604 —0.379921091E—-01 0.908E—06 4
18 989 998 998 —0.245741193E—-01 0.975E—06 4
19 1261 1272 1272 59.5986241 0.410E—05 2
20 2045 2058 2058 —1.00013520 0.911E—-06 4
21 2175 2196 2196  2.13866377 0.996E—06 4
22 1261 1292 1292  1.00000000 0.927E—06 4
Y |18598 18871 18871 TIME = 8.82

Table 12: Results obtained by program TLIPU

Problem | NIT NFV  NFG F G ITERM
1 5263 5321 5321  0.530131995E—13 0.370E—05 2
2 2293 2447 2447  3930.43962 0.251E—04 2
3 127 132 132 0.210550150E—12 0.437E—06 4
4 00 72 T2 269.522686 0.794E—06 4
5 26 27 27 0.710072396E—11 0.951E—06 4
6 35 36 36 0.142042272E—10 0.737E—06 4
7 37 43 43 336.937181 0.133E—05 2
8 59 65 65 761925.725 0.399E—03 2
9 508 510 510  428.056916 0.776E—06 4
10 1253 1277 1277 —82.5400568 0.120E—04 2
11 13 19 19 96517.2947 0.150E—04 2
12 95 102 102  4994.21410 0.790E—04 2
13 9 10 10 0.230414406E—14 0.642E—07 4
14 8 10 10 0.128834241E—08 0.977E—06 4
15 1226 1256 1256  1.92401599 0.970E—06 4
16 227 228 228 —427.391653 0.952E—05 2
17 598 604 604 —0.379921091E—01 0.908E—06 4
18 989 998 998 —0.245741193E—01 0.975E—06 4
19 1367 1383 1383  1654.94525 0.105E—04 2
20 2274 2303 2303 —1.00013520 0.798E—06 4
21 1196 1211 1211  2.41354873 0.975E—06 4
22 1361 1381 1381  1.00000000 0.962E—06 4
by 19034 19435 19435 TIME = 9.42

Table 13: Results obtained by program TLIPS
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Problem | NIT NFV  NFG F G ITERM
1 1481 1656 26037  0.117631766E—15 0.354E—06 4
2 132 387 7945  0.153382199E—15 0.988E—-08 4
3 19 20 110 0.421204156E—09 0.353E—06 4
4 19 20 230 269.499543 0.779E-07 4
) 12 13 49  0.465606821E—-11 0.364E—06 4
6 13 14 76 0.366783327TE—11 0.404E—06 4
7 9 10 37 336.937181 0.248E—-06 4
8 11 12 58  761774.954 0.155E—-07 4
9 7 11 28  316.436141 0.158E—07 4
10 75 153 3213 —133.610000 0.777E-08 4
11 33 45 181  10.7765879 0.414E-07 4
12 23 30 457  982.273617 0.591E—-08 4
13 7 8 16 0.533593908E—15 0.327TE—-07 4
14 1 2 1005  0.120245125E—-08 0.879E—-07 4
15 14 15 4033  1.92401599 0.468E—-07 4
16 13 17 295 —427.404476 0.800E—08 4
17 4 b) 810 —0.379921091E—-01 0.537TE—06 4
18 4 5 1146 —0.245741193E—-01 0.425E—06 4
19 10 11 1986  59.5986241 0.423E—06 4
20 18 39 3051 —1.00013520 0.712E-07 4
21 7 8 4901  2.13866377 0.120E—08 4
22 595 145 4760  1.00000000 0.206E—-08 4
¥ 1967 2626 60424 TIME = 6.95

Table 14: Results obtained by program TNETU

Problem | NIT NFV  NFG F G ITERM
1 1611 1793 28524  0.00000000 0.000E+00 3
2 259 259 4418  3930.43956 0.230E-07 4
3 17 18 98  0.158634811E—08 0.954E—06 4
4 12 13 105  269.522686 0.103E-07 4
) 12 13 49  0.465606821E—-11 0.364E—06 4
6 13 14 76 0.366783327TE—11 0.404E—06 4
7 9 10 37 336.937181 0.248E—-06 4
8 40 41 248  761925.725 0.281E—06 4
9 553 555 2056  428.056916 0.850E—-07 4
10 112 137 2109 —84.1426617 0.732E—-06 4
11 7 8 17 96517.2947 0.112E—-11 4
12 133 136 2689  4994.21410 0.180E—06 4
13 7 8 16 0.533593908E—15 0.327TE—-07 4
14 1 2 1005 0.120245125E—-08 0.879E—-07 4
15 14 15 4033  1.92401599 0.468E—-07 4
16 12 13 294 —427.391653 0.594E—-06 4
17 4 b) 810 —0.379921091E—-01 0.537TE—06 4
18 4 5 1146 —0.245741193E—-01 0.425E—06 4
19 8 9 1902 1654.94525 0.690E—-07 4
20 16 25 3254 —1.00013520 0.836E—08 4
21 4 5 1211  2.41354873 0.135E—-06 4
22 52 137 4843  1.00000000 0.657E—06 4
Y [2900 3221 58940 TIME = 8.56

Table 15: Results

obtained by program TNETS
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Problem | NIT NFV NFG F G ITERM
1 1421 1425 5688  0.465831486E—25 0.418E—12 3
2 39 45 200  0.231406390E—14 0.350E—06 4
3 17 18 108  0.839782900E—-09 0.933E—06 4
4 24 25 100  269.499543 0.666E—10 4
b) 11 12 72 0.795109456E—10 0.473E—06 4
6 13 16 196  0.125944855E—10 0.815E—06 4
7 12 13 78  336.937181 0.300E—06 4
8 4 5 90  761774.954 0.216E—06 4
9 7 9 16 316.436141 0.146E—06 4
10 69 75 630 —135.290000 0.291E—-11 4
11 67 68 408 10.7765879 0.199E—-06 4
12 127 128 512 982.273617 0.495E—09 4
13 6 7 28  0.598998674E—10 0.693E—06 4
14 2 3 18 0.129013604E—08 0.792E—06 4
15 9 10 40 1.92401599 0.414E—-06 4
16 7 8 48 —427.404476 0.565E—-07 4
17 8 9 54 —0.379921091E-01 0.314E—-10 4
18 7 8 48 —0.245741193E—-01 0.218E—09 4
19 6 7 42 59.5986241 0.952E—08 4
20 14 15 90 —1.00013520 0.139E-08 4
21 11 12 72 2.13866377 0.331E—08 4
22 30 34 186  1.00000000 0.164E—-08 4
Y 1911 1952 8724 TIME = 3.00

Table 16: Results obtained by program TNEDU

Problem | NIT NFV  NFG F G ITERM
1 1420 1424 5680  0.00000000 0.000E+00 3
2 128 130 640  1980.05047 0.911E—-10 4
3 17 19 108  0.189355864E—09 0.340E—-06 4
4 10 12 44 269.522686 0.328E—09 4
) 13 15 84  0.391905635E—12 0.536E—06 4
6 13 14 196  0.136396633E—11 0.901E—06 4
7 30 32 186 336.920046 0.151E—05 2
8 37 38 684  761925.725 0.119E—-06 4
9 507 508 1016  428.056916 0.347E—13 4
10 109 127 990 —80.4518214 0.639E—-06 4
11 6 8 42 72291.4951 0.178E—08 4
12 519 520 2080  4994.21410 0.236E—06 4
13 3 4 16 0.660542076E—23 0.363E—11 3
14 2 3 18 0.129013604E—-08 0.792E—06 4
15 9 10 40  1.92401599 0.414E—-06 4
16 15 18 96 —427.391653 0.342E—-06 4
17 8 9 54 —0.379921091E—-01 0.314E—-10 4
18 7 8 48 —0.245741193E—-01 0.218E—-09 4
19 13 16 84  1654.94525 0.174E—08 4
20 14 15 90 —1.00013520 0.139E—-08 4
21 9 10 60  2.41354873 0.388E—-08 4
22 30 34 186 1.00000000 0.164E—-08 4
Y 2919 2974 12442 TIME = 6.56

Table 17: Results

obtained by program TNEDS
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Problem | NIT NFV NFG F G ITERM
1 1447 1450 5792  0.173249493E—16 0.138E—06 3
2 79 89 400  0.169144088E—20 0.382E—-09 3
3 18 19 114  0.180692317E—09 0.316E—06 4
4 24 25 100  269.499543 0.136E—08 4
b) 11 12 72 0.990922474E—10 0.511E—-06 4
6 17 21 252 0.166904871E—10 0.898E—06 4
7 11 12 72 336.937181 0.629E—06 4
8 6 11 126  761774.954 0.237E—05 2
9 7 8 16 316.436141 0.362E—08 4
10 70 74 639 —133.630000 0.221E-07 4
11 71 72 432 10.7765879 0.237E—-10 4
12 133 134 536  982.273617 0.203E-07 4
13 7 8 32 0.402530175E—-26 0.1563E—13 3
14 2 3 18 0.129028794E—08 0.820E—06 4
15 10 11 44 1.92401599 0.217E—-06 4
16 12 15 78 —427.404476 0.894E—-09 4
17 8 9 54 —0.379921091E-01 0.391E-09 4
18 8 9 54 —0.245741193E—-01 0.705E—10 4
19 7 8 48  59.5986241 0.106E—08 4
20 10 11 66 —1.00013520 0.277TE—-11 4
21 11 12 72 2.13866377 0.154E—-06 4
22 46 51 282  1.00000000 0.376E—08 4
Y 2015 2064 9299 NCG = 1182 TIME = 2.92

Table 18: Results obtained by program TNECU

Problem | NIT NFV  NFG F G ITERM
1 [1433 1438 5736  0.000000000 0.000E—00 3
2 218 241 1085 3918.57298 0.377E+01 4
3 17 19 108 0.191263604E—09 0.349E—06 4
4 10 12 44 269.522686 0.733E—08 4
5 13 15 84 0.309044401E—13 0.194E—-06 4
6 13 14 196  0.328095928E—12 0.411E—06 4
7 19 27 120 337.413070 0.438E—06 4
8 37 38 684 761925.725 0.536E—06 2
9 643 644 1288  428.056916 0.432E—-13 4
10 124 151 1125 —79.4726101 0.531E—07 4
11 6 8 42 72291.4951 0.188E—08 4
12 199 200 800  4994.21410 0.238E—06 4
13 4 5 20 0.650986116E—23 0.504E—11 3
14 2 3 18 0.120028794E—08 0.820E—06 4
15 10 11 44 1.92401599 0.217E—06 4
16 14 17 90 —427.391653 0.114E-12 4
17 8 9 54 —0.379921091E—01 0.391E—09 4
18 8 9 54 —0.245741193E—01 0.705E—10 4
19 13 16 84  1654.94525 0.155E—08 4
20 10 11 66 —1.00013520 0277E—11 4
21 9 10 60 2.41354873 0.517E—06 4
22 46 51 282 1.00000000 0.376E—08 4
¥ 2900 2989 12304 NCG = 1877 TIME = 6.17

Table 19: Results

obtained by program TNECS

44



Problem | NIT NFV NFG F G ITERM
1 2654 3627 3627  0.794789730E—16 0.213E—06 3
2 105 179 179  83.3161404 0.498E—-06 4
3 40 45 45 0.267007684E—-12 0.823E—06 4
4 37 45 45 269.499543 0.605E—06 4
b) 16 17 17 0.106026711E—11 0.728E—06 4
6 38 40 40  0.546961387E—11 0.882E—06 4
7 22 26 26 335.252624 0.105E—06 4
8 26 40 40 761774.954 0.295E—04 2
9 193 202 202 316.436141 0.155E—05 2
10 227 258 258 —125.810000 0.351E—-04 2
11 100 127 127  10.7765879 0.566E—06 4
12 28 29 29  982.273617 0.102E—06 4
13 1 2 2 0.00000000 0.000E+00 3
14 25 28 28  0.104289352E—08 0.927E—06 4
15 8 15 15 1.92401599 0.482E-07 4
16 25 35 35 —427.404476 0.130E—-06 4
17 15 17 17 —0.379921091E—01 0.141E—-06 4
18 5 11 11 —0.245741193E—01 0.311E—-07 4
19 19 23 23 59.5986241 0.466E—06 4
20 37 97 97 —1.00013520 0.212E-08 4
21 37 40 40  2.13866377 0.767E—06 4
22 55 211 211  1.00000000 0.610E—-07 4
Y 3713 5114 5114 TIME = 4.27

Table 20: Results obtained by program TSEDU

Problem | NIT NFV NFG F G ITERM
1 [2591 3322 3322 0.00000000 0.000E+00 3
2 344 347 347 35.1211309 0.107E—06 4
3 39 43 43 0.441691821E—12 0.425E—06 4
4 21 22 22 269.522686 0.105E—06 4
5 16 17 17 0.783032535E—11 0.279E—06 4
6 32 33 33 0.959526458E—11 0.801E—06 4
7 19 21 21 337.722479 0.24TE—06 4
8 52 56 56 761925.725 0.780E—04 2
9 1001 1003 1003  428.056916 0.192E—06 4
10 191 222 222 —86.7038382 0.225E—05 2
11 13 18 18  72291.4951 0.285E—08 4
12 228 235 235 499421410 0.304E—06 4
13 1 2 2 0.00000000 0.000E+00 3
14 25 28 28 0.104289352E—08 0.927E—06 4
15 8 15 15  1.92401599 0.534E—07 4
16 21 22 22 —427.391653 0.759E—06 4
17 15 17 17 —0.379921091E—01 0.299E—06 4
18 5 10 10 —0.245741193E—01 0.193E—07 4
19 20 25 25 1654.94525 0.351E—06 4
20 78 130 130 —1.00013520 0.196E—06 4
21 27 31 31 2.41354873 0.202E—06 4
22 52190 190  1.00000000 0.418E—06 4
b 4799 5809 5809 TIME = 7.68

Table 21: Results obtained by program TSEDS
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Problem | NIT NFV NFG F G ITERM
1 2606 3566 3566  0.650526028E—17 0.969E—07 3
2 108 177 177  111.363179 0.853E—05 2
3 40 45 45 0.267007684E—-12 0.823E—06 4
4 37 45 45 269.499543 0.605E—06 4
b) 16 17 17 0.106026711E—11 0.728E—06 4
6 38 40 40  0.546961387E—11 0.882E—06 4
7 26 31 31 335.252624 0.315E—06 4
8 25 39 39  761774.954 0.149E—-03 2
9 191 210 210 316.436141 0.115E—-05 2
10 233 264 264 —121.691827 0.190E—04 2
11 113 144 144  10.7765879 0.649E—-07 4
12 28 29 29  982.273617 0.103E—06 4
13 1 2 2 0.00000000 0.000E+00 3
14 25 28 28  0.104289348E—08 0.927E—06 4
15 27 41 41 1.92401599 0.668E—-07 4
16 25 35 35 —427.404476 0.263E—06 4
17 15 17 17 —0.379921091E—01 0.141E—-06 4
18 8 12 12 —0.245741193E—01 0.358E—11 4
19 19 23 23 59.5986241 0.466E—06 4
20 42 74 74 —1.00013520 0.965E—-09 4
21 37 40 40  2.13866377 0.767E—06 4
22 48 192 192  1.00000000 0.107E—06 4
Y |3708 5071 5071  NCG=48642  TIME = 7.63

Table 22: Results obtained by program TSECU

Problem | NIT NFV NFG F G ITERM
1 [2598 3347 3347  0.00000000 0.000E+00 3
2 352 361 361  35.1211309 0.853E—05 2
3 39 43 43 0.441691822E—12 0.425E—06 4
4 21 22 22 269.522686 0.105E—06 4
5 16 17 17 0.783032535E—11 0.279E—06 4
6 32 33 33 0.959526458E—11 0.801E—06 4
7 19 21 21 337.722479 0.162E—05 2
8 46 49 49 761925.725 0.792E—04 2
9 1001 1003 1003  428.056916 0.348E—08 4
10 | 203 233 233 —86.7188428 0.288E—04 2
11 21 38 38 72291.4951 0.135E—10 4
12 223 230 230  4994.21410 0.303E—06 4
13 1 2 2 0.00000000 0.000E+00 3
14 25 28 28 0.104289348E—08 0.927E—06 4
15 17 27 27 1.92401599 0.553E—07 4
16 21 22 22 —427.391653 0.759E—06 4
17 15 17 17 —0.379921091E—01 0.299E—06 4
18 8 12 12 —0.245741193E—01 0.358E—11 4
19 20 25 25 1654.94525 0.351E—06 4
20 33 46 46 —1.00013520 0.959E—10 4
21 27 31 31 2.41354873 0.202E—06 4
22 51 185 185  1.00000000 0.834E—06 4
Y 4789 5792 5792 NCG = 15187 TIME = 6.32

Table 23: Results

obtained by program TSECS
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Problem NIT NFV NFG F G ITERM
1 3124 3134 3134 0.287703261E—08 0.582E—-08 4
2 286 287 287 0.379499216E—-08 0.203E—06 2
3 71 71 71 0.233196848E—-09 0.100E—-07 4
4 40 40 40 126.863549 0.699E—-08 4
5 282 282 282 0.732927514E—-07 0.400E—08 4
6 344 344 344 0.836329152E—08 0.326E—-08 4
7 286 287 287 2391.16999 0.673E—-04 2
8 610 611 611 0.317244739E—-05 0.548E—-08 4
9 2514 2516 2516 552.380551 0.448E—-08 4
10 907 907 907 131.888476 0.579E—08 4
11 269 271 271 0.173668302E—09 0.266E—08 4
12 1805 1810 1810 621.128947 0.906E—02 2
13 680 681 681 2940.50943 0.140E-03 2
14 370 370 370 112.314954 0.622E—08 4
15 364 364 364 36.0935676 0.986E—08 4
16 1004 1004 1004 13.2000000 0.904E—08 4
17 380 380 380 0.268534232E—01 0.871E—-09 4
18 15319 15321 15321 0.589970806E—08 0.925E—-08 4
19 3972 4056 4056 0.565862690E—08 0.887TE—08 4
20 774 988 988 0.406495193E—-08 0.468E—08 4
21 247 248 248 264.000000 0.364E—-03 2
22 1191 1192 1192 593.360762 0.145E—03 2
X 34839 35164 35164 TIME = 13.49

Table 24: Results obtained by program TSENU
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Problem | NIT NFV NFG F G ITERM
1 1377 1379 1379 0.697391982E—22 0.130E—09 3
9 41 46 46 0.216572157E—16 0.154E—06 3
3 11 12 14 0.136731713E—09 0.233E—06 4
4 13 16 21 134.749772 0.279E—06 4
5 4 5 7 0.111058357E—10 0.887E—06 4
6 6 7 13 0.742148235E—26 0.303E—12 3
7 10 12 23 60734.8551 0.648E—07 4
8 21 26 24 0.253357740E—08 0.800E—06 4
9 15 16 36 2216.45871 0.104E—10 4
10 12 18 21 191.511336 0.524E—07 4
11 |2587 2593 2649 0.647358980E—27 0.359E—12 3
12 16 20 23 19264.6341 0.513E—10 4
13 17 21 28 131234.018 0.784E—-08 4
14 5 8 18 108.517888 0.227TE—08 4
15 6 7 15 18.1763146 0.200E—06 4
16 15 21 40 2.51109677 0.724E—06 4
17 15 20 19 0.257973699E—16 0.275E—08 3
18 42 44 45 0.151517993E—24 0.122E—-10 3
19 15 16 23 0.354943701E—14 0.255E—06 4
20 26 27 29 0.378161520E—10 0.40TE—07 4
21 10 11 17 647.828517 0.773E—11 4
22 26 32 45 4486.97024 0.602E—07 4
Y 4290 4357 4535 TIME = 4.56

Table 25: Results obtained by program TGADU

Problem | NIT NFV NFG F G ITERM
1 1011 1013 1013 0.00000000 0.000E+00 3
2 260 273 508 1959.28649 0.439E—12 4
3 10 12 13 0.784354965E—09 0.868E—06 4
4 14 18 19 134.761343 0.827E—08 4
5 4 5 7 0.438081882E—11 0.697E—06 4
6 6 7 13 0.791460684E—17 0.934E—08 3
7 22 23 61 145814.000 0.000E+00 4
8 25 32 28 0.978141069E—06 0.782E—06 4
9 44 45 153 2220.17880 0.181E-09 4
10 12 19 21 191.511336 0.301E—07 4
11 3977 2992 2990 0.00000000 0.000E+00 3
12 29 30 50 67887.2385 0.438E—12 4
13 19 20 36 147906.000 0.000E+00 4
14 1 2 6 126.690556 0.000E+00 4
15 24 27 81 18.1763146 0.203E—10 4
16 46 50 135 3.59074140 0.470E—10 4
17 11 12 15 0.969524252E—21 0.171E—10 3
18 0 1 3 0.00000000 0.000E+00 3
19 26 30 34 0.202602070E—14 0.193E—06 4
20 929 930 2780 498.800124 0.359E—05 2
21 20 21 33 649.598077 0.280E—08 4
22 24 31 55 4488.96148 0.242E-07 4
Y |6514 5593 8054 TIME = 7.77

Table 26: Results obtained by program TGADS
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Problem | NIT NFV NFG F G ITERM
1 [1108 1110 1110 0.00000000 0.000E+00 3
2 624 640 649 66.4089431 0.283E—07 4
3 11 12 14 0.202412411E—09 0.210E—06 4
4 11 13 17 134.749772 0.592E—07 4
5 4 5 7 0.116836300E—10 0.908E—06 4
6 6 7 13 0.787821743E—26 0.311E—12 3
7 17 40 29 60734.8551 0.428E—05 6
8 22 25 25 0.127726626E—07 0.160E—06 4
9 13 15 38 2216.45871 0.846E—06 4
10 129 147 176 191.511336 0.104E—07 4
11 |3010 3016 3012 0.402368464E—24 0.902E—11 3
12 205 226 236 22287.9069 0.449E—08 4
13 123 132 152 131234.018 0.743E—-09 4
14 7 8 32 108.517888 0.148E—07 4
15 13 20 42 18.1763146 0.445E—05 2
16 14 15 35 251109677 0.103E—09 4
17 29 34 33 0.139780007E—09 0.238E—06 4
18 49 53 52 0.119511868E—21 0.344E—09 3
19 15 16 23 0.339085307E—13 0.788E—06 4
20 17 18 32 0.336618309E—11 0.137E—07 4
21 15 18 23 647.696136 0.262E—06 4
22 47 59 98 4486.97024 0.663E—08 4
Y |5480 5629 5848  NCG =8282  TIME = 5.01

Table 27: Results obtained by program TGACU

Problem | NIT NFV NFG F G ITERM
1 1028 1031 1030 0.00000000 0.000E+00 3
2 263 262 511 1959.28649 0.819E-10 4
3 10 12 13 0.814133878E—09 0.897E—06 4
4 11 14 17 134.761343 0.206E—10 4
5 4 5 7 0.438081882E—11 0.697E—06 4
6 6 7 13 0.791460667E—17 0.934E—08 3
7 15 16 42 145814.000 0.000E+00 4
8 17 18 20 0.201167216E—07 0.162E—06 4
9 54 55 203 2220.17880 0.614E-10 4
10 95 105 126 191.511336 0.527TE—06 4
11 | 4577 3591 3587 0.00000000 0.000E+00 3
12 49 50 84 67887.2385 0.351E—07 4
13 18 19 41 147906.000 0.000E+00 4
14 1 2 6 126.690556 0.000E+00 4
15 33 72 85 18.1763146 0.182E-04 6
16 8 12 29 3.59074140 0.542E—06 4
17 25 29 29 0.716457302E—10 0.922E—07 4
18 0 1 3 0.00000000 0.000E+00 3
19 28 32 36 0.209831733E—13 0.620E—06 4
20 937 938 2806 498.800124 0.572E—-12 4
21 21 22 34 649.598077 0.324E—08 4
22 44 51 89 4488.96148 0.645E—10 4
> [7244 6344 8811  NCG= 11206  TIME = 6.56

Table 28: Results obtained by program TGACS
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Problem | NIT NFV NFG c G ITERM
1 53 66 54 0.260681654E—14 0.120E—-07 4
2 107 160 108  0.502441303E—12 0.262E—06 4
3 33 41 34 0.535439934E—-08 0.814E—06 4
4 o1 93 592 0.540217976 0.383E—-06 4
b) 23 24 24 0.132910215E—08 0.482E—-06 4
6 46 92 47 0.216701250E—08 0.436E—06 4
7 48 113 49 0.260162540 0.430E—-06 4
8 21 58 22 282.380956 0.806E—06 4
9 59 146 60  0.185849706 0.287E—06 4
10 159 215 160 —0.251638288 0.250E—-06 4
11 70 96 71 0.538829394E—01 0.139E—-07 4
12 136 245 137  0.941962422 0.207E—06 4
13 2 4 3 0.456380111E—19 0.304E—-11 3
14 5 6 6 0.162409086E—08 0.671E—06 4
15 116 120 117  0.199003538E—01 0.436E—06 4
16 110 214 111 —0.388943896E—02 0.518E—05 2
17 33 49 34 —0.110417781E—-06 0.764E—06 4
18 62 7 63  0.744234285E—-09 0.611E-07 4
19 9 23 10 42.6746811 0.373E—09 4
20 25 32 26 —0.497512435E—-02 0.422E—-06 4
21 16 23 17 0.298487756E—01 0.595E—06 4
22 32 82 33 0.577532726E—-02 0.972E—-07 4
Y 1216 1939 1238 TIME = 0.75

Table 29: Results obtained by program TMAXU
Problem | NIT NFV NFG c G ITERM
1 337 355 338 0.193178806E—-13 0.254E—-05 3
2 127 151 128 0.120336380E—12 0.424E—-05 3
3 25 28 26 0.383710546E—09 0.331E—06 4
4 67 77T 68 126.863549 0.358E—-02 2
) 6 7 7 0.494049246E—14 0.666E—07 3
6 13 17 14 0.663150090E—13 0.141E—06 3
7 73 108 74 2391.16999 0.209E+00 2
8 241 243 242 0.383133726E—07 0.708E—06 4
9 209 251 209 552.682636 0.267TE+01  —6
10 84 106 85 131.888475 0.242E—-05 2
11 732 751 733 0.799693645E—12 0.581E—-05 3
12 203 237 204 612.723020 0.601E—-04 2
13 90 111 91 2940.50941 0.245E—-03 2
14 84 107 85 112.314955 0.480E—05 2
15 39 64 40 36.0935678 0.163E-01 2
16 67 108 67 13.2000005 0.139E-03 6
17 337 344 338 0.100472795E—-13 0.167E—06 3
18 3637 3794 3638 0.199840144E—14 0.419E—-09 3
19 23 24 24 0.938360500E—12 0.217E—-04 3
20 22 44 22 0.121058719E—11 0.398E—05 6
21 65 90 66 262.921649 0.108E—-05 2
22 608 627 609 593.367735 0.525E—-02 2

> | 7080 7644 7108 TIME = 2.80

Table 30: Results obtained by program TSUMU
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Problem |NIT NFV NFG F G ITERM
1 10 41 0 0.224531E—-22 0.168207E-07 3
2 9 46 0 0.106897E—22 0.163517E—-06 3
3 3 19 0 0.333989E—-19 0.223053E-06 3
4 7 23 0 0.348196E—17 0.177085E—-02 3
5 1263 0 0.117206E—16 0.694210E—06 3
6 17 52 0 0.110919E—-16 0.167579E—-11 3
7 13 41 0 0.339913E—-19 0.457009E—-03 3
8 13 73 0 0.125748E—25 0.193922E—-04 3
9 13 99 0 0.432936E—21 0.201706E—03 3
10 5 41 0 0.803846E—25 0.415983E—-03 3
11 12 37 0 0.189327TE—25 0.423583E—-05 3
12 18 55 0 0.129272E—-16 0.713317E—-13 3
13 18 39 0 0.105290E—16 0.341327TE—-13 3
14 4 13 0 0.774783E—20 0.441968E—-05 3
15 5 36 0 0.182567E—17 0.471251E—-03 3
16 53 319 0 0.462169E—-17 0.153957 3
17 14 48 0 0.449140E—22 0.105525E—-03 3
18 26 79 0 0.977445E—16 0.245792E-01 3
19 2 7 0 0.309324E—-21 0.370062E—-09 3
20 13 43 0 0.428279E—-20 0.203421E-07 3
21 12 37 0 0.200623E—20 0.255404E—-10 3
22 7 50 0 0.195350E—-19 0.106707TE—05 3
23 29 262 0 0.390327E—17 0.200697E—-10 3
24 6 31 0 0.822526E—23 0.812457E—-09 3
25 9 46 0 0.147127E-23 0.395357E—09 3
26 12 61 0 0.608837E—17 0.420862E—07 3
27 10 51 0 0.275078E—20 0.121824E-06 3
28 10 60 0 0.229532E—16 0.213811E-05 3
29 4 53 0 0.124549E—-19 0.130673E—-05 3
30 12162 0 0.222959E-21 0.107876E—07 3
X 378 1987 0 NCG = 1543 TIME = 3.81

Table 31: Results obtained by program TEQNU
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Problem |NIT NFV NFG F G ITERM
1 30 64 0 0.326079E—18 0.154142E-03 3
2 17 57 0 0.720058E—19 0.261551E—-07 3
3 5 11 0 0.861220E—16 0.366389E—03 3
4 11 19 0 0.115060E—18 0.358897E—-01 3
5 20 56 0 0.335602E—16 0.121910E—06 3
6 22 31 0 0.167377E—16 0.898624E—-08 3
7 25 42 0 0.137004E—20 0.185851E—-05 3
8 21 60 0 0.496243E—-28 0.183782E-07 3
9 32 71 0 0.220876E—21 0.800603E—05 3
10 9 24 0 0.202316E—20 0.162996E—-03 3
11 16 23 0 0.116022E—-21 0.130018E—-02 3
12 23 40 0 0.861690E—16 0.190460E-08 3
13 24 32 0 0.234892E—16 0.204525E—-08 3
14 8§ 13 0 0.596974E—21 0.811563E—-05 3
15 1228 0 0.124901E-17 0.305897 3
16 22 78 0 0.984840E—20 0.125407E-03 3
17 17 43 0 0.130235E—20 0.154659E—-04 3
18 46 61 0 0.224793E—-17 0.116353E-01 3
19 2 5 0 0.704403E—-18 0.221630E—06 3
20 18 30 0 0.158787E—16 0.312477TE—03 3
21 25 34 0 0.233925E—16 0.135133E—-05 3
22 14 45 0 0.189862E—-17 0.128826E—-01 3
23 23 106 0 0.194742E—18 0.550497E-08 3
24 20 53 0 0.737500E—17 0.611156E—-08 3
25 29 50 0 0.208794E—17 0.413643E—-08 3
26 36 67 0 0.132055E—17 0.481013E-08 3
27 40 75 0 0.659356E—17 0.862034E—-08 3
28 27 83 0 0.461856E—18 0.268680E—-08 3
29 12 95 0 0.206962E—16 0.754042E—-08 3
30 18 145 0 0.740533E—16 0.167985E—-07 3
X 624 1541 0 ©NCG=1332 TIME = 3.22

Table 32: Results obtained by program TEQLU
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