DIRECT Version 2.0
User Guide

J. M. Gablonsky
North Carolina State University
Department of Mathematics
Center for Research in Scientific Computation

Box 8205
Raleigh, NC 27695 - 8205

April 18, 2001

DIRECT v2.0 User Guide 1

Contents
1 Introduction to DIRECT 1
1.1 Problem description. 1
2 Using DIRECT 2
2.1 What is included in the package 2
2.2 Calling DIRECT o v it e i et 3
2.3 Sample main program 7
3 A short overview of the DIRECT algorithm and our modifica-
tions 11
3.1 Dividing the domain L L. 12
3.1.1 Dividing of a hypercube 12
3.1.2 Dividing of a hyperrectangle 12
3.2 Potentially optimal hyperrectangles 14
3.3 The DIRECT algorithm 14
3.4 Our modification to the DIRECT algorithm 16
3.5 Extensions to the DIRECT algorithm. 16
4 The Test Problems 20
4.1 Elementary functions 20
4.1.1 Constant functiono 20
4.1.2 Linear function L. 20
4.1.3 Quadratic function 20
4.2 Example for hidden constraints 20
421 Gomez #3 [11]o 21
4.3 Test functions described in Jones et.al. [15] 21
4.3.1 Shekel’s family (S5,S7,910) [7] 22
4.3.2 Hartman’s family (H3, H6) [7] 22
4.3.3 Branin function (BR) [7] 22
4.3.4 Goldstein and Price function (GP) [7] 24
4.3.5 Six-hump camelback function (C6) [16] 24
4.3.6 Two-dimensional Shubert function (SH) [16] 25
4.4 Main features of the Test Functions 25

4.5

Numerical results 27

DIRECT v2.0 User Guide 1

Preface

This document is a revision of the 1998 guide [8] to Version 1 of our imple-
mentation of DIRECT. The major changes in the code are

e inclusion of the original DIRECT algorithm as described by Jones [15],
e extension of the algorithm to handle hidden constraints,
e and a parallel version both with PVM and MPI calls.

The code and documentation can be found at the following WWW-
address :

http://www4.ncsu.edu/eos/users/c/ctkelley /www /optimization_codes.html

The primary contact for DIRECT is

J. M. Gablonsky

Department of Mathematics

Center for Research in Scientific Computations
North Carolina State University

Raleigh, NC 27695-8205
jmgablon@unity.ncsu.edu

Electronic mail is preferred.

This project was supported by National Science Foundation grants #DMS-
9700569, #DMS-9714811, and #DMS-0070641, and an allocation from the
North Carolina Supercomputing Center.

Owen Esslinger and Alton Patrick contributed to the parallel version of
the code and the test programs.

DIRECT v2.0 User Guide 1

1 Introduction to DIRECT

This user guide covers an implementation of both the original DIRECT algo-
rithm and our modification, which we called DIRECT-1. DIRECT is a method
to solve global bound constraint optimization problems and was originally
developed by Jones et.al. [15]. It has been used in many industrial applica-
tions [1, 2, 4, 5, 6, 14]. We will only briefly describe our modifications to
DIRECT and how we extended it to handle problems with hidden constraints
and point to [9, 10] for further information.

After a short introduction in Section 1 we describe in Section 2 what is
included in the package and how to use our implementation. Section 3 then
gives a short explanation of the algorithm and our modifications. Finally
Section 4 describes several test functions and reports some numerical results.

1.1 Problem description

DIRECT was developed to solve problems of the following form:

Problem 1 (P') Let a,b € RN, Q ={z € RY 1 a; < 2y < b}, and f: Q —
RY be Lipschitz continuous with constant v. Find x4y € Q such that

fopt - f(xopt) S f* + €, (1)
where € 1s a given small positive constant.

Our extension also solve more difficult problems of the following form:

Problem 2 (P") Let B C Q2 and f : B — R be Lipschitz continuous with
constant y. Let f* be

f* = min f(z).

rzeB
Find xop € B such that

fopt = f@op) < [*+ €, (2)
where € is a giwven small positive constant.

If B is not given analytically, we say that the problem has hidden con-
straints. Problems with hidden constraints often occur in so called “black-
box” optimization problems, where the objective function is given by a com-
puter program. Note that problems of kind P” and P’ are the same if B = ().

DIRECT v2.0 User Guide 2

2 Using DIRECT

2.1 What is included in the package

The code and documentation can be found at the following WWW-address :
http://wwwd.ncsu.edu/eos/users/c/ctkelley /www /optimization_codes.html

Once you have the file DIRECTv2.0.3.tar.gz, do the following in an UNIX
environment:

unix> gunzip DIRECTv2.0.3.tar.gz
unix> tar -xf DIRECTv2.0.3.tar

If you use a computing environment other than UNIX, you may need to use
other programs to uncompress the files. Once you have uncompressed the
file, you will have a subdirectory called direct containing the following files:

DIRect.f The main routine.

DIRserial.f Special routines for serial version of DIRECT.
DIRparallel.f Special routines for parallel version of DIRECT.
DIRsubrout.f Subroutines used in DIRECT.

main.f Sample program for the serial version of DIRECT. This sample pro-
gram optimizes the test functions described in Section 4.

mainparallel.f Sample program for parallel version of DIRECT.
myfunc.f Sample test functions.

DIRmpi.f Routines for parallel version of DIRECT using MPL.
DIRpvm.f Routines for parallel version of DIRECT using PVM.
makefile Makefile for sample programs (both serial and parallel).

mpi_test.cmd File to run MPI version of parallel code on the IBM SP /2
super computer.

DIRECT v2.0 User Guide 3

pvm_test.cmd File to run PVM version of parallel code on the IBM SP /2
super computer.

userguide.ps This document.
To see if everything works, do the following:
unix> cd direct
unix> make
unix> TestDIRect

The sample program should solve one of the examples described below in
Section 4.

Included in this package is the serial version of DIRECT as well as parallel
versions both for the MPI and the PVM parallel programming standards.
We used PVM 3.4 calls in the PVM version, and MPI 1.1 calls for the MPI
version. We have tested both the PVM and MPI versions on the IBM SP/2
supercomputer at the North Carolina Supercomputer Center (NCSC). The
files DIRmpi.f and DIRpuvm.f contain interface routines to MPI and PVM,
respectively, and were written by Alton Patrick.

2.2 Calling DIRECT

In this section we describe the calling sequence for DIRECT and explain the ar-
guments following the format as in the user guide for IFFCO by Choi et.al. [3].
Finally, we provide the format for subroutines which the user must supply.

e Calling sequence
Direct(fen, x, n, eps, maxf, maxT, fmin, 1, u, algmethod, Ierror, logfile,
fglobal, fglper, volper, sigmaper, iidata, iisize, ddata, idsize, cdata,
icsize)

e Arguments
The arguments are listed in the order they appear in the calling se-
quence.

— On Entry

DIRECT v2.0 User Guide 4

fcn — is the argument containing the name of the user-supplied
subroutine that returns values for the function to be mini-
mized. fen must be declared EXTERNAL in the calling
program.

n — Integer. It is the dimension of the problem. If n > 64 the
parameter mazor in the variable list at the beginning of file
DIRect.f must be set to a larger value. mazor is a parameter
used to dimension the work arrays used in DIRECT.

eps — Double-Precision. It ensures sufficient decrease in function
value when a new potentially optimal interval is chosen. It is
normally set to 1074, although lower values should be tried if
the results of the optimization are unsatisfactory.

maxf — Integer. It is an approximate upper bound on the maxi-
mum number of function evaluations. This is only an approxi-
mate upper boundary, because the DIRECT algorithm will fin-
ish the division of all potentially optimal hyperrectangles. If
it is set to a value higher than 90000, change the parameter
Mazfunc at the beginning of file DIRect.f. Mazfunc is a pa-
rameter used to set the dimension of the work arrays used in
DIRECT.

maxT — Integer. It is the maximum number of iterations. DIRECT
will stop before it finishes all iterations when the maximum
number of function evaluations is reached earlier. If it is set
to a value higher than 600, change the parameter Mazdeep
at the beginning of file DIRect.f. Maxdeep is used to set the
dimension of the work arrays used in DIRECT.

1 — Double-Precision array of length n. It defines the lower bounds
for the n independent variables. The hypercube defined by
the constraints on the variables is mapped to the unit hyper-
cube in DIRECT. DIRECT performs all calculations on points
within the unit cube. The final solution is mapped back to
the original hypercube before being returned to the user.

u — Double-Precision array of length n. It defines the upper
bounds for the n independent variables.

algmethod — Integer. It defines which method to use. The
user can either use the original method as described by Jones
et.al. [15] (algmethod = 0) or use our modification (algmethod

DIRECT v2.0 User Guide)

= 1). See section 3.

logfile — File-Handle for the logfile. DIRECT expects this file to
be opened and closed by the user outside of DIRECT. We
moved this to the outside so the user can add extra informa-
tions to this file before and after the call to DIRECT.

fglobal — Double-Precision. Function value of the global opti-
mum. If this value is not known (that is, we solve a real
problem, not a test problem) set this value to —10'% (or any
other very large negative number) and fglper (see below) to
0.0.

fglper — Double-Precision. Terminate the optimization when the
percent error satisfies

fmin — fglobal

100
max(1, | fglobal|)

< fglper.

volper — Terminate the optimization once the volume of a hy-
perrectangle S with f(c(S)) = fumin is small. By small we
mean that the volume of S is less than volper percent of the
volume of the original hyperrectangle.

sigmaper — Terminate the optimization when the measure of the
hyperrectangle S with f(c(S)) = fuin is less then sigmaper.

iidata — Integer array of length ézsize. This array is passed to the
function to be optimized and can be used to transfer data to
this function. The contents are not changed by DIRECT.

iisize — Integer. Size of array data.

ddata — Double Precision array of length idsize. See iidata.
idsize — Integer. Size of array ddata.

cdata — Character array of length icsize. See iidata.

icsize — Integer. Size of array ddata.

— On Return

x — Double Precision array of length n. It is the final point ob-
tained in the optimization process. It should be a good ap-
proximation to the global minimum for the function in the
hypercube.

fmin — Double Precision. It is the value of the function at z.

DIRECT v2.0 User Guide 6

Ierror — Integer. If lerror is negative, a fatal error has occurred.
The values of Ierror are as follows :
Fatal errors :

-1 u(i) <= (i) for some i.
-2 mazxf is too large. Increase mazfunc.
-3 Initialization in DIRpreprc failed.

-4 Error in DIRSamplepoints, that is there was an error in
the creation of the sample points.

-5 Error in DIRSamplef, that is an error occurred while the
function was sampled.

-6 Maximum number of levels has been reached. Increase
mazdeep.

Successful termination :
1 Number of function evaluations done is larger then mazf.
2 Number of iterations is equal to mazT.

3 The best function value found is within fglper of the (known)
global optimum, that is

fmin — fglobal

100
max(1, |fglobal|)

< fglper.

Note that this termination signal only occurs when the
global optimal value is known, that is, a test function is
optimized.

4 The volume of the hyperrectangle with the best function
value found is below volper percent of the volume of the
original hyperrectangle.

5 The measure of the hyperrectangle with the best function
value found is smaller then sigmaper.

e User-Supplied Functions and Subroutines

— The function evaluation subroutine
The name of this subroutine is supplied by the user and must be

declared EXTERNAL. The function should have the following
form (this is taken from the example in file myfunc.f):

DIRECT v2.0 User Guide 7

subroutine myfunc(x, n, flag, f, iidata, iisize,
+ ddata, idsize, cdata, icsize)

implicit none

integer n,flag,i

double precision x(n)

double precision f

INTEGER iisize, idsize, icsize
INTEGER iidata(iisize)

Double Precision ddata(idsize)
Character*40 cdata(icsize)

f = 100
do 100, i = 1,n
f=f+ (x(1)-.3)*x(x(i)-.3)
100 continue
flag = 0
end

Set flag to 1 if the function is not defined at point z. The arrays
tidata, ddata and cdata can be used to pass data to the function.
They are not modified by DIRECT.

— DIRInitSpecific
This function can be found in DIRserial.f and DIRparallel.f. You
can include whatever application-specific initializations you have
to do in this subroutine. Most of the time you will not need it.

2.3 Sample main program

We also included a test program in the package: main.f for serial computers;
mainparallel.f for parallel computers. The executables are called TestDIRect,
TestDIRectmpi and TestDIRectpvm. This program solves 13 test problems
which we describe in detail in Section 4. We also included a Matlab program
that runs all these test problems with both the original DIRECT algorithm
and our modification DIRECT-1. We use the following directories for this
program:

DIRECT v2.0 User Guide 8

direct/matlab Directory which contains the matlab program. The files
contained in this directory are
main.m The matlab program to run all test problems.
counting.m Read in the the results from the run.
setdirect.m Set the parameters for DIRECT.
setproblem.m Set which problem to solve.
writeDIRECT.m Write the initialization file for DIRECT.
writemain.m Write the initialization file for the main program.
fileoutput.m Write the results for all test problems into the file re-

sults.txt.

direct/ini Directory which contains the initialization files. The files con-
tained in this directory are

DIRECT.ini The file containing the parameters for DIRECT.
main.ini The file containing the parameters for the main program.

problems.ini The file containing the names of the initialization files
for the different problems.

direct /problem Directory which contains the initialization files for the dif-
ferent problems.

After running main.m, there will be the following extra files in the main
directory:

results.txt A file with a IXTgXtable listing the number of function evalua-
tions needed and the percent error (see Section 4.5) at the end of the
optimization both for DIRECT and DIRECT-1.

direct.out Log file containing information about the iterations. This file is
divided into five main parts, the first and last part are generated by
the user. The second part describes the parameters and some general
information. The third part shows the iteration history, and the fourth

part of the file gives a short summary. We now look at the structure
of this file.

User data — Data written by the main program.

DIRECT v2.0 User Guide 9

General information — This part first shows the version of DIRECT.

In the next line we output the string stored in cdata(1) as the
problem name. Following this we show the values of the parame-
ters passed to DIRECT, including the bounds on the variables. We
also print out if the original DIRECT algorithm or our modification
is used.

Iteration history — The middle part of this file contains the iteration

history. The first column contains the iteration in which DIRECT
found a smaller function value than the best one known so far.
The second column contains the number of function evaluations
done so far, and the last column contains the best function value
found. The last line of this part describes the reason why DIRECT
stopped.

Summary — In the final part of this file we write out the lowest func-

tion value found, the total number of function evaluations, and
how close the best function value DIRECT found is to the global
minimal value, if this value is known. Furthermore we give the
coordinates of the best point found and by how much these coor-
dinates differ from the upper and lower bounds.

User data — Additional data written by the main program.

Below we show an example for this file created by the sample program in-
cluded in the package:

User data

Example Program for DIRECT |

This program uses DIRECT to optimize |
testfunctions. Which testfunction is |
optimized and what parameters are used |
is controlled by the files in ini/. |
|

|

|

|

Owen Esslinger, Joerg Gablonsky,

Alton Patrick
04/15/2001

Name of ini-directory : ini/
Name of DIRect.ini file : DIRECT.ini

DIRECT v2.0 User Guide 10

Name of problemdata file : shekelb5.ini
Testproblem used : 5

General information

————————————————————————————————— Log file - ————"—"—"—"—"—"—-"—-—-—
DIRECT Version 2.0.3

Shekel-5 function

Problem Dimension n : 4

Eps value : 0.1000E-03
Maximum number of f-evaluations (maxf) : 20000
Maximum number of iterations (MaxT) : 6000

Value of f_global : -0.1015E+02
Global percentage wanted : 0.1000E-01
Volume percentage wanted : —-0.1000E+01
Measure percentage wanted : —-0.1000E+01

Epsilon is constant.
Jones original DIRECT algorithm is used.

Bounds on variable x 1 : 0.00000 <= xi <= 10.00000
Bounds on variable x 2 : 0.00000 <= xi <= 10.00000
Bounds on variable x 3 : 0.00000 <= xi <= 10.00000
Bounds on variable x 4 : 0.00000 <= xi <= 10.00000

Iteration history

Iteration # of f-eval. fmin
1 9 -0.5753514094
3 43 -0.6989272350
4 51 -1.0519854213
5 Y -6.8404676192
7 81 -7.4383120011
8 91 -8.1524902009
9 99 -9.0180871080
10 103 -10.0934485966
12 129 -10.1082368755

13 143 -10.1230718067

DIRECT v2.0 User Guide 11

14 151 -10.1376865940
15 155 -10.1523498373
DIRECT stopped: fmin within fglper of global minimum.

————————————————————————————————— Summary —----—------—————— s ———— e
Final function value -10.1523498

Number of function evaluations : 155

Final function value is within 0.00837 percent of global optimum.

Index Final solution x(i) - 1(i) u(i) - x(1)
1 3.9986283 3.9986283 6.0013717
2 3.9986283 3.9986283 6.0013717
3 3.9986283 3.9986283 6.0013717
4 3.9986283 3.9986283 6.0013717
User data
—————————————— Final result -—-————————-
DIRECT termination flag : 3
DIRECT minimal point 3.9986283 3.9986283 3.9986283 3.9986283
DIRECT minimal value -10.1523498

DIRECT number of f-eval : 155
Time needed : 0.3000E-01 seconds.

3 A short overview of the DIRECT algorithm
and our modifications

In this section we give a mathematical description of the original DIRECT
algorithm, which was developed by D. R. Jones, C. D. Perttunen and B.
E. Stuckman [15] in 1993, and our modifications to it. The name DIRECT is
derived from one of its main features, dividing rectangles. There are two main
ingredients to this algorithm. The first is how to divide the domain (Section
3.1), and the second ingredient is how to decide which hyperrectangles we
divide in the next iteration (Section 3.2).

DIRECT v2.0 User Guide 12

3.1 Dividing the domain

Division is based on N-dimensional trisection. Sections 3.1.1 and 3.1.2 de-
scribe how this division is done for a hypercube and a hyperrectangle , re-
spectively.

3.1.1 Dividing of a hypercube

Let ¢ be the center point of a hypercube. The algorithm evaluates the func-
tion at the points ¢ & de;, where § equals 1/3 of the side length of the cube
and e; is the i-th Euclidean base vector. DIRECT defines w; by

w; = min{ f(c + de;), f(c — de;) }.

The algorithm then divides the hypercube in the order given by the w;,
starting with the lowest w;. DIRECT divides the hypercube first perpendic-
ular to the the direction with the lowest w;. Then it divides the remaining
volume perpendicular to the direction of the second lowest w; and so on until
the hypercube is divided in all directions. This strategy puts ¢ in the center of
a hypercube with side length 6. Let b = arg min;—y _n{f(c+de;), f(c—0de;)}.
b will be the center of a hyperrectangle with one side with a length of 9, the
other N — 1 sides will have a length of 34.

Figure 1la shows an example of the division of a hypercube. Here

w; = min{5,8} =5
we = min{6,2} = 2.

Therefore we divide first perpendicular to the xs-axis, and then in the second
step the remaining rectangle is divided perpendicular to the x-axis.

3.1.2 Dividing of a hyperrectangle

In DIRECT a hyperrectangle is only divided along its longest sides, which
assures us that we get a decrease in the maximal side length of the hyper-
rectangle.

Figure 1b represents the next step in the algorithm. DIRECT will divide
the shaded area (We explain in Section 3.2 how we choose which hyperrect-
angles to divide). The second box in Figure 1b shows where DIRECT samples
the function, and the third box shows how the rectangle is only divided once.

DIRECT v2.0 User Guide

13
Oe6 Oe6
a o Os o Os Os o Os
O2 O2
Oe6 Oes Os6
b Os o oF Os o oF Os o oF
02 03 02 O6 03 02 O6
O6 07 O6 09 07 O6 09
C s ® Os8 Os ® Os8 Os o Os8
Os O3
03 02 O6 O3 |Q @20 Os 03 |Q[o| O
O4 O4
Figure 1:

Dividing of a hypercube.

DIRECT v2.0 User Guide 14

Figure 1c shows the third step in the algorithm for this example. In this
step DIRECT will divide two rectangles, which are shaded. One of them is a
square, therefore it is divided twice as described before. The larger area is
again a rectangle and gets divided once.

3.2 Potentially optimal hyperrectangles

This section describes the second main ingredient for the DIRECT algorithm,
how to decide which hyperrectangles to divide in the next iteration. DIRECT
divides all potentially optimal hyperrectangles as defined in definition 1.

Definition 1 Let € > 0 be a positive constant and let f,.;, be the current
best function value. A hyperrectangle j is said to be potentially optimal if
there exists some K > 0 such that

fle)) — Kd; < f(¢;) — Kd;, Vi, and

In this definition ¢; is the center of the hyperrectangle j, and d; is a
measure for this hyperrectangle. Jones et.al. [15] chose d; to be the distance
from the center of hyperrectangle 7 to its vertices. They divide all potentially
optimal hyperrectangles in every iteration, even if two of them have the same
measure and the same function value at the center.

3.3 The DIRECT algorithm

We give a formal description of the DIRECT algorithm in algorithm 1.

The first two steps in the algorithm are the initialization steps. The vari-
able m is a counter for the number of function evaluations done while ¢ is a
counter for the number of iterations. Unlike more traditional optimization
methods, there is no termination criteria based on the function for DIRECT.
Instead DIRECT stops after numit iterations or after num func function eval-
uations. Note that the limit on the number of function evaluations is not
strictly enforced. We only check for this condition after we have divided all
potentially optimal hyperrectangles in an iteration. This means we normally
do a few more function evaluations than num func.

Note that in algorithm 1 there are two possibilities of parallelism here.
These are the inner loop (steps 5 to 10) and the function evaluations inside

DIRECT v2.0 User Guide

15

Algorithm 1 DIRECT(a, b, f, €, numit, num func)

1: Normalize the search space to be the unit hypercube with center point

C1
2: Evaluate f(c1), foin = f(c1),t=0,m =1
3: while t < numit and m < numfunc do

4. Identify the set S of potentially optimal hyperrectangles

5. while S # () do

6: Take j € S

7 Sample new points, evaluate f at the new points and divide the
hyperrectangle with Divide

8: Update fin,m =m + Am

9: Set S =S5\{j}
10: end while

11: t=t+1

12: end while

the inner loop (step 8). In our parallel implementation only the inner loop

is parallelized.

Potentially optimal intervals are identified by DIRECT using the following

Lemma to reformulate Definition 1.

Lemma 1 Let € > 0 be a positive constant and let f,;, be the current best
function value. Let I be the set of all indices of all intervals existing. Let
Ilz{iEIZdi<dj},[2:{i612di>dj} andlgz{ZEIdZ:d]}

Interval j € I s potentially optimal if
f(e;) < flai), Vi € I,

there exists K > 0 such that
flei) = fle)

max ———= < f(gm'n

i€l d] — dz iEII2 dea
" fuin = f¢;) | _d f(e) = fe)
(e o) — Fle
€ S min J + J min) j 7 fmin%o,
| frnin] | fuin] i€ di — dj
or

The proof of this lemma can be found in [9].

(3)

(4)

(5)

(6)

DIRECT v2.0 User Guide 16

3.4 Our modification to the DIRECT algorithm

In our modification we use the length of the longest side of a hyperrectangle
as the measure d;. This reduces the number of different groups of hyper-
rectangles compared to using the distance from the center to a corner, and
makes the algorithm more biased towards local search.

The second modification we did was to divide at most one hyperrectangle
per group. That is, if there is more than one hyperrectangle with the same
measure, we divide only one of them, instead of all. This again can lead to an
improvement of the performance of the algorithm. Both these modifications
together result in DIRECT-1.

3.5 Extensions to the DIRECT algorithm

We also extended the algorithm to handle problems with hidden constraints.
That means we look at Problems P” where the subset B C €2 is not given
analytically. If no feasible point is found within the budget given to DIRECT
we allow it to continue until a feasible point is found and then reassign
the original budget. Through this strategy we assure that DIRECT does not
terminate without finding a feasible point.

The strategy we use was suggested by R. Carter [1]. We describe the
general idea before going into details.

For any infeasible midpoint, we expand its hyperrectangle by a factor of
two. If this larger hyperrectangle contains one or more feasible midpoints of
other hyperrectangles, find the smallest function value of these, f,;;,. Then
use foin + €|fmin| as a surrogate value. If no feasible midpoint is contained
in the larger hyperrectangle, mark the current point as really infeasible.

We will now describe this strategy in more details.

We extend DIRECT as shown in Algorithm 2 by adding a call to Repla-
celnf in line 3.5. In this method the actual replacement takes place.

In method Replacelnf, shown in Algorithm 3, we iterate over all hyper-
rectangles with infeasible midpoints. For each of these midpoints, we create
a new surrounding box by doubling the length of each side while keeping the
same center. Then we find fini0e, Which is the minimum value of all fea-
sible points calculated by DIRECT inside this expanded hyperrectangle . If
this minimum exists (that is, there is at least one feasible point in the larger
hyperrectangle) we assign fiinioc + €| fminioc| to the current infeasible point.
We used a value of € = 107 in our computations. Otherwise the infeasible

DIRECT v2.0 User Guide 17

Algorithm 2 DIRECT(a, b, f, €, numit, num func)
1: Normalize the search space to be the unit hypercube with center point
C1
Evaluate f(c1), foin = f(c1),t=0,m =1
while ¢ < numit and m < numfunc do
Identify the set S of potentially optimal hyperrectangles
while S # () do
Take j € S
Sample new points, evaluate f at the new points and divide the
hyper-rectangle with Divide
Update fin,m =m + Am
9: Set S =S5\{j}
10: end while
11: Use Replacelnf to check for infeasible points which are near feasible
points and to replace the value at these by the value of a nearby point.

1%

12: t=t+1
13: end while

point is marked really infeasible.

We assign the maximum value found so far, increased by 1, to really
infeasible points. Since we have to check each infeasible point in Replacelnf
(see below) there is no extra cost if the maximum increases.

We increase the replacement value to make sure that if there is another
hyperrectangle with the same measure, feasible midpoint, and the same func-
tion value (this could be one we used to calculate the minimum), the one with
feasible midpoint is divided first.

Figure 2 shows an example of this strategy. We show a close-up of the
area around an infeasible point P and its corresponding hyperrectangle. The
dotted rectangle is the enlarged rectangle around P. There are nine mid-
points of rectangles created by DIRECT contained in this enlarged rectangle;
three of them are infeasible. Note that we look at the closed rectangle, there-
fore the points on the boundary are also considered nearby. Therefore, we
only need to take the minimum over the other six feasible midpoints. This
value is given by 10; therefore we take 10 4 ¢|10| as the new value at P. If
we would not amplify the surrogate value, the rectangle with center P would
look (to DIRECT) the same as the rectangle with a function value of 10 at

DIRECT v2.0 User Guide 18

Algorithm 3 Replacelnf({c¢;}, {l;}, {fi})
Input :

e {¢;} - centers of hyperrectangles created by DIRECT, ¢; € RY.
e {I;} - side lengths of the hyperrectangles created by DIRECT, [; € R".

e {f;} - function values at centers of hyperrectangles created by DIRECT,
fi € R

Output :
e {f;} - updated function values.

1: for all ¢; infeasible do
2: Create larger hyperrectangle D around ;.
3: F'=min{min.cp fj,00}

4. if F < oo then

5: fi=F +107%|F|

6: else

7 mark f; really infeasible.

8: end if

9: end for

Figure 2: Example of an infeasible point and how its surrogate value is
calculated.

DIRECT v2.0 User Guide 19

Figure 3. Example of an infeasible point, whose value was replaced by the
value of a feasible point nearby, becoming completely infeasible.

the midpoint. Therefore, we would have to ensure that DIRECT chooses the
rectangle with feasible midpoint and not the one with midpoint P. We avoid
this problem by using the amplified value.

Note that this surrogate value at the midpoint can change in each outer
iteration. There are two reasons why this could happen.

e A new point inside the box with a lower function value than the one
assigned so far has been found.

e The hyperrectangle corresponding to the infeasible point was divided
by DIRECT. Through this division DIRECT has made the hyperrectangle
smaller and no more feasible point is nearby (that is in the area looked
at).

Figure 3 shows an example of this. On the left, we show a close-up
of the hyperrectangles and midpoints created by DIRECT before the call to
Replacelnf. We show the enlarged rectangle around P. There are eight
points inside this enlarged rectangle (including the boundary). Five of these
are feasible points; therefore, we assign the surrogate value of 10 + €|10| to
the point P.

On the right of Figure 3 we show the same area after DIRECT has divided
the rectangle corresponding to P. The two newly created rectangles have
infeasible midpoints. This time the enlarged rectangle around P does not
contain any feasible points (at least DIRECT has not found any). Therefore
P is now marked as really infeasible.

DIRECT v2.0 User Guide 20

4 The Test Problems

We first give short descriptions of all the test functions we looked at. Follow-
ing the descriptions we summarize the important features of the functions
and describe (shortly) our numerical results. These can be redone easily with
the package provided.

4.1 Elementary functions

The first three functions we look at are examples of constant, linear and
quadratic functions. Looking at the behavior of DIRECT for these functions
allows us to get a better understanding of DIRECT and shows the differences
between the original algorithm and our modification. The functions are

4.1.1 Constant function
f(z) =100, Q=][0,1]".

In the example program we set N = 2.
4.1.2 Linear function
N
f(z) =2z, + in, Q=10,1]".
i=2

In the example program we set N = 2. The optimal point z* = (0,...,0)T
has an optimal function value of f* = 0.

4.1.3 Quadratic function
fl@) =104 (z;—5.3)%, Q=1[0,10]".

In the example program we set N = 2. The optimal point z* = (5.3,...,5.3)"
has an optimal function value of f* = 10.

4.2 Example for hidden constraints

The following test function comes from Jones [14]. It was originally given in
Gomez et.al. [11].

DIRECT v2.0 User Guide 21

Figure 4: Contour plot of the Figure 5: Plot of the Gomez #
Gomez # 3 function. 3 function.

4.2.1 Gomez #3 [11]

4
flx) = (4 —2.12% + %) 2] + 1wy + 4(23 — 1)a3,

Q = [-1,1%
B = Qn{z € R? —sin(4rz,) + 2sin(272,) < 0}

We used this problem as if we did not know the nonlinear constraints.
Whenever the nonlinear constraint was not satisfied, we returned flag = 1.
The function has a minimum at 2* = (0.109, —0.623)” with a function value
of f* = —0.9711. In figure 4 we show a contour plot of this function. It is
clear that the domain of this function consists of several disconnected regions.
We show a plot of the function in figure 5.

4.3 Test functions described in Jones et.al. [15]

Jones et al. [15] describe results for their original implementation of DIRECT
on nine different test problems. The first seven problems were originally
given by Dixon and Szegd [7]. These problems have been widely used to
compare global optimization algorithms [7, 12, 13]. Problems eight and nine
come from Yao [16]. We now describe these test problems in more detail.

DIRECT v2.0 User Guide 22

Table 1: Parameters for the Shekel’s famﬂy of functions
T

a;
4.0 4.0 4.0 4.0
1.0 1.0 1.0 1.0
8.0 80 80 8.0
6.0 6.0 6.0 6.0
3.0 70 3.0 7.0
20 9.0 20 9.0
5.0 5.0 3.0 3.0
80 1.0 80 1.0
6.0 2.0 6.0 2.0

70 36 7.0 3.6

o
S

© 0|~ O U W N |
SIS IR RIOREoN SN R e

—_
e}

4.3.1 Shekel’s family (S5,57,5S10) [7]

m

Z r,a; €ERY ¢, >0,Vi=1,...,m,
(x —a;)T a;) + ¢’

i=1

Q = [0, 10",
Three instances of the Shekel function are used in the comparisons. Here

N =4,m = 5,7 and 10. The values of a; and ¢; are given in Table 1.

4.3.2 Hartman’s family (H3, H6) [7]

—Zciexp< Za” — Dij)),x,ai,pi eERY, ¢; >0,Vi=1,...,m,
i=1

Q=10,1]".

We will look at two instances of the Hartman function. The values of the
parameters and the dimensions of the problems are given in Table 2

4.3.3 Branin function (BR) [7]

5.1 5 1
flxy,22) = (x—Q—Exl-l— —z, — 6)? +10(1—§)cosx1+10,

Q =[—5,10] x [0,15].

DIRECT v2.0 User Guide

Table 2: Parameters for the Hartman’s family of functions

First case : N =3,m =4.

i a; Ci Pi
113, 10. 30.| 1. | 0.3689 0.1170 0.2673
2.1 10. 35.|1.2| 0.4699 0.4387 0.7470
313, 10. 30.| 1. | 0.1091 0.8732 0.5547
4 1.1 10. 35.|3.2]0.03815 0.5743 0.8828
Second case : N =6, m = 4.
7 a; C;
110. 3. 17. 3.5 1.7 8. | 1.
21.05 10. 17. .1 14 | 1.2
313 35 1.7 10. 17. 8. | 3.
4117. 8. .05 10. 14. | 3.2
i Pi
1]0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
210.2329 0.4135 0.8307 0.3736 0.1004 0.9991
310.2348 0.1451 0.3522 0.2883 0.3047 0.6650
41 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

23

DIRECT v2.0 User Guide 24

Branin function

350

Figure 6: Plot of the Branin function.

This function has three global minima. Figure 6 shows a plot of this function.

4.3.4 Goldstein and Price function (GP) [7]

fl@,m2) = [L+ (@1 + 22+ 1)%(19 — 142y + 327 — 1425 + 62122 + 323)]
[30 + (2z1 — 3w2)*(18 — 32z + 127 + 483, — 36x129 + 2723)] ,
Q=[-2,2]

The function has four local minima and one global minimum at z* = (0, —1)7
with f(z*) = 3. In figures 7 and 8 we show plots of this function. The first
figure shows the whole domain, while the second figure shows only the area
around the global minimum.

4.3.5 Six-hump camelback function (C6) [16]

flxy,20) = (4—2127 +27/3)a] + w129 + (—4 + 41323,
Q=[-3,3] x [-2,2].

DIRECT v2.0 User Guide 25

Goldstein and Price function

Figure 8: Plot of the Goldstein

Figure 7: Plot of the Goldstein and Price function around the
and Price function. global minimum.

The function has six minima, two of which are global. The global minima
are located at z* = (£0.0898,F0.7126)" and f(z*) = —1.0316. Figures 9
and 10 show plots of this function. Again, the first figure shows the whole
domain, while the second shows an enlargement around the global minima.

4.3.6 Two-dimensional Shubert function (SH) [16]

flay,zs) = (ZJCOS[(j+1)fU1+j]> (chos[(j+1)x2+jl>,

j=1 j=1

Q = [-10,10]%.

The function has 760 local minima, of which 18 are global. Figures 11 and
12 show two plots of this function. Again, the first figure shows the whole
domain, while the second shows an enlargement around one of the global
minima.

Table 3 summarizes the important features of the test problems used in
our numerical experiments.

4.4 Main features of the Test Functions

In table 3 we give the box constraints, the number of global minima and the
function values at the global minima for the test functions described above.

DIRECT v2.0 User Guide

Six-hump camelback function

Six-hump camelback function

O
‘g":’:%'z,m
090174522
G557
\ 4111114

i
%4
%

20:%
200050

77,0555
2555

Figure 10: Plot of the Six-
Figure 9: Plot of the Six-hump hump camelback function

camelback function. around the global minima.

Two-dimensional Shubert function

Two-dimensional Shubert function

A%
i
y

Y

o
NI \‘\\\ SNSRI
::‘33‘3‘:‘/'/;1/"\\‘\‘{‘\\\»‘ /”"‘\\\\\m::";lll'l*‘t“\\\“:"lh, N4
WA
M

A

M -0 -10

Figure 12: Plot of the two-
Figure 11: Plot of the two- dimensional Shubert function
dimensional Shubert function. around a global minimum.

26

DIRECT v2.0 User Guide 27

Table 3: Summary of the important features of the test functions.

Name N Q Global minima
number function value
1 Constant 2 [0, 1] 00 100
2 Linear 2 [0, 1]2 1 0
3 Quadratic 2 [0, 10]2 1 10
1 Gomez 3 2 —1, 1] 1 20.981243
5 Branin (BR) 2 [-5,10] x [0, 15] 3 0.398
6 Shekel-5 (S5) 4 [0, 10]* 1 -10.153
7 Shekel-7 (S7) 4 [0, 10]* 1 -10.403
8 Shekel-10 (S10) 4 0, 10]* 1 -10.536
9 Hartman-3 (H3) 3 0,1]3 1 -3.863
10 Hartman-6 (H6) 6 [0, 1] 1 -3.322
11 Goldprice (GP) 2 [—2, 2] 1 3.000
12 Sixhump (C6) 2 [-3,3] x [=2, 2] 2 “1.032
13 Shubert (SH) 2 [—10, 10]2 18 -186.831

4.5 Numerical results

Table 4 reports the results for DIRECT and DIRECT-1 using the termination
criteria from Jones et al. [15]. This termination criteria uses knowledge of
the global minimum value to terminate once the percentage error is small.
For this we first define the percentage error.

Let fgopu be the known global minimal function value and denote by fr,mn
the best function value found by DIRECT. We define the percentage error p
as

p { 10085700t o 0,
loofmzna fglobal =0.

Following Jones, we terminate the iteration once p is lower than 0.01. In
all runs we set € = 0.0001 for both the original implementation and our
implementation.

Although both methods can solve this problem, our modification consis-
tently requires fewer function evaluations, significantly fewer for problems
2 through 3 and 9 through 13. This means the algorithm terminated with
Ierror = 3.

DIRECT v2.0 User Guide 28

Table 4: Results for the test functions.

Problem DIRECT DIRECT-I
f.eval. P f.eval. P
1 Constant 9 0.00E4-00 7 0.00E4-00
2 Linear 475 0.76E-02 173 0.76E-02
3 Quadratic 139 0.29E-02 65 0.29E-02
4 Gomez 3 771 0.35E-03 745 0.35E-03
5 Branin 195 0.98E-03 159 0.98E-03
6 Shekel-5 155 0.84E-02 147 0.84E-02
7 Shekel-7 145 0.94E-02 141 0.94E-02
8 Shekel-10 145 0.97E-02 139 0.97E-02
9 Hartman 199 0.85E-02 111 0.85E-02
10 Hartman 571 0.89E-02 295 0.89E-02
11 Goldman-Price 191 0.30E-02 115 0.30E-02
12 Sixhump camel back 285 0.48E-03 191 0.48E-03
13 Shubert 2967 0.50E-02 2043 0.50E-02

These result show that DIRECT-1 should be used for lower dimensional
problems which do not have too many local and global minima.

References

[1] R. G. Carter. Private communications.

2] R.G. Carter, J.M. Gablonsky, A. Patrick, C.T. Kelley, and O.].
Esslinger. Algorithms for noisy problems in gas transmission pipeline
optimization. Technical Report CRSC-TR00-10, Center for Research in
Scientific Computation, North Carolina State University, May 2000.

3] T. D. Choi, P. Gilmore, O. J. Eslinger, C. T. Kelley, A. Patrick, and
J. M. Gablonsky. Iffco: Implicit Filtering for Constrained Optimization,
Version 2. Technical Report CRSC-TR99-23, Center for Research in Sci-
entific Computation, North Carolina State University, July 1999. avail-
able by anonymous ftp from math.ncsu.edu in pub/kelley /iffco/ug.ps.

[4] S. E. Cox, R.T. Haftka, C. A. Baker, B. Grossman, W. H. Mason, and
L. T. Watson. Global multidisciplinary optimization of a high speed

DIRECT v2.0 User Guide 29

(6]

8]

9]

[10]

[11]

[12]

[13]

civil transport. In Proc. Aerospace numerical Simulation Symposium
99, pages 23-28, Tokyo, Japan, June 16-18 1999.

S. E. Cox, R.T. Haftka, C. A. Baker, B. Grossman, W. H. Mason, and
L. T. Watson. Global optimization of a high speed civil transport config-
uration. In Proc. 3rd World Congress of Structural and Multidisciplinary
Optimization, Buffalo, NY, 1999.

Evin J. Cramer. Using approximate models for engineering design. In
Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Mul-
tidisciplinary Analysis and Optimization, pages 140-147, St. Louis, MO,
September 2-4 1998. ATAA-98-4716.

L.C.W. Dixon and G.P. Szego. The Global Optimisation Problem: An
Introduction. In L.C.W. Dixon and G.P. Szego, editors, Towards Global
Optimization 2, volume 2, pages 1-15. North-Holland Publishing Com-
pany, 1978.

J. M. Gablonsky. An implemention of the DIRECT Algorithm. Techni-
cal Report CRSC-TR98-29, Center for Research in Scientific Computa-
tion, North Carolina State University, August 1998.

J.M. Gablonsky. Modifications of the DIRECT Algorithm. PhD thesis,
North Carolina State University, 2001. Pending.

J.M. Gablonsky and C.T. Kelley. A locally-biased form of the DIRECT
algorithm. Technical Report CRSC-TR00-31, Center for Research in Sci-
entific Computation, North Carolina State University, December 2000.
To appear in Journal of Global Optimization.

S. Gomez and A. Levy. The tunneling method for solving the constrained
global optimization problem with several non-connected feasible regions.
In A. Dold and B. Eckmann, editors, Lecture Notes in Mathematics 909,
Nonconvex Optimization and Its Applications, pages 34-47. Springer-
Verlag, 1982.

W. Huyer and A. Neumaier. Global optimization by multilevel coordi-
nate search. J. Global Optim., 14(4):331-355, 1999.

E. Janka. Vergleich Stochastischer Verfahren zur Globalen Optimierung.
Diplomarbeit, Universitat Wien, 1999.

DIRECT v2.0 User Guide 30

[14] D. R. Jones. The DIRECT global optimization algorithm, 1999. To
appear in The Encyclopedia of Optimization.

[15] D. R. Jones, C. D. Perttunen, and B. E. Stuckmann. Lipschitzian opti-
mization without the lipschitz constant. Journal of Optimization Theory
and Applications, 79:157, October 1993.

[16] Yong Yao. Dynamic Tunneling Algorithm for Global Optimization.
IEEE Transactions on Systems, Man, and Cybernetics, 19(5), Septem-
ber / October 1989.

