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eThis do
ument is a revision of the 1998 guide [8℄ to Version 1 of our imple-mentation of DIRECT. The major 
hanges in the 
ode are� in
lusion of the original DIRECT algorithm as des
ribed by Jones [15℄,� extension of the algorithm to handle hidden 
onstraints,� and a parallel version both with PVM and MPI 
alls.The 
ode and do
umentation 
an be found at the following WWW-address :http://www4.n
su.edu/eos/users/
/
tkelley/www/optimization 
odes.htmlThe primary 
onta
t for DIRECT isJ. M. GablonskyDepartment of Mathemati
sCenter for Resear
h in S
ienti�
 ComputationsNorth Carolina State UniversityRaleigh, NC 27695-8205jmgablon�unity.n
su.eduEle
troni
 mail is preferred.This proje
t was supported by National S
ien
e Foundation grants #DMS-9700569, #DMS-9714811, and #DMS-0070641, and an allo
ation from theNorth Carolina Super
omputing Center.Owen Esslinger and Alton Patri
k 
ontributed to the parallel version ofthe 
ode and the test programs.



DIRECT v2.0 User Guide 11 Introdu
tion to DIRECTThis user guide 
overs an implementation of both the original DIRECT algo-rithm and our modi�
ation, whi
h we 
alled DIRECT-l. DIRECT is a methodto solve global bound 
onstraint optimization problems and was originallydeveloped by Jones et.al. [15℄. It has been used in many industrial appli
a-tions [1, 2, 4, 5, 6, 14℄. We will only brie
y des
ribe our modi�
ations toDIRECT and how we extended it to handle problems with hidden 
onstraintsand point to [9, 10℄ for further information.After a short introdu
tion in Se
tion 1 we des
ribe in Se
tion 2 what isin
luded in the pa
kage and how to use our implementation. Se
tion 3 thengives a short explanation of the algorithm and our modi�
ations. FinallySe
tion 4 des
ribes several test fun
tions and reports some numeri
al results.1.1 Problem des
riptionDIRECT was developed to solve problems of the following form:Problem 1 (P0) Let a; b 2 RN ;
 = fx 2 RN : ai � xi � big, and f : 
 !RN be Lips
hitz 
ontinuous with 
onstant 
. Find xopt 2 
 su
h thatfopt = f(xopt) � f � + �; (1)where � is a given small positive 
onstant.Our extension also solve more diÆ
ult problems of the following form:Problem 2 (P00) Let B � 
 and f : B ! R be Lips
hitz 
ontinuous with
onstant 
. Let f � be f � = minx2B f(x):Find xopt 2 B su
h that fopt = f(xopt) � f � + �; (2)where � is a given small positive 
onstant.If B is not given analyti
ally, we say that the problem has hidden 
on-straints. Problems with hidden 
onstraints often o

ur in so 
alled \bla
k-box" optimization problems, where the obje
tive fun
tion is given by a 
om-puter program. Note that problems of kind P00 and P0 are the same if B = 
.



DIRECT v2.0 User Guide 22 Using DIRECT2.1 What is in
luded in the pa
kageThe 
ode and do
umentation 
an be found at the following WWW-address :http://www4.n
su.edu/eos/users/
/
tkelley/www/optimization 
odes.htmlOn
e you have the �le DIRECTv2.0.3.tar.gz, do the following in an UNIXenvironment:unix> gunzip DIRECTv2.0.3.tar.gzunix> tar -xf DIRECTv2.0.3.tarIf you use a 
omputing environment other than UNIX, you may need to useother programs to un
ompress the �les. On
e you have un
ompressed the�le, you will have a subdire
tory 
alled dire
t 
ontaining the following �les:DIRe
t.f The main routine.DIRserial.f Spe
ial routines for serial version of DIRECT.DIRparallel.f Spe
ial routines for parallel version of DIRECT.DIRsubrout.f Subroutines used in DIRECT.main.f Sample program for the serial version of DIRECT. This sample pro-gram optimizes the test fun
tions des
ribed in Se
tion 4.mainparallel.f Sample program for parallel version of DIRECT.myfun
.f Sample test fun
tions.DIRmpi.f Routines for parallel version of DIRECT using MPI.DIRpvm.f Routines for parallel version of DIRECT using PVM.make�le Make�le for sample programs (both serial and parallel).mpi test.
md File to run MPI version of parallel 
ode on the IBM SP/2super 
omputer.
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md File to run PVM version of parallel 
ode on the IBM SP/2super 
omputer.userguide.ps This do
ument.To see if everything works, do the following:unix> 
d dire
tunix> makeunix> TestDIRe
tThe sample program should solve one of the examples des
ribed below inSe
tion 4.In
luded in this pa
kage is the serial version of DIRECT as well as parallelversions both for the MPI and the PVM parallel programming standards.We used PVM 3.4 
alls in the PVM version, and MPI 1.1 
alls for the MPIversion. We have tested both the PVM and MPI versions on the IBM SP/2super
omputer at the North Carolina Super
omputer Center (NCSC). The�les DIRmpi.f and DIRpvm.f 
ontain interfa
e routines to MPI and PVM,respe
tively, and were written by Alton Patri
k.2.2 Calling DIRECTIn this se
tion we des
ribe the 
alling sequen
e for DIRECT and explain the ar-guments following the format as in the user guide for IFFCO by Choi et.al. [3℄.Finally, we provide the format for subroutines whi
h the user must supply.� Calling sequen
eDire
t(f
n, x, n, eps, maxf, maxT, fmin, l, u, algmethod, Ierror, log�le,fglobal, fglper, volper, sigmaper, iidata, iisize, ddata, idsize, 
data,i
size)� ArgumentsThe arguments are listed in the order they appear in the 
alling se-quen
e.{ On Entry
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n { is the argument 
ontaining the name of the user-suppliedsubroutine that returns values for the fun
tion to be mini-mized. f
n must be de
lared EXTERNAL in the 
allingprogram.n { Integer. It is the dimension of the problem. If n > 64 theparameter maxor in the variable list at the beginning of �leDIRe
t.f must be set to a larger value. maxor is a parameterused to dimension the work arrays used in DIRECT.eps { Double-Pre
ision. It ensures suÆ
ient de
rease in fun
tionvalue when a new potentially optimal interval is 
hosen. It isnormally set to 10�4, although lower values should be tried ifthe results of the optimization are unsatisfa
tory.maxf { Integer. It is an approximate upper bound on the maxi-mum number of fun
tion evaluations. This is only an approxi-mate upper boundary, be
ause the DIRECT algorithm will �n-ish the division of all potentially optimal hyperre
tangles. Ifit is set to a value higher than 90000, 
hange the parameterMaxfun
 at the beginning of �le DIRe
t.f. Maxfun
 is a pa-rameter used to set the dimension of the work arrays used inDIRECT.maxT { Integer. It is the maximum number of iterations. DIRECTwill stop before it �nishes all iterations when the maximumnumber of fun
tion evaluations is rea
hed earlier. If it is setto a value higher than 600, 
hange the parameter Maxdeepat the beginning of �le DIRe
t.f. Maxdeep is used to set thedimension of the work arrays used in DIRECT.l { Double-Pre
ision array of length n. It de�nes the lower boundsfor the n independent variables. The hyper
ube de�ned bythe 
onstraints on the variables is mapped to the unit hyper-
ube in DIRECT. DIRECT performs all 
al
ulations on pointswithin the unit 
ube. The �nal solution is mapped ba
k tothe original hyper
ube before being returned to the user.u { Double-Pre
ision array of length n. It de�nes the upperbounds for the n independent variables.algmethod { Integer. It de�nes whi
h method to use. Theuser 
an either use the original method as des
ribed by Joneset.al. [15℄ (algmethod = 0) or use our modi�
ation (algmethod
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tion 3.log�le { File-Handle for the log�le. DIRECT expe
ts this �le tobe opened and 
losed by the user outside of DIRECT. Wemoved this to the outside so the user 
an add extra informa-tions to this �le before and after the 
all to DIRECT.fglobal { Double-Pre
ision. Fun
tion value of the global opti-mum. If this value is not known (that is, we solve a realproblem, not a test problem) set this value to �10100 (or anyother very large negative number) and fglper (see below) to0.0.fglper { Double-Pre
ision. Terminate the optimization when theper
ent error satis�es100 fmin� fglobalmax(1; jfglobalj) < fglper:volper { Terminate the optimization on
e the volume of a hy-perre
tangle S with f(
(S)) = fmin is small. By small wemean that the volume of S is less than volper per
ent of thevolume of the original hyperre
tangle.sigmaper { Terminate the optimization when the measure of thehyperre
tangle S with f(
(S)) = fmin is less then sigmaper.iidata { Integer array of length iisize. This array is passed to thefun
tion to be optimized and 
an be used to transfer data tothis fun
tion. The 
ontents are not 
hanged by DIRECT.iisize { Integer. Size of array iidata.ddata { Double Pre
ision array of length idsize. See iidata.idsize { Integer. Size of array ddata.
data { Chara
ter array of length i
size. See iidata.i
size { Integer. Size of array ddata.{ On Returnx { Double Pre
ision array of length n. It is the �nal point ob-tained in the optimization pro
ess. It should be a good ap-proximation to the global minimum for the fun
tion in thehyper
ube.fmin { Double Pre
ision. It is the value of the fun
tion at x.



DIRECT v2.0 User Guide 6Ierror { Integer. If Ierror is negative, a fatal error has o

urred.The values of Ierror are as follows :Fatal errors :-1 u(i) <= l(i) for some i.-2 maxf is too large. In
rease maxfun
.-3 Initialization in DIRprepr
 failed.-4 Error in DIRSamplepoints, that is there was an error inthe 
reation of the sample points.-5 Error in DIRSamplef, that is an error o

urred while thefun
tion was sampled.-6 Maximum number of levels has been rea
hed. In
reasemaxdeep.Su

essful termination :1 Number of fun
tion evaluations done is larger then maxf.2 Number of iterations is equal to maxT.3 The best fun
tion value found is within fglper of the (known)global optimum, that is100 fmin� fglobalmax(1; jfglobalj) < fglper:Note that this termination signal only o

urs when theglobal optimal value is known, that is, a test fun
tion isoptimized.4 The volume of the hyperre
tangle with the best fun
tionvalue found is below volper per
ent of the volume of theoriginal hyperre
tangle.5 The measure of the hyperre
tangle with the best fun
tionvalue found is smaller then sigmaper.� User-Supplied Fun
tions and Subroutines{ The fun
tion evaluation subroutineThe name of this subroutine is supplied by the user and must bede
lared EXTERNAL. The fun
tion should have the followingform (this is taken from the example in �le myfun
.f ):
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(x, n, flag, f, iidata, iisize,+ ddata, idsize, 
data, i
size)impli
it noneinteger n,flag,idouble pre
ision x(n)double pre
ision fINTEGER iisize, idsize, i
sizeINTEGER iidata(iisize)Double Pre
ision ddata(idsize)Chara
ter*40 
data(i
size)f = 100do 100, i = 1,nf = f + (x(i)-.3)*(x(i)-.3)100 
ontinueflag = 0endSet 
ag to 1 if the fun
tion is not de�ned at point x. The arraysiidata, ddata and 
data 
an be used to pass data to the fun
tion.They are not modi�ed by DIRECT.{ DIRInitSpe
i�
This fun
tion 
an be found in DIRserial.f and DIRparallel.f. You
an in
lude whatever appli
ation-spe
i�
 initializations you haveto do in this subroutine. Most of the time you will not need it.2.3 Sample main programWe also in
luded a test program in the pa
kage: main.f for serial 
omputers;mainparallel.f for parallel 
omputers. The exe
utables are 
alled TestDIRe
t,TestDIRe
tmpi and TestDIRe
tpvm. This program solves 13 test problemswhi
h we des
ribe in detail in Se
tion 4. We also in
luded a Matlab programthat runs all these test problems with both the original DIRECT algorithmand our modi�
ation DIRECT-l. We use the following dire
tories for thisprogram:
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t/matlab Dire
tory whi
h 
ontains the matlab program. The �les
ontained in this dire
tory aremain.m The matlab program to run all test problems.
ounting.m Read in the the results from the run.setdire
t.m Set the parameters for DIRECT.setproblem.m Set whi
h problem to solve.writeDIRECT.m Write the initialization �le for DIRECT.writemain.m Write the initialization �le for the main program.�leoutput.m Write the results for all test problems into the �le re-sults.txt.dire
t/ini Dire
tory whi
h 
ontains the initialization �les. The �les 
on-tained in this dire
tory areDIRECT.ini The �le 
ontaining the parameters for DIRECT.main.ini The �le 
ontaining the parameters for the main program.problems.ini The �le 
ontaining the names of the initialization �lesfor the di�erent problems.dire
t/problem Dire
tory whi
h 
ontains the initialization �les for the dif-ferent problems.After running main.m, there will be the following extra �les in the maindire
tory:results.txt A �le with a LATEXtable listing the number of fun
tion evalua-tions needed and the per
ent error (see Se
tion 4.5) at the end of theoptimization both for DIRECT and DIRECT-l.dire
t.out Log �le 
ontaining information about the iterations. This �le isdivided into �ve main parts, the �rst and last part are generated bythe user. The se
ond part des
ribes the parameters and some generalinformation. The third part shows the iteration history, and the fourthpart of the �le gives a short summary. We now look at the stru
tureof this �le.User data { Data written by the main program.



DIRECT v2.0 User Guide 9General information { This part �rst shows the version of DIRECT.In the next line we output the string stored in 
data(1) as theproblem name. Following this we show the values of the parame-ters passed to DIRECT, in
luding the bounds on the variables. Wealso print out if the original DIRECT algorithm or our modi�
ationis used.Iteration history { The middle part of this �le 
ontains the iterationhistory. The �rst 
olumn 
ontains the iteration in whi
h DIRECTfound a smaller fun
tion value than the best one known so far.The se
ond 
olumn 
ontains the number of fun
tion evaluationsdone so far, and the last 
olumn 
ontains the best fun
tion valuefound. The last line of this part des
ribes the reason why DIRECTstopped.Summary { In the �nal part of this �le we write out the lowest fun
-tion value found, the total number of fun
tion evaluations, andhow 
lose the best fun
tion value DIRECT found is to the globalminimal value, if this value is known. Furthermore we give the
oordinates of the best point found and by how mu
h these 
oor-dinates di�er from the upper and lower bounds.User data { Additional data written by the main program.Below we show an example for this �le 
reated by the sample program in-
luded in the pa
kage:User data+----------------------------------------+| Example Program for DIRECT || This program uses DIRECT to optimize || testfun
tions. Whi
h testfun
tion is || optimized and what parameters are used || is 
ontrolled by the files in ini/. || || Owen Esslinger, Joerg Gablonsky, || Alton Patri
k || 04/15/2001 |+----------------------------------------+Name of ini-dire
tory : ini/Name of DIRe
t.ini file : DIRECT.ini



DIRECT v2.0 User Guide 10Name of problemdata file : shekel5.iniTestproblem used : 5General information--------------------------------- Log file --------------------------------DIRECT Version 2.0.3Shekel-5 fun
tionProblem Dimension n : 4Eps value : 0.1000E-03Maximum number of f-evaluations (maxf) : 20000Maximum number of iterations (MaxT) : 6000Value of f_global : -0.1015E+02Global per
entage wanted : 0.1000E-01Volume per
entage wanted : -0.1000E+01Measure per
entage wanted : -0.1000E+01Epsilon is 
onstant.Jones original DIRECT algorithm is used.Bounds on variable x 1 : 0.00000 <= xi <= 10.00000Bounds on variable x 2 : 0.00000 <= xi <= 10.00000Bounds on variable x 3 : 0.00000 <= xi <= 10.00000Bounds on variable x 4 : 0.00000 <= xi <= 10.00000Iteration history---------------------------------------------------------------------------Iteration # of f-eval. fmin1 9 -0.57535140943 43 -0.69892723504 51 -1.05198542135 57 -6.84046761927 81 -7.43831200118 91 -8.15249020099 99 -9.018087108010 103 -10.093448596612 129 -10.108236875513 143 -10.1230718067



DIRECT v2.0 User Guide 1114 151 -10.137686594015 155 -10.1523498373DIRECT stopped: fmin within fglper of global minimum.Summary--------------------------------- Summary --------------------------------Final fun
tion value : -10.1523498Number of fun
tion evaluations : 155Final fun
tion value is within 0.00837 per
ent of global optimum.Index Final solution x(i) - l(i) u(i) - x(i)1 3.9986283 3.9986283 6.00137172 3.9986283 3.9986283 6.00137173 3.9986283 3.9986283 6.00137174 3.9986283 3.9986283 6.0013717---------------------------------------------------------------------------User data-------------- Final result ------------------DIRECT termination flag : 3DIRECT minimal point : 3.9986283 3.9986283 3.9986283 3.9986283DIRECT minimal value : -10.1523498DIRECT number of f-eval : 155Time needed : 0.3000E-01 se
onds.3 A short overview of the DIRECT algorithmand our modi�
ationsIn this se
tion we give a mathemati
al des
ription of the original DIRECTalgorithm, whi
h was developed by D. R. Jones, C. D. Perttunen and B.E. Stu
kman [15℄ in 1993, and our modi�
ations to it. The name DIRECT isderived from one of its main features, dividing re
tangles. There are two mainingredients to this algorithm. The �rst is how to divide the domain (Se
tion3.1), and the se
ond ingredient is how to de
ide whi
h hyperre
tangles wedivide in the next iteration (Se
tion 3.2).



DIRECT v2.0 User Guide 123.1 Dividing the domainDivision is based on N -dimensional trise
tion. Se
tions 3.1.1 and 3.1.2 de-s
ribe how this division is done for a hyper
ube and a hyperre
tangle , re-spe
tively.3.1.1 Dividing of a hyper
ubeLet 
 be the 
enter point of a hyper
ube. The algorithm evaluates the fun
-tion at the points 
 � Æei, where Æ equals 1=3 of the side length of the 
ubeand ei is the i-th Eu
lidean base ve
tor. DIRECT de�nes wi bywi = minff(
+ Æei); f(
� Æei)g:The algorithm then divides the hyper
ube in the order given by the wi,starting with the lowest wi. DIRECT divides the hyper
ube �rst perpendi
-ular to the the dire
tion with the lowest wi. Then it divides the remainingvolume perpendi
ular to the dire
tion of the se
ond lowest wi and so on untilthe hyper
ube is divided in all dire
tions. This strategy puts 
 in the 
enter ofa hyper
ube with side length Æ. Let b = argmini=1;:::;Nff(
+Æei); f(
�Æei)g.b will be the 
enter of a hyperre
tangle with one side with a length of Æ, theother N � 1 sides will have a length of 3Æ.Figure 1a shows an example of the division of a hyper
ube. Herew1 = minf5; 8g = 5w2 = minf6; 2g = 2:Therefore we divide �rst perpendi
ular to the x2-axis, and then in the se
ondstep the remaining re
tangle is divided perpendi
ular to the x1-axis.3.1.2 Dividing of a hyperre
tangleIn DIRECT a hyperre
tangle is only divided along its longest sides, whi
hassures us that we get a de
rease in the maximal side length of the hyper-re
tangle.Figure 1b represents the next step in the algorithm. DIRECT will dividethe shaded area (We explain in Se
tion 3.2 how we 
hoose whi
h hyperre
t-angles to divide). The se
ond box in Figure 1b shows where DIRECT samplesthe fun
tion, and the third box shows how the re
tangle is only divided on
e.
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Figure 1: Dividing of a hyper
ube.
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 shows the third step in the algorithm for this example. In thisstep DIRECT will divide two re
tangles, whi
h are shaded. One of them is asquare, therefore it is divided twi
e as des
ribed before. The larger area isagain a re
tangle and gets divided on
e.3.2 Potentially optimal hyperre
tanglesThis se
tion des
ribes the se
ond main ingredient for the DIRECT algorithm,how to de
ide whi
h hyperre
tangles to divide in the next iteration. DIRECTdivides all potentially optimal hyperre
tangles as de�ned in de�nition 1.De�nition 1 Let � > 0 be a positive 
onstant and let fmin be the 
urrentbest fun
tion value. A hyperre
tangle j is said to be potentially optimal ifthere exists some ~K > 0 su
h thatf(
j)� ~Kdj � f(
i)� ~Kdi; 8i; andf(
j)� ~Kdj � fmin � �jfminj:In this de�nition 
j is the 
enter of the hyperre
tangle j, and dj is ameasure for this hyperre
tangle. Jones et.al. [15℄ 
hose di to be the distan
efrom the 
enter of hyperre
tangle i to its verti
es. They divide all potentiallyoptimal hyperre
tangles in every iteration, even if two of them have the samemeasure and the same fun
tion value at the 
enter.3.3 The DIRECT algorithmWe give a formal des
ription of the DIRECT algorithm in algorithm 1.The �rst two steps in the algorithm are the initialization steps. The vari-able m is a 
ounter for the number of fun
tion evaluations done while t is a
ounter for the number of iterations. Unlike more traditional optimizationmethods, there is no termination 
riteria based on the fun
tion for DIRECT.Instead DIRECT stops after numit iterations or after numfun
 fun
tion eval-uations. Note that the limit on the number of fun
tion evaluations is notstri
tly enfor
ed. We only 
he
k for this 
ondition after we have divided allpotentially optimal hyperre
tangles in an iteration. This means we normallydo a few more fun
tion evaluations than numfun
.Note that in algorithm 1 there are two possibilities of parallelism here.These are the inner loop (steps 5 to 10) and the fun
tion evaluations inside



DIRECT v2.0 User Guide 15Algorithm 1 DIRECT(a; b; f; �; numit; numfun
)1: Normalize the sear
h spa
e to be the unit hyper
ube with 
enter point
12: Evaluate f(
1); fmin = f(
1); t = 0; m = 13: while t < numit and m < numfun
 do4: Identify the set S of potentially optimal hyperre
tangles5: while S 6= ; do6: Take j 2 S7: Sample new points, evaluate f at the new points and divide thehyperre
tangle with Divide8: Update fmin; m = m +�m9: Set S = S n fjg10: end while11: t = t+ 112: end whilethe inner loop (step 8). In our parallel implementation only the inner loopis parallelized.Potentially optimal intervals are identi�ed by DIRECT using the followingLemma to reformulate De�nition 1.Lemma 1 Let � > 0 be a positive 
onstant and let fmin be the 
urrent bestfun
tion value. Let I be the set of all indi
es of all intervals existing. LetI1 = fi 2 I : di < djg, I2 = fi 2 I : di > djg and I3 = fi 2 I : di = djg.Interval j 2 I is potentially optimal iff(
j) � f(
i); 8i 2 I3; (3)there exists ~K > 0 su
h thatmaxi2I1 f(
j)� f(
i)dj � di � ~K � mini2I2 f(
i)� f(
j)di � dj ; (4)and � � fmin � f(
j)jfminj + djjfminj mini2I2 f(
i)� f(
j)di � dj ; fmin 6= 0; (5)or f(
j) � dj mini2I2 f(
i)� f(
j)di � dj ; fmin = 0: (6)The proof of this lemma 
an be found in [9℄.
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ation to the DIRECT algorithmIn our modi�
ation we use the length of the longest side of a hyperre
tangleas the measure dj. This redu
es the number of di�erent groups of hyper-re
tangles 
ompared to using the distan
e from the 
enter to a 
orner, andmakes the algorithm more biased towards lo
al sear
h.The se
ond modi�
ation we did was to divide at most one hyperre
tangleper group. That is, if there is more than one hyperre
tangle with the samemeasure, we divide only one of them, instead of all. This again 
an lead to animprovement of the performan
e of the algorithm. Both these modi�
ationstogether result in DIRECT-l.3.5 Extensions to the DIRECT algorithmWe also extended the algorithm to handle problems with hidden 
onstraints.That means we look at Problems P00 where the subset B � 
 is not givenanalyti
ally. If no feasible point is found within the budget given to DIRECTwe allow it to 
ontinue until a feasible point is found and then reassignthe original budget. Through this strategy we assure that DIRECT does notterminate without �nding a feasible point.The strategy we use was suggested by R. Carter [1℄. We des
ribe thegeneral idea before going into details.For any infeasible midpoint, we expand its hyperre
tangle by a fa
tor oftwo. If this larger hyperre
tangle 
ontains one or more feasible midpoints ofother hyperre
tangles, �nd the smallest fun
tion value of these, fmin. Thenuse fmin + �jfminj as a surrogate value. If no feasible midpoint is 
ontainedin the larger hyperre
tangle, mark the 
urrent point as really infeasible.We will now des
ribe this strategy in more details.We extend DIRECT as shown in Algorithm 2 by adding a 
all to Repla-
eInf in line 3.5. In this method the a
tual repla
ement takes pla
e.In method Repla
eInf, shown in Algorithm 3, we iterate over all hyper-re
tangles with infeasible midpoints. For ea
h of these midpoints, we 
reatea new surrounding box by doubling the length of ea
h side while keeping thesame 
enter. Then we �nd fminlo
, whi
h is the minimum value of all fea-sible points 
al
ulated by DIRECT inside this expanded hyperre
tangle . Ifthis minimum exists (that is, there is at least one feasible point in the largerhyperre
tangle) we assign fminlo
 + �jfminlo
j to the 
urrent infeasible point.We used a value of � = 10�6 in our 
omputations. Otherwise the infeasible



DIRECT v2.0 User Guide 17Algorithm 2 DIRECT(a; b; f; �; numit; numfun
)1: Normalize the sear
h spa
e to be the unit hyper
ube with 
enter point
12: Evaluate f(
1); fmin = f(
1); t = 0; m = 13: while t < numit and m < numfun
 do4: Identify the set S of potentially optimal hyperre
tangles5: while S 6= ; do6: Take j 2 S7: Sample new points, evaluate f at the new points and divide thehyper-re
tangle with Divide8: Update fmin; m = m +�m9: Set S = S n fjg10: end while11: Use Repla
eInf to 
he
k for infeasible points whi
h are near feasiblepoints and to repla
e the value at these by the value of a nearby point.12: t = t+ 113: end whilepoint is marked really infeasible.We assign the maximum value found so far, in
reased by 1, to reallyinfeasible points. Sin
e we have to 
he
k ea
h infeasible point in Repla
eInf(see below) there is no extra 
ost if the maximum in
reases.We in
rease the repla
ement value to make sure that if there is anotherhyperre
tangle with the same measure, feasible midpoint, and the same fun
-tion value (this 
ould be one we used to 
al
ulate the minimum), the one withfeasible midpoint is divided �rst.Figure 2 shows an example of this strategy. We show a 
lose-up of thearea around an infeasible point P and its 
orresponding hyperre
tangle. Thedotted re
tangle is the enlarged re
tangle around P . There are nine mid-points of re
tangles 
reated by DIRECT 
ontained in this enlarged re
tangle;three of them are infeasible. Note that we look at the 
losed re
tangle, there-fore the points on the boundary are also 
onsidered nearby. Therefore, weonly need to take the minimum over the other six feasible midpoints. Thisvalue is given by 10; therefore we take 10 + �j10j as the new value at P . Ifwe would not amplify the surrogate value, the re
tangle with 
enter P wouldlook (to DIRECT) the same as the re
tangle with a fun
tion value of 10 at
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eInf(f
ig; flig; ffig)Input :� f
ig - 
enters of hyperre
tangles 
reated by DIRECT, 
i 2 RN .� flig - side lengths of the hyperre
tangles 
reated by DIRECT, li 2 RN .� ffig - fun
tion values at 
enters of hyperre
tangles 
reated by DIRECT,fi 2 R .Output :� ffig - updated fun
tion values.1: for all 
i infeasible do2: Create larger hyperre
tangle D around 
i.3: F = minfmin
j2D fj;1g4: if F <1 then5: fi = F + 10�6jF j6: else7: mark fi really infeasible.8: end if9: end for
14

12

18 19

20

2210Inf

Inf

InfInf

P

Figure 2: Example of an infeasible point and how its surrogate value is
al
ulated.
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Figure 3: Example of an infeasible point, whose value was repla
ed by thevalue of a feasible point nearby, be
oming 
ompletely infeasible.the midpoint. Therefore, we would have to ensure that DIRECT 
hooses there
tangle with feasible midpoint and not the one with midpoint P . We avoidthis problem by using the ampli�ed value.Note that this surrogate value at the midpoint 
an 
hange in ea
h outeriteration. There are two reasons why this 
ould happen.� A new point inside the box with a lower fun
tion value than the oneassigned so far has been found.� The hyperre
tangle 
orresponding to the infeasible point was dividedby DIRECT. Through this division DIRECT has made the hyperre
tanglesmaller and no more feasible point is nearby (that is in the area lookedat).Figure 3 shows an example of this. On the left, we show a 
lose-upof the hyperre
tangles and midpoints 
reated by DIRECT before the 
all toRepla
eInf. We show the enlarged re
tangle around P . There are eightpoints inside this enlarged re
tangle (in
luding the boundary). Five of theseare feasible points; therefore, we assign the surrogate value of 10 + �j10j tothe point P .On the right of Figure 3 we show the same area after DIRECT has dividedthe re
tangle 
orresponding to P . The two newly 
reated re
tangles haveinfeasible midpoints. This time the enlarged re
tangle around P does not
ontain any feasible points (at least DIRECT has not found any). ThereforeP is now marked as really infeasible.



DIRECT v2.0 User Guide 204 The Test ProblemsWe �rst give short des
riptions of all the test fun
tions we looked at. Follow-ing the des
riptions we summarize the important features of the fun
tionsand des
ribe (shortly) our numeri
al results. These 
an be redone easily withthe pa
kage provided.4.1 Elementary fun
tionsThe �rst three fun
tions we look at are examples of 
onstant, linear andquadrati
 fun
tions. Looking at the behavior of DIRECT for these fun
tionsallows us to get a better understanding of DIRECT and shows the di�eren
esbetween the original algorithm and our modi�
ation. The fun
tions are4.1.1 Constant fun
tionf(x) = 100; 
 = [0; 1℄N :In the example program we set N = 2.4.1.2 Linear fun
tionf(x) = 2x1 + NXi=2 xi; 
 = [0; 1℄N :In the example program we set N = 2. The optimal point x� = (0; : : : ; 0)Thas an optimal fun
tion value of f � = 0.4.1.3 Quadrati
 fun
tionf(x) = 10 + NXi=1 (xi � 5:3)2; 
 = [0; 10℄N :In the example programwe setN = 2. The optimal point x� = (5:3; : : : ; 5:3)Thas an optimal fun
tion value of f � = 10.4.2 Example for hidden 
onstraintsThe following test fun
tion 
omes from Jones [14℄. It was originally given inGomez et.al. [11℄.
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tion. −1
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2Figure 5: Plot of the Gomez #3 fun
tion.4.2.1 Gomez #3 [11℄f(x) = �4� 2:1x21 + x413 � x21 + x1x2 + 4(x22 � 1)x22;
 = [�1; 1℄2;B = 
 \ fx 2 R 2j � sin(4�x1) + 2 sin(2�x2) � 0gWe used this problem as if we did not know the nonlinear 
onstraints.Whenever the nonlinear 
onstraint was not satis�ed, we returned 
ag = 1.The fun
tion has a minimum at x� = (0:109;�0:623)T with a fun
tion valueof f � = �0:9711. In �gure 4 we show a 
ontour plot of this fun
tion. It is
lear that the domain of this fun
tion 
onsists of several dis
onne
ted regions.We show a plot of the fun
tion in �gure 5.4.3 Test fun
tions des
ribed in Jones et.al. [15℄Jones et al. [15℄ des
ribe results for their original implementation of DIRECTon nine di�erent test problems. The �rst seven problems were originallygiven by Dixon and Szeg�o [7℄. These problems have been widely used to
ompare global optimization algorithms [7, 12, 13℄. Problems eight and nine
ome from Yao [16℄. We now des
ribe these test problems in more detail.



DIRECT v2.0 User Guide 22Table 1: Parameters for the Shekel's family of fun
tionsi aTi 
i1 4.0 4.0 4.0 4.0 .12 1.0 1.0 1.0 1.0 .23 8.0 8.0 8.0 8.0 .24 6.0 6.0 6.0 6.0 .45 3.0 7.0 3.0 7.0 .46 2.0 9.0 2.0 9.0 .67 5.0 5.0 3.0 3.0 .38 8.0 1.0 8.0 1.0 .79 6.0 2.0 6.0 2.0 .510 7.0 3.6 7.0 3.6 .54.3.1 Shekel's family (S5,S7,S10) [7℄f(x) = � mXi=1 1(x� ai)T (x� ai) + 
i ; x; ai 2 RN ; 
i > 0; 8i = 1; : : : ; m;
 = [0; 10℄N :Three instan
es of the Shekel fun
tion are used in the 
omparisons. HereN = 4; m = 5; 7 and 10. The values of ai and 
i are given in Table 1.4.3.2 Hartman's family (H3, H6) [7℄f(x) = � mXi=1 
i exp � NXj=1 aij(xj � pij)2! ; x; ai; pi 2 RN ; 
i > 0; 8i = 1; : : : ; m;
 = [0; 1℄N :We will look at two instan
es of the Hartman fun
tion. The values of theparameters and the dimensions of the problems are given in Table 2.4.3.3 Branin fun
tion (BR) [7℄f(x1; x2) = (x� 2� 5:14�2x21 + 5�x1 � 6)2 + 10(1� 18� ) 
os x1 + 10;
 = [�5; 10℄� [0; 15℄:
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Table 2: Parameters for the Hartman's family of fun
tionsFirst 
ase : N = 3; m = 4.i ai 
i pi1 3. 10. 30. 1. 0.3689 0.1170 0.26732 .1 10. 35. 1.2 0.4699 0.4387 0.74703 3. 10. 30. 1. 0.1091 0.8732 0.55474 .1 10. 35. 3.2 0.03815 0.5743 0.8828Se
ond 
ase : N = 6; m = 4.i ai 
i1 10. 3. 17. 3.5 1.7 8. 1.2 .05 10. 17. .1 8. 14 1.23 3. 3.5 1.7 10. 17. 8. 3.4 17. 8. .05 10. .1 14. 3.2i pi1 0.1312 0.1696 0.5569 0.0124 0.8283 0.58862 0.2329 0.4135 0.8307 0.3736 0.1004 0.99913 0.2348 0.1451 0.3522 0.2883 0.3047 0.66504 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381
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2Figure 6: Plot of the Branin fun
tion.This fun
tion has three global minima. Figure 6 shows a plot of this fun
tion.4.3.4 Goldstein and Pri
e fun
tion (GP) [7℄f(x1; x2) = �1 + (x1 + x2 + 1)2(19� 14x1 + 3x21 � 14x2 + 6x1x2 + 3x22)��30 + (2x1 � 3x2)2(18� 32x1 + 12x21 + 48x2 � 36x1x2 + 27x22)� ;
 = [�2; 2℄2:The fun
tion has four lo
al minima and one global minimum at x� = (0;�1)Twith f(x�) = 3. In �gures 7 and 8 we show plots of this fun
tion. The �rst�gure shows the whole domain, while the se
ond �gure shows only the areaaround the global minimum.4.3.5 Six-hump 
amelba
k fun
tion (C6) [16℄f(x1; x2) = (4� 2:1x21 + x41=3)x21 + x1x2 + (�4 + 4x22)x22;
 = [�3; 3℄� [�2; 2℄:
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2Figure 8: Plot of the Goldsteinand Pri
e fun
tion around theglobal minimum.The fun
tion has six minima, two of whi
h are global. The global minimaare lo
ated at x� = (�0:0898;�0:7126)T and f(x�) = �1:0316. Figures 9and 10 show plots of this fun
tion. Again, the �rst �gure shows the wholedomain, while the se
ond shows an enlargement around the global minima.4.3.6 Two-dimensional Shubert fun
tion (SH) [16℄f(x1; x2) =  5Xj=1 j 
os[(j + 1)x1 + j℄! 5Xj=1 j 
os[(j + 1)x2 + j℄! ;
 = [�10; 10℄2:The fun
tion has 760 lo
al minima, of whi
h 18 are global. Figures 11 and12 show two plots of this fun
tion. Again, the �rst �gure shows the wholedomain, while the se
ond shows an enlargement around one of the globalminima.Table 3 summarizes the important features of the test problems used inour numeri
al experiments.4.4 Main features of the Test Fun
tionsIn table 3 we give the box 
onstraints, the number of global minima and thefun
tion values at the global minima for the test fun
tions des
ribed above.
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DIRECT v2.0 User Guide 27Table 3: Summary of the important features of the test fun
tions.# Name N 
 Global minimanumber fun
tion value1 Constant 2 [0; 1℄2 1 1002 Linear 2 [0; 1℄2 1 03 Quadrati
 2 [0; 10℄2 1 104 Gomez 3 2 [�1; 1℄2 1 -0.9812435 Branin (BR) 2 [�5; 10℄� [0; 15℄ 3 0.3986 Shekel-5 (S5) 4 [0; 10℄4 1 -10.1537 Shekel-7 (S7) 4 [0; 10℄4 1 -10.4038 Shekel-10 (S10) 4 [0; 10℄4 1 -10.5369 Hartman-3 (H3) 3 [0; 1℄3 1 -3.86310 Hartman-6 (H6) 6 [0; 1℄6 1 -3.32211 Goldpri
e (GP) 2 [�2; 2℄2 1 3.00012 Sixhump (C6) 2 [�3; 3℄� [�2; 2℄ 2 -1.03213 Shubert (SH) 2 [�10; 10℄2 18 -186.8314.5 Numeri
al resultsTable 4 reports the results for DIRECT and DIRECT-l using the termination
riteria from Jones et al. [15℄. This termination 
riteria uses knowledge ofthe global minimum value to terminate on
e the per
entage error is small.For this we �rst de�ne the per
entage error.Let fglobal be the known global minimal fun
tion value and denote by fminthe best fun
tion value found by DIRECT. We de�ne the per
entage error pas p = ( 100fmin�fglobaljfglobalj ; fglobal 6= 0;100fmin; fglobal = 0:Following Jones, we terminate the iteration on
e p is lower than 0.01. Inall runs we set � = 0:0001 for both the original implementation and ourimplementation.Although both methods 
an solve this problem, our modi�
ation 
onsis-tently requires fewer fun
tion evaluations, signi�
antly fewer for problems2 through 3 and 9 through 13. This means the algorithm terminated withIerror = 3.



DIRECT v2.0 User Guide 28Table 4: Results for the test fun
tions.# Problem DIRECT DIRECT-lf.eval. p f.eval. p1 Constant 9 0.00E+00 7 0.00E+002 Linear 475 0.76E-02 173 0.76E-023 Quadrati
 139 0.29E-02 65 0.29E-024 Gomez 3 771 0.35E-03 745 0.35E-035 Branin 195 0.98E-03 159 0.98E-036 Shekel-5 155 0.84E-02 147 0.84E-027 Shekel-7 145 0.94E-02 141 0.94E-028 Shekel-10 145 0.97E-02 139 0.97E-029 Hartman 199 0.85E-02 111 0.85E-0210 Hartman 571 0.89E-02 295 0.89E-0211 Goldman-Pri
e 191 0.30E-02 115 0.30E-0212 Sixhump 
amel ba
k 285 0.48E-03 191 0.48E-0313 Shubert 2967 0.50E-02 2043 0.50E-02These result show that DIRECT-l should be used for lower dimensionalproblems whi
h do not have too many lo
al and global minima.Referen
es[1℄ R. G. Carter. Private 
ommuni
ations.[2℄ R.G. Carter, J.M. Gablonsky, A. Patri
k, C.T. Kelley, and O.J.Esslinger. Algorithms for noisy problems in gas transmission pipelineoptimization. Te
hni
al Report CRSC-TR00-10, Center for Resear
h inS
ienti�
 Computation, North Carolina State University, May 2000.[3℄ T. D. Choi, P. Gilmore, O. J. Eslinger, C. T. Kelley, A. Patri
k, andJ. M. Gablonsky. I�
o: Impli
it Filtering for Constrained Optimization,Version 2. Te
hni
al Report CRSC-TR99-23, Center for Resear
h in S
i-enti�
 Computation, North Carolina State University, July 1999. avail-able by anonymous ftp from math.n
su.edu in pub/kelley/i�
o/ug.ps.[4℄ S. E. Cox, R.T. Haftka, C. A. Baker, B. Grossman, W. H. Mason, andL. T. Watson. Global multidis
iplinary optimization of a high speed



DIRECT v2.0 User Guide 29
ivil transport. In Pro
. Aerospa
e numeri
al Simulation Symposium'99, pages 23{28, Tokyo, Japan, June 16-18 1999.[5℄ S. E. Cox, R.T. Haftka, C. A. Baker, B. Grossman, W. H. Mason, andL. T. Watson. Global optimization of a high speed 
ivil transport 
on�g-uration. In Pro
. 3rd World Congress of Stru
tural and Multidis
iplinaryOptimization, Bu�alo, NY, 1999.[6℄ Evin J. Cramer. Using approximate models for engineering design. InPro
eedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Mul-tidis
iplinary Analysis and Optimization, pages 140{147, St. Louis, MO,September 2-4 1998. AIAA-98-4716.[7℄ L.C.W. Dixon and G.P. Szeg�o. The Global Optimisation Problem: AnIntrodu
tion. In L.C.W. Dixon and G.P. Szeg�o, editors, Towards GlobalOptimization 2, volume 2, pages 1{15. North-Holland Publishing Com-pany, 1978.[8℄ J. M. Gablonsky. An implemention of the DIRECT Algorithm. Te
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ations of the DIRECT Algorithm. PhD thesis,North Carolina State University, 2001. Pending.[10℄ J.M. Gablonsky and C.T. Kelley. A lo
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