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DIRECT v2.0 User Guide iiPrefaeThis doument is a revision of the 1998 guide [8℄ to Version 1 of our imple-mentation of DIRECT. The major hanges in the ode are� inlusion of the original DIRECT algorithm as desribed by Jones [15℄,� extension of the algorithm to handle hidden onstraints,� and a parallel version both with PVM and MPI alls.The ode and doumentation an be found at the following WWW-address :http://www4.nsu.edu/eos/users//tkelley/www/optimization odes.htmlThe primary ontat for DIRECT isJ. M. GablonskyDepartment of MathematisCenter for Researh in Sienti� ComputationsNorth Carolina State UniversityRaleigh, NC 27695-8205jmgablon�unity.nsu.eduEletroni mail is preferred.This projet was supported by National Siene Foundation grants #DMS-9700569, #DMS-9714811, and #DMS-0070641, and an alloation from theNorth Carolina Superomputing Center.Owen Esslinger and Alton Patrik ontributed to the parallel version ofthe ode and the test programs.



DIRECT v2.0 User Guide 11 Introdution to DIRECTThis user guide overs an implementation of both the original DIRECT algo-rithm and our modi�ation, whih we alled DIRECT-l. DIRECT is a methodto solve global bound onstraint optimization problems and was originallydeveloped by Jones et.al. [15℄. It has been used in many industrial applia-tions [1, 2, 4, 5, 6, 14℄. We will only briey desribe our modi�ations toDIRECT and how we extended it to handle problems with hidden onstraintsand point to [9, 10℄ for further information.After a short introdution in Setion 1 we desribe in Setion 2 what isinluded in the pakage and how to use our implementation. Setion 3 thengives a short explanation of the algorithm and our modi�ations. FinallySetion 4 desribes several test funtions and reports some numerial results.1.1 Problem desriptionDIRECT was developed to solve problems of the following form:Problem 1 (P0) Let a; b 2 RN ;
 = fx 2 RN : ai � xi � big, and f : 
 !RN be Lipshitz ontinuous with onstant . Find xopt 2 
 suh thatfopt = f(xopt) � f � + �; (1)where � is a given small positive onstant.Our extension also solve more diÆult problems of the following form:Problem 2 (P00) Let B � 
 and f : B ! R be Lipshitz ontinuous withonstant . Let f � be f � = minx2B f(x):Find xopt 2 B suh that fopt = f(xopt) � f � + �; (2)where � is a given small positive onstant.If B is not given analytially, we say that the problem has hidden on-straints. Problems with hidden onstraints often our in so alled \blak-box" optimization problems, where the objetive funtion is given by a om-puter program. Note that problems of kind P00 and P0 are the same if B = 
.



DIRECT v2.0 User Guide 22 Using DIRECT2.1 What is inluded in the pakageThe ode and doumentation an be found at the following WWW-address :http://www4.nsu.edu/eos/users//tkelley/www/optimization odes.htmlOne you have the �le DIRECTv2.0.3.tar.gz, do the following in an UNIXenvironment:unix> gunzip DIRECTv2.0.3.tar.gzunix> tar -xf DIRECTv2.0.3.tarIf you use a omputing environment other than UNIX, you may need to useother programs to unompress the �les. One you have unompressed the�le, you will have a subdiretory alled diret ontaining the following �les:DIRet.f The main routine.DIRserial.f Speial routines for serial version of DIRECT.DIRparallel.f Speial routines for parallel version of DIRECT.DIRsubrout.f Subroutines used in DIRECT.main.f Sample program for the serial version of DIRECT. This sample pro-gram optimizes the test funtions desribed in Setion 4.mainparallel.f Sample program for parallel version of DIRECT.myfun.f Sample test funtions.DIRmpi.f Routines for parallel version of DIRECT using MPI.DIRpvm.f Routines for parallel version of DIRECT using PVM.make�le Make�le for sample programs (both serial and parallel).mpi test.md File to run MPI version of parallel ode on the IBM SP/2super omputer.



DIRECT v2.0 User Guide 3pvm test.md File to run PVM version of parallel ode on the IBM SP/2super omputer.userguide.ps This doument.To see if everything works, do the following:unix> d diretunix> makeunix> TestDIRetThe sample program should solve one of the examples desribed below inSetion 4.Inluded in this pakage is the serial version of DIRECT as well as parallelversions both for the MPI and the PVM parallel programming standards.We used PVM 3.4 alls in the PVM version, and MPI 1.1 alls for the MPIversion. We have tested both the PVM and MPI versions on the IBM SP/2superomputer at the North Carolina Superomputer Center (NCSC). The�les DIRmpi.f and DIRpvm.f ontain interfae routines to MPI and PVM,respetively, and were written by Alton Patrik.2.2 Calling DIRECTIn this setion we desribe the alling sequene for DIRECT and explain the ar-guments following the format as in the user guide for IFFCO by Choi et.al. [3℄.Finally, we provide the format for subroutines whih the user must supply.� Calling sequeneDiret(fn, x, n, eps, maxf, maxT, fmin, l, u, algmethod, Ierror, log�le,fglobal, fglper, volper, sigmaper, iidata, iisize, ddata, idsize, data,isize)� ArgumentsThe arguments are listed in the order they appear in the alling se-quene.{ On Entry



DIRECT v2.0 User Guide 4fn { is the argument ontaining the name of the user-suppliedsubroutine that returns values for the funtion to be mini-mized. fn must be delared EXTERNAL in the allingprogram.n { Integer. It is the dimension of the problem. If n > 64 theparameter maxor in the variable list at the beginning of �leDIRet.f must be set to a larger value. maxor is a parameterused to dimension the work arrays used in DIRECT.eps { Double-Preision. It ensures suÆient derease in funtionvalue when a new potentially optimal interval is hosen. It isnormally set to 10�4, although lower values should be tried ifthe results of the optimization are unsatisfatory.maxf { Integer. It is an approximate upper bound on the maxi-mum number of funtion evaluations. This is only an approxi-mate upper boundary, beause the DIRECT algorithm will �n-ish the division of all potentially optimal hyperretangles. Ifit is set to a value higher than 90000, hange the parameterMaxfun at the beginning of �le DIRet.f. Maxfun is a pa-rameter used to set the dimension of the work arrays used inDIRECT.maxT { Integer. It is the maximum number of iterations. DIRECTwill stop before it �nishes all iterations when the maximumnumber of funtion evaluations is reahed earlier. If it is setto a value higher than 600, hange the parameter Maxdeepat the beginning of �le DIRet.f. Maxdeep is used to set thedimension of the work arrays used in DIRECT.l { Double-Preision array of length n. It de�nes the lower boundsfor the n independent variables. The hyperube de�ned bythe onstraints on the variables is mapped to the unit hyper-ube in DIRECT. DIRECT performs all alulations on pointswithin the unit ube. The �nal solution is mapped bak tothe original hyperube before being returned to the user.u { Double-Preision array of length n. It de�nes the upperbounds for the n independent variables.algmethod { Integer. It de�nes whih method to use. Theuser an either use the original method as desribed by Joneset.al. [15℄ (algmethod = 0) or use our modi�ation (algmethod



DIRECT v2.0 User Guide 5= 1). See setion 3.log�le { File-Handle for the log�le. DIRECT expets this �le tobe opened and losed by the user outside of DIRECT. Wemoved this to the outside so the user an add extra informa-tions to this �le before and after the all to DIRECT.fglobal { Double-Preision. Funtion value of the global opti-mum. If this value is not known (that is, we solve a realproblem, not a test problem) set this value to �10100 (or anyother very large negative number) and fglper (see below) to0.0.fglper { Double-Preision. Terminate the optimization when theperent error satis�es100 fmin� fglobalmax(1; jfglobalj) < fglper:volper { Terminate the optimization one the volume of a hy-perretangle S with f((S)) = fmin is small. By small wemean that the volume of S is less than volper perent of thevolume of the original hyperretangle.sigmaper { Terminate the optimization when the measure of thehyperretangle S with f((S)) = fmin is less then sigmaper.iidata { Integer array of length iisize. This array is passed to thefuntion to be optimized and an be used to transfer data tothis funtion. The ontents are not hanged by DIRECT.iisize { Integer. Size of array iidata.ddata { Double Preision array of length idsize. See iidata.idsize { Integer. Size of array ddata.data { Charater array of length isize. See iidata.isize { Integer. Size of array ddata.{ On Returnx { Double Preision array of length n. It is the �nal point ob-tained in the optimization proess. It should be a good ap-proximation to the global minimum for the funtion in thehyperube.fmin { Double Preision. It is the value of the funtion at x.



DIRECT v2.0 User Guide 6Ierror { Integer. If Ierror is negative, a fatal error has ourred.The values of Ierror are as follows :Fatal errors :-1 u(i) <= l(i) for some i.-2 maxf is too large. Inrease maxfun.-3 Initialization in DIRprepr failed.-4 Error in DIRSamplepoints, that is there was an error inthe reation of the sample points.-5 Error in DIRSamplef, that is an error ourred while thefuntion was sampled.-6 Maximum number of levels has been reahed. Inreasemaxdeep.Suessful termination :1 Number of funtion evaluations done is larger then maxf.2 Number of iterations is equal to maxT.3 The best funtion value found is within fglper of the (known)global optimum, that is100 fmin� fglobalmax(1; jfglobalj) < fglper:Note that this termination signal only ours when theglobal optimal value is known, that is, a test funtion isoptimized.4 The volume of the hyperretangle with the best funtionvalue found is below volper perent of the volume of theoriginal hyperretangle.5 The measure of the hyperretangle with the best funtionvalue found is smaller then sigmaper.� User-Supplied Funtions and Subroutines{ The funtion evaluation subroutineThe name of this subroutine is supplied by the user and must bedelared EXTERNAL. The funtion should have the followingform (this is taken from the example in �le myfun.f ):



DIRECT v2.0 User Guide 7subroutine myfun(x, n, flag, f, iidata, iisize,+ ddata, idsize, data, isize)impliit noneinteger n,flag,idouble preision x(n)double preision fINTEGER iisize, idsize, isizeINTEGER iidata(iisize)Double Preision ddata(idsize)Charater*40 data(isize)f = 100do 100, i = 1,nf = f + (x(i)-.3)*(x(i)-.3)100 ontinueflag = 0endSet ag to 1 if the funtion is not de�ned at point x. The arraysiidata, ddata and data an be used to pass data to the funtion.They are not modi�ed by DIRECT.{ DIRInitSpei�This funtion an be found in DIRserial.f and DIRparallel.f. Youan inlude whatever appliation-spei� initializations you haveto do in this subroutine. Most of the time you will not need it.2.3 Sample main programWe also inluded a test program in the pakage: main.f for serial omputers;mainparallel.f for parallel omputers. The exeutables are alled TestDIRet,TestDIRetmpi and TestDIRetpvm. This program solves 13 test problemswhih we desribe in detail in Setion 4. We also inluded a Matlab programthat runs all these test problems with both the original DIRECT algorithmand our modi�ation DIRECT-l. We use the following diretories for thisprogram:



DIRECT v2.0 User Guide 8diret/matlab Diretory whih ontains the matlab program. The �lesontained in this diretory aremain.m The matlab program to run all test problems.ounting.m Read in the the results from the run.setdiret.m Set the parameters for DIRECT.setproblem.m Set whih problem to solve.writeDIRECT.m Write the initialization �le for DIRECT.writemain.m Write the initialization �le for the main program.�leoutput.m Write the results for all test problems into the �le re-sults.txt.diret/ini Diretory whih ontains the initialization �les. The �les on-tained in this diretory areDIRECT.ini The �le ontaining the parameters for DIRECT.main.ini The �le ontaining the parameters for the main program.problems.ini The �le ontaining the names of the initialization �lesfor the di�erent problems.diret/problem Diretory whih ontains the initialization �les for the dif-ferent problems.After running main.m, there will be the following extra �les in the maindiretory:results.txt A �le with a LATEXtable listing the number of funtion evalua-tions needed and the perent error (see Setion 4.5) at the end of theoptimization both for DIRECT and DIRECT-l.diret.out Log �le ontaining information about the iterations. This �le isdivided into �ve main parts, the �rst and last part are generated bythe user. The seond part desribes the parameters and some generalinformation. The third part shows the iteration history, and the fourthpart of the �le gives a short summary. We now look at the strutureof this �le.User data { Data written by the main program.



DIRECT v2.0 User Guide 9General information { This part �rst shows the version of DIRECT.In the next line we output the string stored in data(1) as theproblem name. Following this we show the values of the parame-ters passed to DIRECT, inluding the bounds on the variables. Wealso print out if the original DIRECT algorithm or our modi�ationis used.Iteration history { The middle part of this �le ontains the iterationhistory. The �rst olumn ontains the iteration in whih DIRECTfound a smaller funtion value than the best one known so far.The seond olumn ontains the number of funtion evaluationsdone so far, and the last olumn ontains the best funtion valuefound. The last line of this part desribes the reason why DIRECTstopped.Summary { In the �nal part of this �le we write out the lowest fun-tion value found, the total number of funtion evaluations, andhow lose the best funtion value DIRECT found is to the globalminimal value, if this value is known. Furthermore we give theoordinates of the best point found and by how muh these oor-dinates di�er from the upper and lower bounds.User data { Additional data written by the main program.Below we show an example for this �le reated by the sample program in-luded in the pakage:User data+----------------------------------------+| Example Program for DIRECT || This program uses DIRECT to optimize || testfuntions. Whih testfuntion is || optimized and what parameters are used || is ontrolled by the files in ini/. || || Owen Esslinger, Joerg Gablonsky, || Alton Patrik || 04/15/2001 |+----------------------------------------+Name of ini-diretory : ini/Name of DIRet.ini file : DIRECT.ini



DIRECT v2.0 User Guide 10Name of problemdata file : shekel5.iniTestproblem used : 5General information--------------------------------- Log file --------------------------------DIRECT Version 2.0.3Shekel-5 funtionProblem Dimension n : 4Eps value : 0.1000E-03Maximum number of f-evaluations (maxf) : 20000Maximum number of iterations (MaxT) : 6000Value of f_global : -0.1015E+02Global perentage wanted : 0.1000E-01Volume perentage wanted : -0.1000E+01Measure perentage wanted : -0.1000E+01Epsilon is onstant.Jones original DIRECT algorithm is used.Bounds on variable x 1 : 0.00000 <= xi <= 10.00000Bounds on variable x 2 : 0.00000 <= xi <= 10.00000Bounds on variable x 3 : 0.00000 <= xi <= 10.00000Bounds on variable x 4 : 0.00000 <= xi <= 10.00000Iteration history---------------------------------------------------------------------------Iteration # of f-eval. fmin1 9 -0.57535140943 43 -0.69892723504 51 -1.05198542135 57 -6.84046761927 81 -7.43831200118 91 -8.15249020099 99 -9.018087108010 103 -10.093448596612 129 -10.108236875513 143 -10.1230718067



DIRECT v2.0 User Guide 1114 151 -10.137686594015 155 -10.1523498373DIRECT stopped: fmin within fglper of global minimum.Summary--------------------------------- Summary --------------------------------Final funtion value : -10.1523498Number of funtion evaluations : 155Final funtion value is within 0.00837 perent of global optimum.Index Final solution x(i) - l(i) u(i) - x(i)1 3.9986283 3.9986283 6.00137172 3.9986283 3.9986283 6.00137173 3.9986283 3.9986283 6.00137174 3.9986283 3.9986283 6.0013717---------------------------------------------------------------------------User data-------------- Final result ------------------DIRECT termination flag : 3DIRECT minimal point : 3.9986283 3.9986283 3.9986283 3.9986283DIRECT minimal value : -10.1523498DIRECT number of f-eval : 155Time needed : 0.3000E-01 seonds.3 A short overview of the DIRECT algorithmand our modi�ationsIn this setion we give a mathematial desription of the original DIRECTalgorithm, whih was developed by D. R. Jones, C. D. Perttunen and B.E. Stukman [15℄ in 1993, and our modi�ations to it. The name DIRECT isderived from one of its main features, dividing retangles. There are two mainingredients to this algorithm. The �rst is how to divide the domain (Setion3.1), and the seond ingredient is how to deide whih hyperretangles wedivide in the next iteration (Setion 3.2).



DIRECT v2.0 User Guide 123.1 Dividing the domainDivision is based on N -dimensional trisetion. Setions 3.1.1 and 3.1.2 de-sribe how this division is done for a hyperube and a hyperretangle , re-spetively.3.1.1 Dividing of a hyperubeLet  be the enter point of a hyperube. The algorithm evaluates the fun-tion at the points  � Æei, where Æ equals 1=3 of the side length of the ubeand ei is the i-th Eulidean base vetor. DIRECT de�nes wi bywi = minff(+ Æei); f(� Æei)g:The algorithm then divides the hyperube in the order given by the wi,starting with the lowest wi. DIRECT divides the hyperube �rst perpendi-ular to the the diretion with the lowest wi. Then it divides the remainingvolume perpendiular to the diretion of the seond lowest wi and so on untilthe hyperube is divided in all diretions. This strategy puts  in the enter ofa hyperube with side length Æ. Let b = argmini=1;:::;Nff(+Æei); f(�Æei)g.b will be the enter of a hyperretangle with one side with a length of Æ, theother N � 1 sides will have a length of 3Æ.Figure 1a shows an example of the division of a hyperube. Herew1 = minf5; 8g = 5w2 = minf6; 2g = 2:Therefore we divide �rst perpendiular to the x2-axis, and then in the seondstep the remaining retangle is divided perpendiular to the x1-axis.3.1.2 Dividing of a hyperretangleIn DIRECT a hyperretangle is only divided along its longest sides, whihassures us that we get a derease in the maximal side length of the hyper-retangle.Figure 1b represents the next step in the algorithm. DIRECT will dividethe shaded area (We explain in Setion 3.2 how we hoose whih hyperret-angles to divide). The seond box in Figure 1b shows where DIRECT samplesthe funtion, and the third box shows how the retangle is only divided one.
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Figure 1: Dividing of a hyperube.



DIRECT v2.0 User Guide 14Figure 1 shows the third step in the algorithm for this example. In thisstep DIRECT will divide two retangles, whih are shaded. One of them is asquare, therefore it is divided twie as desribed before. The larger area isagain a retangle and gets divided one.3.2 Potentially optimal hyperretanglesThis setion desribes the seond main ingredient for the DIRECT algorithm,how to deide whih hyperretangles to divide in the next iteration. DIRECTdivides all potentially optimal hyperretangles as de�ned in de�nition 1.De�nition 1 Let � > 0 be a positive onstant and let fmin be the urrentbest funtion value. A hyperretangle j is said to be potentially optimal ifthere exists some ~K > 0 suh thatf(j)� ~Kdj � f(i)� ~Kdi; 8i; andf(j)� ~Kdj � fmin � �jfminj:In this de�nition j is the enter of the hyperretangle j, and dj is ameasure for this hyperretangle. Jones et.al. [15℄ hose di to be the distanefrom the enter of hyperretangle i to its verties. They divide all potentiallyoptimal hyperretangles in every iteration, even if two of them have the samemeasure and the same funtion value at the enter.3.3 The DIRECT algorithmWe give a formal desription of the DIRECT algorithm in algorithm 1.The �rst two steps in the algorithm are the initialization steps. The vari-able m is a ounter for the number of funtion evaluations done while t is aounter for the number of iterations. Unlike more traditional optimizationmethods, there is no termination riteria based on the funtion for DIRECT.Instead DIRECT stops after numit iterations or after numfun funtion eval-uations. Note that the limit on the number of funtion evaluations is notstritly enfored. We only hek for this ondition after we have divided allpotentially optimal hyperretangles in an iteration. This means we normallydo a few more funtion evaluations than numfun.Note that in algorithm 1 there are two possibilities of parallelism here.These are the inner loop (steps 5 to 10) and the funtion evaluations inside



DIRECT v2.0 User Guide 15Algorithm 1 DIRECT(a; b; f; �; numit; numfun)1: Normalize the searh spae to be the unit hyperube with enter point12: Evaluate f(1); fmin = f(1); t = 0; m = 13: while t < numit and m < numfun do4: Identify the set S of potentially optimal hyperretangles5: while S 6= ; do6: Take j 2 S7: Sample new points, evaluate f at the new points and divide thehyperretangle with Divide8: Update fmin; m = m +�m9: Set S = S n fjg10: end while11: t = t+ 112: end whilethe inner loop (step 8). In our parallel implementation only the inner loopis parallelized.Potentially optimal intervals are identi�ed by DIRECT using the followingLemma to reformulate De�nition 1.Lemma 1 Let � > 0 be a positive onstant and let fmin be the urrent bestfuntion value. Let I be the set of all indies of all intervals existing. LetI1 = fi 2 I : di < djg, I2 = fi 2 I : di > djg and I3 = fi 2 I : di = djg.Interval j 2 I is potentially optimal iff(j) � f(i); 8i 2 I3; (3)there exists ~K > 0 suh thatmaxi2I1 f(j)� f(i)dj � di � ~K � mini2I2 f(i)� f(j)di � dj ; (4)and � � fmin � f(j)jfminj + djjfminj mini2I2 f(i)� f(j)di � dj ; fmin 6= 0; (5)or f(j) � dj mini2I2 f(i)� f(j)di � dj ; fmin = 0: (6)The proof of this lemma an be found in [9℄.



DIRECT v2.0 User Guide 163.4 Our modi�ation to the DIRECT algorithmIn our modi�ation we use the length of the longest side of a hyperretangleas the measure dj. This redues the number of di�erent groups of hyper-retangles ompared to using the distane from the enter to a orner, andmakes the algorithm more biased towards loal searh.The seond modi�ation we did was to divide at most one hyperretangleper group. That is, if there is more than one hyperretangle with the samemeasure, we divide only one of them, instead of all. This again an lead to animprovement of the performane of the algorithm. Both these modi�ationstogether result in DIRECT-l.3.5 Extensions to the DIRECT algorithmWe also extended the algorithm to handle problems with hidden onstraints.That means we look at Problems P00 where the subset B � 
 is not givenanalytially. If no feasible point is found within the budget given to DIRECTwe allow it to ontinue until a feasible point is found and then reassignthe original budget. Through this strategy we assure that DIRECT does notterminate without �nding a feasible point.The strategy we use was suggested by R. Carter [1℄. We desribe thegeneral idea before going into details.For any infeasible midpoint, we expand its hyperretangle by a fator oftwo. If this larger hyperretangle ontains one or more feasible midpoints ofother hyperretangles, �nd the smallest funtion value of these, fmin. Thenuse fmin + �jfminj as a surrogate value. If no feasible midpoint is ontainedin the larger hyperretangle, mark the urrent point as really infeasible.We will now desribe this strategy in more details.We extend DIRECT as shown in Algorithm 2 by adding a all to Repla-eInf in line 3.5. In this method the atual replaement takes plae.In method ReplaeInf, shown in Algorithm 3, we iterate over all hyper-retangles with infeasible midpoints. For eah of these midpoints, we reatea new surrounding box by doubling the length of eah side while keeping thesame enter. Then we �nd fminlo, whih is the minimum value of all fea-sible points alulated by DIRECT inside this expanded hyperretangle . Ifthis minimum exists (that is, there is at least one feasible point in the largerhyperretangle) we assign fminlo + �jfminloj to the urrent infeasible point.We used a value of � = 10�6 in our omputations. Otherwise the infeasible



DIRECT v2.0 User Guide 17Algorithm 2 DIRECT(a; b; f; �; numit; numfun)1: Normalize the searh spae to be the unit hyperube with enter point12: Evaluate f(1); fmin = f(1); t = 0; m = 13: while t < numit and m < numfun do4: Identify the set S of potentially optimal hyperretangles5: while S 6= ; do6: Take j 2 S7: Sample new points, evaluate f at the new points and divide thehyper-retangle with Divide8: Update fmin; m = m +�m9: Set S = S n fjg10: end while11: Use ReplaeInf to hek for infeasible points whih are near feasiblepoints and to replae the value at these by the value of a nearby point.12: t = t+ 113: end whilepoint is marked really infeasible.We assign the maximum value found so far, inreased by 1, to reallyinfeasible points. Sine we have to hek eah infeasible point in ReplaeInf(see below) there is no extra ost if the maximum inreases.We inrease the replaement value to make sure that if there is anotherhyperretangle with the same measure, feasible midpoint, and the same fun-tion value (this ould be one we used to alulate the minimum), the one withfeasible midpoint is divided �rst.Figure 2 shows an example of this strategy. We show a lose-up of thearea around an infeasible point P and its orresponding hyperretangle. Thedotted retangle is the enlarged retangle around P . There are nine mid-points of retangles reated by DIRECT ontained in this enlarged retangle;three of them are infeasible. Note that we look at the losed retangle, there-fore the points on the boundary are also onsidered nearby. Therefore, weonly need to take the minimum over the other six feasible midpoints. Thisvalue is given by 10; therefore we take 10 + �j10j as the new value at P . Ifwe would not amplify the surrogate value, the retangle with enter P wouldlook (to DIRECT) the same as the retangle with a funtion value of 10 at



DIRECT v2.0 User Guide 18Algorithm 3 ReplaeInf(fig; flig; ffig)Input :� fig - enters of hyperretangles reated by DIRECT, i 2 RN .� flig - side lengths of the hyperretangles reated by DIRECT, li 2 RN .� ffig - funtion values at enters of hyperretangles reated by DIRECT,fi 2 R .Output :� ffig - updated funtion values.1: for all i infeasible do2: Create larger hyperretangle D around i.3: F = minfminj2D fj;1g4: if F <1 then5: fi = F + 10�6jF j6: else7: mark fi really infeasible.8: end if9: end for
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Figure 2: Example of an infeasible point and how its surrogate value isalulated.
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Figure 3: Example of an infeasible point, whose value was replaed by thevalue of a feasible point nearby, beoming ompletely infeasible.the midpoint. Therefore, we would have to ensure that DIRECT hooses theretangle with feasible midpoint and not the one with midpoint P . We avoidthis problem by using the ampli�ed value.Note that this surrogate value at the midpoint an hange in eah outeriteration. There are two reasons why this ould happen.� A new point inside the box with a lower funtion value than the oneassigned so far has been found.� The hyperretangle orresponding to the infeasible point was dividedby DIRECT. Through this division DIRECT has made the hyperretanglesmaller and no more feasible point is nearby (that is in the area lookedat).Figure 3 shows an example of this. On the left, we show a lose-upof the hyperretangles and midpoints reated by DIRECT before the all toReplaeInf. We show the enlarged retangle around P . There are eightpoints inside this enlarged retangle (inluding the boundary). Five of theseare feasible points; therefore, we assign the surrogate value of 10 + �j10j tothe point P .On the right of Figure 3 we show the same area after DIRECT has dividedthe retangle orresponding to P . The two newly reated retangles haveinfeasible midpoints. This time the enlarged retangle around P does notontain any feasible points (at least DIRECT has not found any). ThereforeP is now marked as really infeasible.



DIRECT v2.0 User Guide 204 The Test ProblemsWe �rst give short desriptions of all the test funtions we looked at. Follow-ing the desriptions we summarize the important features of the funtionsand desribe (shortly) our numerial results. These an be redone easily withthe pakage provided.4.1 Elementary funtionsThe �rst three funtions we look at are examples of onstant, linear andquadrati funtions. Looking at the behavior of DIRECT for these funtionsallows us to get a better understanding of DIRECT and shows the di�erenesbetween the original algorithm and our modi�ation. The funtions are4.1.1 Constant funtionf(x) = 100; 
 = [0; 1℄N :In the example program we set N = 2.4.1.2 Linear funtionf(x) = 2x1 + NXi=2 xi; 
 = [0; 1℄N :In the example program we set N = 2. The optimal point x� = (0; : : : ; 0)Thas an optimal funtion value of f � = 0.4.1.3 Quadrati funtionf(x) = 10 + NXi=1 (xi � 5:3)2; 
 = [0; 10℄N :In the example programwe setN = 2. The optimal point x� = (5:3; : : : ; 5:3)Thas an optimal funtion value of f � = 10.4.2 Example for hidden onstraintsThe following test funtion omes from Jones [14℄. It was originally given inGomez et.al. [11℄.
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2Figure 5: Plot of the Gomez #3 funtion.4.2.1 Gomez #3 [11℄f(x) = �4� 2:1x21 + x413 � x21 + x1x2 + 4(x22 � 1)x22;
 = [�1; 1℄2;B = 
 \ fx 2 R 2j � sin(4�x1) + 2 sin(2�x2) � 0gWe used this problem as if we did not know the nonlinear onstraints.Whenever the nonlinear onstraint was not satis�ed, we returned ag = 1.The funtion has a minimum at x� = (0:109;�0:623)T with a funtion valueof f � = �0:9711. In �gure 4 we show a ontour plot of this funtion. It islear that the domain of this funtion onsists of several disonneted regions.We show a plot of the funtion in �gure 5.4.3 Test funtions desribed in Jones et.al. [15℄Jones et al. [15℄ desribe results for their original implementation of DIRECTon nine di�erent test problems. The �rst seven problems were originallygiven by Dixon and Szeg�o [7℄. These problems have been widely used toompare global optimization algorithms [7, 12, 13℄. Problems eight and nineome from Yao [16℄. We now desribe these test problems in more detail.



DIRECT v2.0 User Guide 22Table 1: Parameters for the Shekel's family of funtionsi aTi i1 4.0 4.0 4.0 4.0 .12 1.0 1.0 1.0 1.0 .23 8.0 8.0 8.0 8.0 .24 6.0 6.0 6.0 6.0 .45 3.0 7.0 3.0 7.0 .46 2.0 9.0 2.0 9.0 .67 5.0 5.0 3.0 3.0 .38 8.0 1.0 8.0 1.0 .79 6.0 2.0 6.0 2.0 .510 7.0 3.6 7.0 3.6 .54.3.1 Shekel's family (S5,S7,S10) [7℄f(x) = � mXi=1 1(x� ai)T (x� ai) + i ; x; ai 2 RN ; i > 0; 8i = 1; : : : ; m;
 = [0; 10℄N :Three instanes of the Shekel funtion are used in the omparisons. HereN = 4; m = 5; 7 and 10. The values of ai and i are given in Table 1.4.3.2 Hartman's family (H3, H6) [7℄f(x) = � mXi=1 i exp � NXj=1 aij(xj � pij)2! ; x; ai; pi 2 RN ; i > 0; 8i = 1; : : : ; m;
 = [0; 1℄N :We will look at two instanes of the Hartman funtion. The values of theparameters and the dimensions of the problems are given in Table 2.4.3.3 Branin funtion (BR) [7℄f(x1; x2) = (x� 2� 5:14�2x21 + 5�x1 � 6)2 + 10(1� 18� ) os x1 + 10;
 = [�5; 10℄� [0; 15℄:
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Table 2: Parameters for the Hartman's family of funtionsFirst ase : N = 3; m = 4.i ai i pi1 3. 10. 30. 1. 0.3689 0.1170 0.26732 .1 10. 35. 1.2 0.4699 0.4387 0.74703 3. 10. 30. 1. 0.1091 0.8732 0.55474 .1 10. 35. 3.2 0.03815 0.5743 0.8828Seond ase : N = 6; m = 4.i ai i1 10. 3. 17. 3.5 1.7 8. 1.2 .05 10. 17. .1 8. 14 1.23 3. 3.5 1.7 10. 17. 8. 3.4 17. 8. .05 10. .1 14. 3.2i pi1 0.1312 0.1696 0.5569 0.0124 0.8283 0.58862 0.2329 0.4135 0.8307 0.3736 0.1004 0.99913 0.2348 0.1451 0.3522 0.2883 0.3047 0.66504 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381
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 = [�2; 2℄2:The funtion has four loal minima and one global minimum at x� = (0;�1)Twith f(x�) = 3. In �gures 7 and 8 we show plots of this funtion. The �rst�gure shows the whole domain, while the seond �gure shows only the areaaround the global minimum.4.3.5 Six-hump amelbak funtion (C6) [16℄f(x1; x2) = (4� 2:1x21 + x41=3)x21 + x1x2 + (�4 + 4x22)x22;
 = [�3; 3℄� [�2; 2℄:
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DIRECT v2.0 User Guide 27Table 3: Summary of the important features of the test funtions.# Name N 
 Global minimanumber funtion value1 Constant 2 [0; 1℄2 1 1002 Linear 2 [0; 1℄2 1 03 Quadrati 2 [0; 10℄2 1 104 Gomez 3 2 [�1; 1℄2 1 -0.9812435 Branin (BR) 2 [�5; 10℄� [0; 15℄ 3 0.3986 Shekel-5 (S5) 4 [0; 10℄4 1 -10.1537 Shekel-7 (S7) 4 [0; 10℄4 1 -10.4038 Shekel-10 (S10) 4 [0; 10℄4 1 -10.5369 Hartman-3 (H3) 3 [0; 1℄3 1 -3.86310 Hartman-6 (H6) 6 [0; 1℄6 1 -3.32211 Goldprie (GP) 2 [�2; 2℄2 1 3.00012 Sixhump (C6) 2 [�3; 3℄� [�2; 2℄ 2 -1.03213 Shubert (SH) 2 [�10; 10℄2 18 -186.8314.5 Numerial resultsTable 4 reports the results for DIRECT and DIRECT-l using the terminationriteria from Jones et al. [15℄. This termination riteria uses knowledge ofthe global minimum value to terminate one the perentage error is small.For this we �rst de�ne the perentage error.Let fglobal be the known global minimal funtion value and denote by fminthe best funtion value found by DIRECT. We de�ne the perentage error pas p = ( 100fmin�fglobaljfglobalj ; fglobal 6= 0;100fmin; fglobal = 0:Following Jones, we terminate the iteration one p is lower than 0.01. Inall runs we set � = 0:0001 for both the original implementation and ourimplementation.Although both methods an solve this problem, our modi�ation onsis-tently requires fewer funtion evaluations, signi�antly fewer for problems2 through 3 and 9 through 13. This means the algorithm terminated withIerror = 3.



DIRECT v2.0 User Guide 28Table 4: Results for the test funtions.# Problem DIRECT DIRECT-lf.eval. p f.eval. p1 Constant 9 0.00E+00 7 0.00E+002 Linear 475 0.76E-02 173 0.76E-023 Quadrati 139 0.29E-02 65 0.29E-024 Gomez 3 771 0.35E-03 745 0.35E-035 Branin 195 0.98E-03 159 0.98E-036 Shekel-5 155 0.84E-02 147 0.84E-027 Shekel-7 145 0.94E-02 141 0.94E-028 Shekel-10 145 0.97E-02 139 0.97E-029 Hartman 199 0.85E-02 111 0.85E-0210 Hartman 571 0.89E-02 295 0.89E-0211 Goldman-Prie 191 0.30E-02 115 0.30E-0212 Sixhump amel bak 285 0.48E-03 191 0.48E-0313 Shubert 2967 0.50E-02 2043 0.50E-02These result show that DIRECT-l should be used for lower dimensionalproblems whih do not have too many loal and global minima.Referenes[1℄ R. G. Carter. Private ommuniations.[2℄ R.G. Carter, J.M. Gablonsky, A. Patrik, C.T. Kelley, and O.J.Esslinger. Algorithms for noisy problems in gas transmission pipelineoptimization. Tehnial Report CRSC-TR00-10, Center for Researh inSienti� Computation, North Carolina State University, May 2000.[3℄ T. D. Choi, P. Gilmore, O. J. Eslinger, C. T. Kelley, A. Patrik, andJ. M. Gablonsky. I�o: Impliit Filtering for Constrained Optimization,Version 2. Tehnial Report CRSC-TR99-23, Center for Researh in Si-enti� Computation, North Carolina State University, July 1999. avail-able by anonymous ftp from math.nsu.edu in pub/kelley/i�o/ug.ps.[4℄ S. E. Cox, R.T. Haftka, C. A. Baker, B. Grossman, W. H. Mason, andL. T. Watson. Global multidisiplinary optimization of a high speed



DIRECT v2.0 User Guide 29ivil transport. In Pro. Aerospae numerial Simulation Symposium'99, pages 23{28, Tokyo, Japan, June 16-18 1999.[5℄ S. E. Cox, R.T. Haftka, C. A. Baker, B. Grossman, W. H. Mason, andL. T. Watson. Global optimization of a high speed ivil transport on�g-uration. In Pro. 3rd World Congress of Strutural and MultidisiplinaryOptimization, Bu�alo, NY, 1999.[6℄ Evin J. Cramer. Using approximate models for engineering design. InProeedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Mul-tidisiplinary Analysis and Optimization, pages 140{147, St. Louis, MO,September 2-4 1998. AIAA-98-4716.[7℄ L.C.W. Dixon and G.P. Szeg�o. The Global Optimisation Problem: AnIntrodution. In L.C.W. Dixon and G.P. Szeg�o, editors, Towards GlobalOptimization 2, volume 2, pages 1{15. North-Holland Publishing Com-pany, 1978.[8℄ J. M. Gablonsky. An implemention of the DIRECT Algorithm. Tehni-al Report CRSC-TR98-29, Center for Researh in Sienti� Computa-tion, North Carolina State University, August 1998.[9℄ J.M. Gablonsky. Modi�ations of the DIRECT Algorithm. PhD thesis,North Carolina State University, 2001. Pending.[10℄ J.M. Gablonsky and C.T. Kelley. A loally-biased form of the DIRECTalgorithm. Tehnial Report CRSC-TR00-31, Center for Researh in Si-enti� Computation, North Carolina State University, Deember 2000.To appear in Journal of Global Optimization.[11℄ S. Gomez and A. Levy. The tunneling method for solving the onstrainedglobal optimization problem with several non-onneted feasible regions.In A. Dold and B. Ekmann, editors, Leture Notes in Mathematis 909,Nononvex Optimization and Its Appliations, pages 34{47. Springer-Verlag, 1982.[12℄ W. Huyer and A. Neumaier. Global optimization by multilevel oordi-nate searh. J. Global Optim., 14(4):331{355, 1999.[13℄ E. Janka. Vergleih Stohastisher Verfahren zur Globalen Optimierung.Diplomarbeit, Universit�at Wien, 1999.



DIRECT v2.0 User Guide 30[14℄ D. R. Jones. The DIRECT global optimization algorithm, 1999. Toappear in The Enylopedia of Optimization.[15℄ D. R. Jones, C. D. Perttunen, and B. E. Stukmann. Lipshitzian opti-mization without the lipshitz onstant. Journal of Optimization Theoryand Appliations, 79:157, Otober 1993.[16℄ Yong Yao. Dynami Tunneling Algorithm for Global Optimization.IEEE Transations on Systems, Man, and Cybernetis, 19(5), Septem-ber / Otober 1989.


