X-Git-Url: http://www.chiark.greenend.org.uk/ucgi/~ianmdlvl/git?p=matchsticks-search.git;a=blobdiff_plain;f=main.c;h=96f945cf0efd8f91a425997222536638d75e1ef1;hp=e8915f7c5661dcd93fb75479e22f80ebce7f629a;hb=25b3132348e1f5964f4ec4bc4e1226f21d14bb3f;hpb=966b39b19e31dfe232d74da21c76f2981eae2201 diff --git a/main.c b/main.c index e8915f7..96f945c 100644 --- a/main.c +++ b/main.c @@ -5,7 +5,13 @@ * * Invoke as ./main n m * - * The algorithm is faster if the arguments are ordered so that n > m. + * The arguments must be ordered so that n > m: + * n is the number of (more, shorter) input matches of length m + * m is the number of (fewer, longer) output matches of length n + * + * Options: + * -j run in parallel on cores + * -b search only for better than */ /* @@ -58,7 +64,8 @@ * * We search all possible adjacency matrices, and for each one we run * GLPK's simplex solver. We represent the adjacency matrix as an - * array of bitmaps. + * array of bitmaps: one word per input stick, with one bit per output + * stick. * * However, there are a couple of wrinkles: * @@ -76,11 +83,18 @@ * nondecreasing in array order. * * Once we have a solution, we also avoid considering any candidate - * which involves dividing one of the output sticks into so many + * which involves dividing one of the input sticks into so many * fragment that the smallest fragment would necessarily be no bigger * than our best solution. That is, we reject candidates where any of * the hamming weights of the adjacency bitmap words are too large. * + * We further winnow the set of possible adjacency matrices, by + * ensuring the same bit is not set in too many entries of adjmatrix + * (ie, as above, only considering output sticks); and by ensuring + * that it is not set in too few: each output stick must consist + * of at least two fragments since the output sticks are longer than + * the input ones. + * * And, we want to do the search in order of increasing maximum * hamming weight. This is because in practice optimal solutions tend * to have low hamming weight, and having found a reasonable solution @@ -101,7 +115,7 @@ static double best; static glp_prob *best_prob; static AdjWord *best_adjmatrix; -static int n_over_best; +static int n_max_frags=INT_MAX, m_max_frags=INT_MAX; static int *weight; static unsigned printcounter; @@ -119,7 +133,24 @@ static void progress_eol(void) { static void set_best(double new_best) { best = new_best; - n_over_best = floor(n / best); + /* + * When computing n_max_frags, we want to set a value that will skip + * anything that won't provide strictly better solutions. So we + * want + * frags < n / best + * _ _ + * <=> frags < | n / best | + * _ _ + * <=> frags <= | n / best | - 1 + * + * But best values from glpk are slightly approximate, so we + * subtract a fudge factor from our target. + */ + double near_best = best * 0.98 - 0.02; + if (near_best > 0) { + n_max_frags = ceil(n / near_best) - 1; + m_max_frags = ceil(m / near_best) - 1; + } } /*----- multicore support -----*/ @@ -234,6 +265,8 @@ static void multicore_outer_iteration(int i, AdjWord min) { } static void mc_iterate_worker(void) { + static time_t lastprint; + for (;;) { mc_rwvsetup_outer(); ssize_t r = readv(mc_work[0], mc_iov, mc_niovs); @@ -243,8 +276,12 @@ static void mc_iterate_worker(void) { bool ok = maxhamweight_ok(); if (!ok) continue; - ok = preconsider_ok(multicore_iteration_boundary, 1); - progress_eol(); + time_t now = time(0); + bool doprint = now != lastprint; + lastprint = now; + + ok = preconsider_ok(multicore_iteration_boundary, doprint); + if (doprint) progress_eol(); if (!ok) continue; /* stop iterate_recurse from trying to run multicore_outer_iteration */ @@ -355,7 +392,6 @@ static void prep(void) { glp_term_out(GLP_OFF); setlinebuf(stderr); weight = calloc(sizeof(*weight), m); assert(weight); - n_over_best = INT_MAX; } #if 0 @@ -377,8 +413,7 @@ static int count_set_adj_bits(AdjWord w) { static int totalfrags; static bool maxhamweight_ok(void) { - double maxminsize = (double)m / maxhamweight; - return maxminsize > best; + return maxhamweight <= m_max_frags; } static bool preconsider_ok(int nwords, bool doprint) { @@ -389,14 +424,13 @@ static bool preconsider_ok(int nwords, bool doprint) { bool had_max = 0; for (i=0, totalfrags=0; i= maxhamweight); - totalfrags += frags; PRINTF("%"PRADJ" ", adjmatrix[i]); - double maxminsize = (double)m / frags; - if (maxminsize <= best) { + if (frags > m_max_frags) { PRINTF(" too fine"); goto out; } + had_max += (frags >= maxhamweight); + totalfrags += frags; } if (!had_max) { /* Skip this candidate as its max hamming weight is lower than @@ -502,7 +536,7 @@ static void optimise(bool doprint) { glp_set_obj_coef(prob, X_minimum, 1); for (i=0; i= n) { + for (j=0; j= n_over_best) + if (weight[j] > n_max_frags) goto takeout; iterate_recurse(i+1, adjmatrix[i]); @@ -653,12 +691,59 @@ static void iterate(void) { } } +static int gcd(int a, int b) +{ + assert(a>0); + assert(b>0); + while (b) { + int t = a % b; + a = b; + b = t; + } + return a; +} + +static void print_rational(int n, int d) +{ + int g = gcd(n, d); + n /= g; + d /= g; + printf("%d", n); + if (d > 1) + printf("/%d", d); +} + +#define MAKE_INT_VECTOR_COMPARATOR(thing) \ + static int compare_ints_##thing(const void *av, const void *bv) \ + { \ + const int *a = (const int *)av; \ + const int *b = (const int *)bv; \ + int i; \ + for (i = 0; i < (thing); i++) \ + if (a[i] != b[i]) \ + return a[i] > b[i] ? -1 : +1; \ + return 0; \ + } +/* Good grief, if only qsort let me pass a context parameter */ +MAKE_INT_VECTOR_COMPARATOR(1) +MAKE_INT_VECTOR_COMPARATOR(m) +MAKE_INT_VECTOR_COMPARATOR(n) + static void report(void) { fprintf(stderr, "\n"); + if (best_adjmatrix) { + int i; + fprintf(stderr," "); + for (i=0; i 0 && ai[i][j] < imin) + imin = ai[i][j]; + + if (abs((double)imin / d - min) > 1e-10) + goto next_d; + + /* + * Got it! We've found a rational-valued dissection. + */ + printf("min fragment "); + print_rational(imin, d); + printf(" [%s]\n", VERSION); + + /* + * We don't really want to output the matrix, so instead let's + * output the ways in which the sticks are cut up. + */ + { + int ai2[m][n]; + for (i = 0; i < n; i++) { + for (j = 0; j < m; j++) + ai2[j][i] = ai[i][j]; + } + for (i = 0; i < n; i++) + qsort(ai+i, m, sizeof(int), compare_ints_1); + qsort(ai, n, m*sizeof(int), compare_ints_m); + printf(" Cut up %d sticks of length %d like this:\n", n, m); + for (i = 0; i < n ;) { + for (j = 1; i+j < n && compare_ints_m(ai+i, ai+i+j) == 0; j++); + printf(" %d x (", j); + for (k = 0; k < m && ai[i][k] > 0; k++) { + if (k > 0) printf(" + "); + print_rational(ai[i][k], d); + } + printf(")\n"); + i += j; + } + + for (j = 0; j < m; j++) + qsort(ai2+j, n, sizeof(int), compare_ints_1); + qsort(ai2, m, n*sizeof(int), compare_ints_n); + printf(" Reassemble as %d sticks of length %d like this:\n", m, n); + for (j = 0; j < m ;) { + for (i = 1; i+j < m && compare_ints_n(ai2+j, ai2+j+i) == 0; i++); + printf(" %d x (", i); + for (k = 0; k < n && ai2[j][k] > 0; k++) { + if (k > 0) printf(" + "); + print_rational(ai2[j][k], d); + } + printf(")\n"); + j += i; + } + } + return; + + next_d:; } + } else { + printf(" none better than %9.3f [%s]\n", best, VERSION); } if (ferror(stdout) || fclose(stdout)) { perror("stdout"); exit(-1); } } int main(int argc, char **argv) { int opt; - while ((opt = getopt(argc,argv,"j:")) >= 0) { + double best_to_set = -1.0; /* means 'don't' */ + while ((opt = getopt(argc,argv,"j:b:")) >= 0) { switch (opt) { case 'j': ncpus = atoi(optarg); break; + case 'b': best_to_set = atof(optarg); break; case '+': assert(!"bad option"); default: abort(); } @@ -697,6 +872,8 @@ int main(int argc, char **argv) { assert(argc==3); n = atoi(argv[1]); m = atoi(argv[2]); + assert(n > m); + if (best_to_set > 0) set_best(best_to_set); prep();