X-Git-Url: http://www.chiark.greenend.org.uk/ucgi/~ianmdlvl/git?p=matchsticks-search.git;a=blobdiff_plain;f=main.c;h=96f945cf0efd8f91a425997222536638d75e1ef1;hp=b9724608c9a175849e6b06dc7df0caa344318100;hb=25b3132348e1f5964f4ec4bc4e1226f21d14bb3f;hpb=514c09f9200d9323caf787ce765bd954154b03ea diff --git a/main.c b/main.c index b972460..96f945c 100644 --- a/main.c +++ b/main.c @@ -1,18 +1,112 @@ +/* + * Searches for "good" ways to divide n matchsticks up and reassemble them + * into m matchsticks. "Good" means the smallest fragment is as big + * as possible. + * + * Invoke as ./main n m + * + * The arguments must be ordered so that n > m: + * n is the number of (more, shorter) input matches of length m + * m is the number of (fewer, longer) output matches of length n + * + * Options: + * -j run in parallel on cores + * -b search only for better than + */ + +/* + * matchsticks/main.c Copyright 2014 Ian Jackson + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#define _GNU_SOURCE + +#include #include #include #include #include #include +#include #include #include +#include +#include +#include +#include +#include -#include #include +#ifndef VERSION +#define VERSION "(unknown-version)" +#endif + +/* + * Algorithm. + * + * Each input match contributes, or does not contribute, to each + * output match; we do not need to consider multiple fragments + * relating to the same input/output pair this gives an n*m adjacency + * matrix (bitmap). Given such an adjacency matrix, the problem of + * finding the best sizes for the fragments can be expressed as a + * linear programming problem. + * + * We search all possible adjacency matrices, and for each one we run + * GLPK's simplex solver. We represent the adjacency matrix as an + * array of bitmaps: one word per input stick, with one bit per output + * stick. + * + * However, there are a couple of wrinkles: + * + * To best represent the problem as a standard LP problem, we separate + * out the size of each fragment into a common minimum size variable, + * plus a fragment-specific extra size variable. This reduces the LP + * problem size at the cost of making the problem construction, and + * interpretation of the results, a bit fiddly. + * + * Many of the adjacency matrices are equivalent. In particular, + * permutations of the columns, or of the rows, do not change the + * meaning. It is only necessasry to consider any one permutation. + * We make use of this by considering only adjacency matrices whose + * bitmap array contains bitmap words whose numerical values are + * nondecreasing in array order. + * + * Once we have a solution, we also avoid considering any candidate + * which involves dividing one of the input sticks into so many + * fragment that the smallest fragment would necessarily be no bigger + * than our best solution. That is, we reject candidates where any of + * the hamming weights of the adjacency bitmap words are too large. + * + * We further winnow the set of possible adjacency matrices, by + * ensuring the same bit is not set in too many entries of adjmatrix + * (ie, as above, only considering output sticks); and by ensuring + * that it is not set in too few: each output stick must consist + * of at least two fragments since the output sticks are longer than + * the input ones. + * + * And, we want to do the search in order of increasing maximum + * hamming weight. This is because in practice optimal solutions tend + * to have low hamming weight, and having found a reasonable solution + * early allows us to eliminate a lot of candidates without doing the + * full LP. + */ + typedef uint32_t AdjWord; #define PRADJ "08"PRIx32 +#define FOR_BITS(j,m) for (j=0, j##bit=1; j < (m); j++, j##bit<<=1) + static int n, m, maxhamweight; static AdjWord *adjmatrix; static AdjWord adjall; @@ -21,8 +115,273 @@ static double best; static glp_prob *best_prob; static AdjWord *best_adjmatrix; +static int n_max_frags=INT_MAX, m_max_frags=INT_MAX; +static int *weight; + static unsigned printcounter; +static void iterate(void); +static void iterate_recurse(int i, AdjWord min); +static bool preconsider_ok(int nwords, bool doprint); +static bool maxhamweight_ok(void); +static void optimise(bool doprint); + +static void progress_eol(void) { + fprintf(stderr," \r"); + fflush(stderr); +} + +static void set_best(double new_best) { + best = new_best; + /* + * When computing n_max_frags, we want to set a value that will skip + * anything that won't provide strictly better solutions. So we + * want + * frags < n / best + * _ _ + * <=> frags < | n / best | + * _ _ + * <=> frags <= | n / best | - 1 + * + * But best values from glpk are slightly approximate, so we + * subtract a fudge factor from our target. + */ + double near_best = best * 0.98 - 0.02; + if (near_best > 0) { + n_max_frags = ceil(n / near_best) - 1; + m_max_frags = ceil(m / near_best) - 1; + } +} + +/*----- multicore support -----*/ + +/* + * Multicore protocol + * + * We fork into: + * - master (parent) + * - generator + * - ncpu workers + * + * ipc facilities: + * - one pipe ("work") from generator to workers + * - ever-extending file ("bus") containing new "best" values + * - one file for each worker giving maxhamweight and adjmatrix for best + * + * generator runs iterate_recurse to a certain depth and writes the + * candidates to a pipe + * + * workers read candidates from the pipe and resume iterate_recurse + * halfway through the recursion + * + * whenever a worker does a doprint, it checks the bus for new best + * value; actual best values are appended + * + * master waits for generator and all workers to finish and then + * runs optimise() for each worker's best, then prints + */ + +static int ncpus = 0, multicore_iteration_boundary = INT_MAX; + +static int mc_bus, mc_work[2]; +static off_t mc_bus_read; + +typedef struct { + int w; + FILE *results; + pid_t pid; +} Worker; +static Worker *mc_us; +static bool mc_am_generator; + +static void multicore_check_for_new_best(void); + +#define MAX_NIOVS 4 +static AdjWord mc_iter_min; +static int mc_niovs; +static size_t mc_iovlen; +static struct iovec mc_iov[MAX_NIOVS]; + +#define IOV0 (mc_niovs = mc_iovlen = 0) + +#define IOV(obj, count) ({ \ + assert(mc_niovs < MAX_NIOVS); \ + mc_iov[mc_niovs].iov_base = &(obj); \ + mc_iov[mc_niovs].iov_len = sizeof(obj) * (count); \ + mc_iovlen += mc_iov[mc_niovs].iov_len; \ + mc_niovs++; \ + }) + +static void mc_rwvsetup_outer(void) { + IOV0; + IOV(maxhamweight, 1); + IOV(mc_iter_min, 1); + IOV(*adjmatrix, multicore_iteration_boundary); + IOV(*weight, m); +} + +static void mc_rwvsetup_full(void) { + IOV0; + IOV(*adjmatrix, n); +} + +static void vlprintf(const char *fmt, va_list al) { + vfprintf(stderr,fmt,al); + progress_eol(); +} + +static void LPRINTF(const char *fmt, ...) { + va_list al; + va_start(al,fmt); + vlprintf(fmt,al); + va_end(al); +} + +static void mc_awaitpid(int wnum, pid_t pid) { + LPRINTF("master awaiting %2d [%ld]",wnum,(long)pid); + int status; + pid_t got = waitpid(pid, &status, 0); + assert(got == pid); + if (status) { + fprintf(stderr,"\nFAILED SUBPROC %2d [%ld] %d\n", + wnum, (long)pid, status); + exit(-1); + } +} + +static void multicore_outer_iteration(int i, AdjWord min) { + static unsigned check_counter; + + assert(i == multicore_iteration_boundary); + mc_iter_min = min; + mc_rwvsetup_outer(); + ssize_t r = writev(mc_work[1], mc_iov, mc_niovs); + assert(r == mc_iovlen); + /* effectively, this writev arranges to transfers control + * to some worker's instance of iterate_recurse via mc_iterate_worker */ + + if (!(check_counter++ & 0xff)) + multicore_check_for_new_best(); +} + +static void mc_iterate_worker(void) { + static time_t lastprint; + + for (;;) { + mc_rwvsetup_outer(); + ssize_t r = readv(mc_work[0], mc_iov, mc_niovs); + if (r == 0) break; + assert(r == mc_iovlen); + + bool ok = maxhamweight_ok(); + if (!ok) continue; + + time_t now = time(0); + bool doprint = now != lastprint; + lastprint = now; + + ok = preconsider_ok(multicore_iteration_boundary, doprint); + if (doprint) progress_eol(); + if (!ok) continue; + + /* stop iterate_recurse from trying to run multicore_outer_iteration */ + int mc_org_it_bound = multicore_iteration_boundary; + multicore_iteration_boundary = INT_MAX; + iterate_recurse(mc_org_it_bound, mc_iter_min); + multicore_iteration_boundary = mc_org_it_bound; + } + if (best_adjmatrix) { + LPRINTF("worker %2d reporting",mc_us->w); + adjmatrix = best_adjmatrix; + mc_rwvsetup_full(); + ssize_t r = writev(fileno(mc_us->results), mc_iov, mc_niovs); + assert(r == mc_iovlen); + } + LPRINTF("worker %2d ending",mc_us->w); + exit(0); +} + +static void multicore(void) { + Worker *mc_workers; + int w; + pid_t genpid; + + multicore_iteration_boundary = n / 2; + + FILE *busf = tmpfile(); assert(busf); + mc_bus = fileno(busf); + int r = fcntl(mc_bus, F_GETFL); assert(r >= 0); + r |= O_APPEND; + r = fcntl(mc_bus, F_SETFL, r); assert(r >= 0); + + r = pipe(mc_work); assert(!r); + + mc_workers = xmalloc(sizeof(*mc_workers) * ncpus); + for (w=0; w= 0); + if (!mc_workers[w].pid) { + mc_us = &mc_workers[w]; + close(mc_work[1]); + LPRINTF("worker %2d running", w); + mc_iterate_worker(); + exit(0); + } + } + + close(mc_work[0]); + + genpid = fork(); assert(genpid >= 0); + if (!genpid) { + mc_am_generator = 1; + LPRINTF("generator running"); + iterate(); + exit(0); + } + + close(mc_work[1]); + mc_awaitpid(-1, genpid); + for (w=0; w best) + set_best(msg); + mc_bus_read += sizeof(msg); + } +} + +static void multicore_found_new_best(void) { + if (!mc_us) + return; + + if (mc_us /* might be master */) fprintf(stderr," w%-2d ",mc_us->w); + ssize_t wrote = write(mc_bus, &best, sizeof(best)); + assert(wrote == sizeof(best)); +} + +/*----- end of multicore support -----*/ + static AdjWord *xalloc_adjmatrix(void) { return xmalloc(sizeof(*adjmatrix)*n); } @@ -31,52 +390,87 @@ static void prep(void) { adjall = ~((~(AdjWord)0) << m); adjmatrix = xalloc_adjmatrix(); glp_term_out(GLP_OFF); + setlinebuf(stderr); + weight = calloc(sizeof(*weight), m); assert(weight); } +#if 0 static AdjWord one_adj_bit(int bitnum) { return (AdjWord)1 << bitnum; } +#endif static int count_set_adj_bits(AdjWord w) { - int j, total; - for (j=0, total=0; j m_max_frags) { PRINTF(" too fine"); goto out; } + had_max += (frags >= maxhamweight); + totalfrags += frags; } if (!had_max) { + /* Skip this candidate as its max hamming weight is lower than + * we're currently looking for (which means we must have done it + * already). (The recursive iteration ensures that none of the + * words have more than the max hamming weight.) */ PRINTF(" nomaxham"); goto out; } + return 1; + + out: + return 0; +} + +static void optimise(bool doprint) { + /* Consider the best answer (if any) for a given adjacency matrix */ + glp_prob *prob = 0; + int i, j; + AdjWord jbit; + + /* + * Up to a certain point, optimise() can be restarted. We use this + * to go back and print the debugging output if it turns out that we + * have an interesting case. The HAVE_PRINTED macro does this: its + * semantics are to go back in time and make sure that we have + * printed the description of the search case. + */ +#define HAVE_PRINTED ({ \ + if (!doprint) { doprint = 1; goto retry_with_print; } \ + }) + retry_with_print: + if (prob) { + glp_delete_prob(prob); + prob = 0; + } + + bool ok = preconsider_ok(n, doprint); + if (!ok) + goto out; /* * We formulate our problem as an LP problem as follows. @@ -128,8 +522,8 @@ static void optimise(int doprint) { int ME_totals_j__minimum = next_matrix_entry; for (j=0; j= n) { + for (j=0; j= multicore_iteration_boundary) { + multicore_outer_iteration(i, min); + return; + } for (adjmatrix[i] = min; ; adjmatrix[i]++) { if (count_set_adj_bits(adjmatrix[i]) > maxhamweight) goto again; + if (i == 0 && (adjmatrix[i] & (1+adjmatrix[i]))) + goto again; + + FOR_BITS(j,m) + if (adjmatrix[i] & jbit) + weight[j]++; + for (int j = 0; j < m; j++) + if (weight[j] > n_max_frags) + goto takeout; iterate_recurse(i+1, adjmatrix[i]); + takeout: + FOR_BITS(j,m) + if (adjmatrix[i] & jbit) + weight[j]--; + again: if (adjmatrix[i] == adjall) return; @@ -263,22 +684,202 @@ static void iterate_recurse(int i, AdjWord min) { static void iterate(void) { for (maxhamweight=1; maxhamweight<=m; maxhamweight++) { - double maxminsize = (double)m / maxhamweight; - if (maxminsize <= best) + if (!maxhamweight_ok()) continue; iterate_recurse(0, 1); } } +static int gcd(int a, int b) +{ + assert(a>0); + assert(b>0); + while (b) { + int t = a % b; + a = b; + b = t; + } + return a; +} + +static void print_rational(int n, int d) +{ + int g = gcd(n, d); + n /= g; + d /= g; + printf("%d", n); + if (d > 1) + printf("/%d", d); +} + +#define MAKE_INT_VECTOR_COMPARATOR(thing) \ + static int compare_ints_##thing(const void *av, const void *bv) \ + { \ + const int *a = (const int *)av; \ + const int *b = (const int *)bv; \ + int i; \ + for (i = 0; i < (thing); i++) \ + if (a[i] != b[i]) \ + return a[i] > b[i] ? -1 : +1; \ + return 0; \ + } +/* Good grief, if only qsort let me pass a context parameter */ +MAKE_INT_VECTOR_COMPARATOR(1) +MAKE_INT_VECTOR_COMPARATOR(m) +MAKE_INT_VECTOR_COMPARATOR(n) + +static void report(void) { + fprintf(stderr, "\n"); + if (best_adjmatrix) { + int i; + fprintf(stderr," "); + for (i=0; i 0 && ai[i][j] < imin) + imin = ai[i][j]; + + if (abs((double)imin / d - min) > 1e-10) + goto next_d; + + /* + * Got it! We've found a rational-valued dissection. + */ + printf("min fragment "); + print_rational(imin, d); + printf(" [%s]\n", VERSION); + + /* + * We don't really want to output the matrix, so instead let's + * output the ways in which the sticks are cut up. + */ + { + int ai2[m][n]; + for (i = 0; i < n; i++) { + for (j = 0; j < m; j++) + ai2[j][i] = ai[i][j]; + } + for (i = 0; i < n; i++) + qsort(ai+i, m, sizeof(int), compare_ints_1); + qsort(ai, n, m*sizeof(int), compare_ints_m); + printf(" Cut up %d sticks of length %d like this:\n", n, m); + for (i = 0; i < n ;) { + for (j = 1; i+j < n && compare_ints_m(ai+i, ai+i+j) == 0; j++); + printf(" %d x (", j); + for (k = 0; k < m && ai[i][k] > 0; k++) { + if (k > 0) printf(" + "); + print_rational(ai[i][k], d); + } + printf(")\n"); + i += j; + } + + for (j = 0; j < m; j++) + qsort(ai2+j, n, sizeof(int), compare_ints_1); + qsort(ai2, m, n*sizeof(int), compare_ints_n); + printf(" Reassemble as %d sticks of length %d like this:\n", m, n); + for (j = 0; j < m ;) { + for (i = 1; i+j < m && compare_ints_n(ai2+j, ai2+j+i) == 0; i++); + printf(" %d x (", i); + for (k = 0; k < n && ai2[j][k] > 0; k++) { + if (k > 0) printf(" + "); + print_rational(ai2[j][k], d); + } + printf(")\n"); + j += i; + } + } + return; + + next_d:; + } + } else { + printf(" none better than %9.3f [%s]\n", best, VERSION); + } + if (ferror(stdout) || fclose(stdout)) { perror("stdout"); exit(-1); } +} + int main(int argc, char **argv) { + int opt; + double best_to_set = -1.0; /* means 'don't' */ + while ((opt = getopt(argc,argv,"j:b:")) >= 0) { + switch (opt) { + case 'j': ncpus = atoi(optarg); break; + case 'b': best_to_set = atof(optarg); break; + case '+': assert(!"bad option"); + default: abort(); + } + } + argc -= optind-1; + argv += optind-1; + assert(argc==3); n = atoi(argv[1]); m = atoi(argv[2]); + assert(n > m); + if (best_to_set > 0) set_best(best_to_set); + prep(); - iterate(); - printf("\n"); - if (best_prob) - glp_print_sol(best_prob,"/dev/stdout"); - if (ferror(stdout) || fclose(stdout)) { perror("stdout"); exit(-1); } + + if (ncpus) multicore(); + else iterate(); + + report(); return 0; }