X-Git-Url: http://www.chiark.greenend.org.uk/ucgi/~ianmdlvl/git?p=matchsticks-search.git;a=blobdiff_plain;f=main.c;h=93dc7ebe5325269db8fda05f5fe954a081489ed3;hp=15b534bd3bc3c9eb0447b059e5bf013de4969b44;hb=a7a2c255e61d14619fce2e4af2eeee1d2ed6d870;hpb=3164b7155efcca47cfedccb778b5a7471629e2f4 diff --git a/main.c b/main.c index 15b534b..93dc7eb 100644 --- a/main.c +++ b/main.c @@ -1,18 +1,99 @@ +/* + * Searches for "good" ways to divide n matchsticks up and reassemble them + * into m matchsticks. "Good" means the smallest fragment is as big + * as possible. + * + * Invoke as ./main n m + * + * The algorithm is faster if the arguments are ordered so that n > m. + */ + +/* + * matchsticks/main.c Copyright 2014 Ian Jackson + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#define _GNU_SOURCE + +#include #include #include #include #include #include +#include #include #include +#include +#include +#include +#include +#include -#include #include +#ifndef VERSION +#define VERSION "(unknown-version)" +#endif + +/* + * Algorithm. + * + * Each input match contributes, or does not contribute, to each + * output match; we do not need to consider multiple fragments + * relating to the same input/output pair this gives an n*m adjacency + * matrix (bitmap). Given such an adjacency matrix, the problem of + * finding the best sizes for the fragments can be expressed as a + * linear programming problem. + * + * We search all possible adjacency matrices, and for each one we run + * GLPK's simplex solver. We represent the adjacency matrix as an + * array of bitmaps: one word per input stick, with one bit per output + * stick. + * + * However, there are a couple of wrinkles: + * + * To best represent the problem as a standard LP problem, we separate + * out the size of each fragment into a common minimum size variable, + * plus a fragment-specific extra size variable. This reduces the LP + * problem size at the cost of making the problem construction, and + * interpretation of the results, a bit fiddly. + * + * Many of the adjacency matrices are equivalent. In particular, + * permutations of the columns, or of the rows, do not change the + * meaning. It is only necessasry to consider any one permutation. + * We make use of this by considering only adjacency matrices whose + * bitmap array contains bitmap words whose numerical values are + * nondecreasing in array order. + * + * Once we have a solution, we also avoid considering any candidate + * which involves dividing one of the input sticks into so many + * fragment that the smallest fragment would necessarily be no bigger + * than our best solution. That is, we reject candidates where any of + * the hamming weights of the adjacency bitmap words are too large. + * + * And, we want to do the search in order of increasing maximum + * hamming weight. This is because in practice optimal solutions tend + * to have low hamming weight, and having found a reasonable solution + * early allows us to eliminate a lot of candidates without doing the + * full LP. + */ + typedef uint32_t AdjWord; #define PRADJ "08"PRIx32 +#define FOR_BITS(j,m) for (j=0, j##bit=1; j < (m); j++, j##bit<<=1) + static int n, m, maxhamweight; static AdjWord *adjmatrix; static AdjWord adjall; @@ -21,8 +102,261 @@ static double best; static glp_prob *best_prob; static AdjWord *best_adjmatrix; +static int n_max_frags, m_max_frags; +static int *weight; + static unsigned printcounter; +static void iterate(void); +static void iterate_recurse(int i, AdjWord min); +static bool preconsider_ok(int nwords, bool doprint); +static bool maxhamweight_ok(void); +static void optimise(bool doprint); + +static void progress_eol(void) { + fprintf(stderr," \r"); + fflush(stderr); +} + +static void set_best(double new_best) { + best = new_best; + /* + * When computing n_max_frags, we want to set a value that will skip + * anything that won't provide strictly better solutions. So we + * want + * frags < n / best + * _ _ + * <=> frags < | n / best | + * _ _ + * <=> frags <= | n / best | - 1 + */ + n_max_frags = ceil(n / best) - 1; + m_max_frags = ceil(m / best) - 1; +} + +/*----- multicore support -----*/ + +/* + * Multicore protocol + * + * We fork into: + * - master (parent) + * - generator + * - ncpu workers + * + * ipc facilities: + * - one pipe ("work") from generator to workers + * - ever-extending file ("bus") containing new "best" values + * - one file for each worker giving maxhamweight and adjmatrix for best + * + * generator runs iterate_recurse to a certain depth and writes the + * candidates to a pipe + * + * workers read candidates from the pipe and resume iterate_recurse + * halfway through the recursion + * + * whenever a worker does a doprint, it checks the bus for new best + * value; actual best values are appended + * + * master waits for generator and all workers to finish and then + * runs optimise() for each worker's best, then prints + */ + +static int ncpus = 0, multicore_iteration_boundary = INT_MAX; + +static int mc_bus, mc_work[2]; +static off_t mc_bus_read; + +typedef struct { + int w; + FILE *results; + pid_t pid; +} Worker; +static Worker *mc_us; +static bool mc_am_generator; + +static void multicore_check_for_new_best(void); + +#define MAX_NIOVS 4 +static AdjWord mc_iter_min; +static int mc_niovs; +static size_t mc_iovlen; +static struct iovec mc_iov[MAX_NIOVS]; + +#define IOV0 (mc_niovs = mc_iovlen = 0) + +#define IOV(obj, count) ({ \ + assert(mc_niovs < MAX_NIOVS); \ + mc_iov[mc_niovs].iov_base = &(obj); \ + mc_iov[mc_niovs].iov_len = sizeof(obj) * (count); \ + mc_iovlen += mc_iov[mc_niovs].iov_len; \ + mc_niovs++; \ + }) + +static void mc_rwvsetup_outer(void) { + IOV0; + IOV(maxhamweight, 1); + IOV(mc_iter_min, 1); + IOV(*adjmatrix, multicore_iteration_boundary); + IOV(*weight, m); +} + +static void mc_rwvsetup_full(void) { + IOV0; + IOV(*adjmatrix, n); +} + +static void vlprintf(const char *fmt, va_list al) { + vfprintf(stderr,fmt,al); + progress_eol(); +} + +static void LPRINTF(const char *fmt, ...) { + va_list al; + va_start(al,fmt); + vlprintf(fmt,al); + va_end(al); +} + +static void mc_awaitpid(int wnum, pid_t pid) { + LPRINTF("master awaiting %2d [%ld]",wnum,(long)pid); + int status; + pid_t got = waitpid(pid, &status, 0); + assert(got == pid); + if (status) { + fprintf(stderr,"\nFAILED SUBPROC %2d [%ld] %d\n", + wnum, (long)pid, status); + exit(-1); + } +} + +static void multicore_outer_iteration(int i, AdjWord min) { + static unsigned check_counter; + + assert(i == multicore_iteration_boundary); + mc_iter_min = min; + mc_rwvsetup_outer(); + ssize_t r = writev(mc_work[1], mc_iov, mc_niovs); + assert(r == mc_iovlen); + /* effectively, this writev arranges to transfers control + * to some worker's instance of iterate_recurse via mc_iterate_worker */ + + if (!(check_counter++ & 0xff)) + multicore_check_for_new_best(); +} + +static void mc_iterate_worker(void) { + for (;;) { + mc_rwvsetup_outer(); + ssize_t r = readv(mc_work[0], mc_iov, mc_niovs); + if (r == 0) break; + assert(r == mc_iovlen); + + bool ok = maxhamweight_ok(); + if (!ok) continue; + + ok = preconsider_ok(multicore_iteration_boundary, 1); + progress_eol(); + if (!ok) continue; + + /* stop iterate_recurse from trying to run multicore_outer_iteration */ + int mc_org_it_bound = multicore_iteration_boundary; + multicore_iteration_boundary = INT_MAX; + iterate_recurse(mc_org_it_bound, mc_iter_min); + multicore_iteration_boundary = mc_org_it_bound; + } + if (best_adjmatrix) { + LPRINTF("worker %2d reporting",mc_us->w); + adjmatrix = best_adjmatrix; + mc_rwvsetup_full(); + ssize_t r = writev(fileno(mc_us->results), mc_iov, mc_niovs); + assert(r == mc_iovlen); + } + LPRINTF("worker %2d ending",mc_us->w); + exit(0); +} + +static void multicore(void) { + Worker *mc_workers; + int w; + pid_t genpid; + + multicore_iteration_boundary = n / 2; + + FILE *busf = tmpfile(); assert(busf); + mc_bus = fileno(busf); + int r = fcntl(mc_bus, F_GETFL); assert(r >= 0); + r |= O_APPEND; + r = fcntl(mc_bus, F_SETFL, r); assert(r >= 0); + + r = pipe(mc_work); assert(!r); + + mc_workers = xmalloc(sizeof(*mc_workers) * ncpus); + for (w=0; w= 0); + if (!mc_workers[w].pid) { + mc_us = &mc_workers[w]; + close(mc_work[1]); + LPRINTF("worker %2d running", w); + mc_iterate_worker(); + exit(0); + } + } + + close(mc_work[0]); + + genpid = fork(); assert(genpid >= 0); + if (!genpid) { + mc_am_generator = 1; + LPRINTF("generator running"); + iterate(); + exit(0); + } + + close(mc_work[1]); + mc_awaitpid(-1, genpid); + for (w=0; w best) + set_best(msg); + mc_bus_read += sizeof(msg); + } +} + +static void multicore_found_new_best(void) { + if (!mc_us) + return; + + if (mc_us /* might be master */) fprintf(stderr," w%-2d ",mc_us->w); + ssize_t wrote = write(mc_bus, &best, sizeof(best)); + assert(wrote == sizeof(best)); +} + +/*----- end of multicore support -----*/ + static AdjWord *xalloc_adjmatrix(void) { return xmalloc(sizeof(*adjmatrix)*n); } @@ -31,47 +365,89 @@ static void prep(void) { adjall = ~((~(AdjWord)0) << m); adjmatrix = xalloc_adjmatrix(); glp_term_out(GLP_OFF); + setlinebuf(stderr); + weight = calloc(sizeof(*weight), m); assert(weight); + n_max_frags = INT_MAX; + m_max_frags = INT_MAX; } +#if 0 static AdjWord one_adj_bit(int bitnum) { return (AdjWord)1 << bitnum; } +#endif static int count_set_adj_bits(AdjWord w) { - int j, total; - for (j=0, total=0; j m_max_frags) { PRINTF(" too fine"); goto out; } + had_max += (frags >= maxhamweight); + totalfrags += frags; } if (!had_max) { + /* Skip this candidate as its max hamming weight is lower than + * we're currently looking for (which means we must have done it + * already). (The recursive iteration ensures that none of the + * words have more than the max hamming weight.) */ PRINTF(" nomaxham"); goto out; } + return 1; + + out: + return 0; +} + +static void optimise(bool doprint) { + /* Consider the best answer (if any) for a given adjacency matrix */ + glp_prob *prob = 0; + int i, j; + AdjWord jbit; + + /* + * Up to a certain point, optimise() can be restarted. We use this + * to go back and print the debugging output if it turns out that we + * have an interesting case. The HAVE_PRINTED macro does this: its + * semantics are to go back in time and make sure that we have + * printed the description of the search case. + */ +#define HAVE_PRINTED ({ \ + if (!doprint) { doprint = 1; goto retry_with_print; } \ + }) + retry_with_print: + if (prob) { + glp_delete_prob(prob); + prob = 0; + } + + bool ok = preconsider_ok(n, doprint); + if (!ok) + goto out; /* * We formulate our problem as an LP problem as follows. @@ -123,8 +499,8 @@ static void optimise(int doprint) { int ME_totals_j__minimum = next_matrix_entry; for (j=0; j= n) { printcounter++; optimise(!(printcounter & 0xfff)); return; } + if (i >= multicore_iteration_boundary) { + multicore_outer_iteration(i, min); + return; + } for (adjmatrix[i] = min; ; adjmatrix[i]++) { if (count_set_adj_bits(adjmatrix[i]) > maxhamweight) goto again; + if (i == 0 && (adjmatrix[i] & (1+adjmatrix[i]))) + goto again; + + FOR_BITS(j,m) + if (adjmatrix[i] & jbit) + weight[j]++; + for (int j = 0; j < m; j++) + if (weight[j] >= n_max_frags) + goto takeout; iterate_recurse(i+1, adjmatrix[i]); + takeout: + FOR_BITS(j,m) + if (adjmatrix[i] & jbit) + weight[j]--; + again: if (adjmatrix[i] == adjall) return; @@ -258,22 +657,63 @@ static void iterate_recurse(int i, AdjWord min) { static void iterate(void) { for (maxhamweight=1; maxhamweight<=m; maxhamweight++) { - double maxminsize = (double)m / maxhamweight; - if (maxminsize <= best) + if (!maxhamweight_ok()) continue; iterate_recurse(0, 1); } } +static void report(void) { + fprintf(stderr, "\n"); + if (best_prob) { + double min = glp_get_obj_val(best_prob); + double a[n][m]; + int i, j, cols; + for (i = 0; i < n; i++) + for (j = 0; j < m; j++) + a[i][j] = 0; + cols = glp_get_num_cols(best_prob); + for (i = 1; i <= cols; i++) { + int x, y; + if (2 != sscanf(glp_get_col_name(best_prob, i), "mf %d,%d", &x, &y)) + continue; + a[x][y] = min + glp_get_col_prim(best_prob, i); + } + printf("%d into %d: min fragment %g [%s]\n", n, m, min, VERSION); + for (i = 0; i < n; i++) { + for (j = 0; j < m; j++) { + if (a[i][j]) + printf(" %9.3f", a[i][j]); + else + printf(" "); + } + printf("\n"); + } + } + if (ferror(stdout) || fclose(stdout)) { perror("stdout"); exit(-1); } +} + int main(int argc, char **argv) { + int opt; + while ((opt = getopt(argc,argv,"j:")) >= 0) { + switch (opt) { + case 'j': ncpus = atoi(optarg); break; + case '+': assert(!"bad option"); + default: abort(); + } + } + argc -= optind-1; + argv += optind-1; + assert(argc==3); n = atoi(argv[1]); m = atoi(argv[2]); + prep(); - iterate(); - printf("\n"); - if (best_prob) - glp_print_sol(best_prob,"/dev/stdout"); - if (ferror(stdout) || fclose(stdout)) { perror("stdout"); exit(-1); } + + if (ncpus) multicore(); + else iterate(); + + report(); return 0; }