X-Git-Url: http://www.chiark.greenend.org.uk/ucgi/~ianmdlvl/git?p=matchsticks-search.git;a=blobdiff_plain;f=main.c;h=3ee58c59760729eba27ae8b88123caa59d9062b0;hp=6f0df725949c9b26fccb613768f74c283bc9e591;hb=86575cc1251eca190aacac95dcb498d4efb4e7a2;hpb=0169095a9c345a65ee9e091df63a0e52d3910d1d diff --git a/main.c b/main.c index 6f0df72..3ee58c5 100644 --- a/main.c +++ b/main.c @@ -5,7 +5,13 @@ * * Invoke as ./main n m * - * The algorithm is faster if the arguments are ordered so that n > m. + * The arguments must be ordered so that n > m: + * n is the number of (more, shorter) input matches of length m + * m is the number of (fewer, longer) output matches of length n + * + * Options: + * -j run in parallel on cores + * -b search only for better than */ /* @@ -22,17 +28,30 @@ * GNU General Public License for more details. */ +#define _GNU_SOURCE + +#include + #include #include #include #include #include +#include #include #include +#include +#include +#include +#include +#include -#include #include +#ifndef VERSION +#define VERSION "(unknown-version)" +#endif + /* * Algorithm. * @@ -45,7 +64,8 @@ * * We search all possible adjacency matrices, and for each one we run * GLPK's simplex solver. We represent the adjacency matrix as an - * array of bitmaps. + * array of bitmaps: one word per input stick, with one bit per output + * stick. * * However, there are a couple of wrinkles: * @@ -63,11 +83,18 @@ * nondecreasing in array order. * * Once we have a solution, we also avoid considering any candidate - * which involves dividing one of the output sticks into so many + * which involves dividing one of the input sticks into so many * fragment that the smallest fragment would necessarily be no bigger * than our best solution. That is, we reject candidates where any of * the hamming weights of the adjacency bitmap words are too large. * + * We further winnow the set of possible adjacency matrices, by + * ensuring the same bit is not set in too many entries of adjmatrix + * (ie, as above, only considering output sticks); and by ensuring + * that it is not set in too few: each output stick must consist + * of at least two fragments since the output sticks are longer than + * the input ones. + * * And, we want to do the search in order of increasing maximum * hamming weight. This is because in practice optimal solutions tend * to have low hamming weight, and having found a reasonable solution @@ -78,6 +105,8 @@ typedef uint32_t AdjWord; #define PRADJ "08"PRIx32 +#define FOR_BITS(j,m) for (j=0, j##bit=1; j < (m); j++, j##bit<<=1) + static int n, m, maxhamweight; static AdjWord *adjmatrix; static AdjWord adjall; @@ -86,8 +115,273 @@ static double best; static glp_prob *best_prob; static AdjWord *best_adjmatrix; +static int n_max_frags=INT_MAX, m_max_frags=INT_MAX; +static int *weight; + static unsigned printcounter; +static void iterate(void); +static void iterate_recurse(int i, AdjWord min); +static bool preconsider_ok(int nwords, bool doprint); +static bool maxhamweight_ok(void); +static void optimise(bool doprint); + +static void progress_eol(void) { + fprintf(stderr," \r"); + fflush(stderr); +} + +static void set_best(double new_best) { + best = new_best; + /* + * When computing n_max_frags, we want to set a value that will skip + * anything that won't provide strictly better solutions. So we + * want + * frags < n / best + * _ _ + * <=> frags < | n / best | + * _ _ + * <=> frags <= | n / best | - 1 + * + * But best values from glpk are slightly approximate, so we + * subtract a fudge factor from our target. + */ + double near_best = best * 0.98 - 0.02; + if (near_best > 0) { + n_max_frags = ceil(n / near_best) - 1; + m_max_frags = ceil(m / near_best) - 1; + } +} + +/*----- multicore support -----*/ + +/* + * Multicore protocol + * + * We fork into: + * - master (parent) + * - generator + * - ncpu workers + * + * ipc facilities: + * - one pipe ("work") from generator to workers + * - ever-extending file ("bus") containing new "best" values + * - one file for each worker giving maxhamweight and adjmatrix for best + * + * generator runs iterate_recurse to a certain depth and writes the + * candidates to a pipe + * + * workers read candidates from the pipe and resume iterate_recurse + * halfway through the recursion + * + * whenever a worker does a doprint, it checks the bus for new best + * value; actual best values are appended + * + * master waits for generator and all workers to finish and then + * runs optimise() for each worker's best, then prints + */ + +static int ncpus = 0, multicore_iteration_boundary = INT_MAX; + +static int mc_bus, mc_work[2]; +static off_t mc_bus_read; + +typedef struct { + int w; + FILE *results; + pid_t pid; +} Worker; +static Worker *mc_us; +static bool mc_am_generator; + +static void multicore_check_for_new_best(void); + +#define MAX_NIOVS 4 +static AdjWord mc_iter_min; +static int mc_niovs; +static size_t mc_iovlen; +static struct iovec mc_iov[MAX_NIOVS]; + +#define IOV0 (mc_niovs = mc_iovlen = 0) + +#define IOV(obj, count) ({ \ + assert(mc_niovs < MAX_NIOVS); \ + mc_iov[mc_niovs].iov_base = &(obj); \ + mc_iov[mc_niovs].iov_len = sizeof(obj) * (count); \ + mc_iovlen += mc_iov[mc_niovs].iov_len; \ + mc_niovs++; \ + }) + +static void mc_rwvsetup_outer(void) { + IOV0; + IOV(maxhamweight, 1); + IOV(mc_iter_min, 1); + IOV(*adjmatrix, multicore_iteration_boundary); + IOV(*weight, m); +} + +static void mc_rwvsetup_full(void) { + IOV0; + IOV(*adjmatrix, n); +} + +static void vlprintf(const char *fmt, va_list al) { + vfprintf(stderr,fmt,al); + progress_eol(); +} + +static void LPRINTF(const char *fmt, ...) { + va_list al; + va_start(al,fmt); + vlprintf(fmt,al); + va_end(al); +} + +static void mc_awaitpid(int wnum, pid_t pid) { + LPRINTF("master awaiting %2d [%ld]",wnum,(long)pid); + int status; + pid_t got = waitpid(pid, &status, 0); + assert(got == pid); + if (status) { + fprintf(stderr,"\nFAILED SUBPROC %2d [%ld] %d\n", + wnum, (long)pid, status); + exit(-1); + } +} + +static void multicore_outer_iteration(int i, AdjWord min) { + static unsigned check_counter; + + assert(i == multicore_iteration_boundary); + mc_iter_min = min; + mc_rwvsetup_outer(); + ssize_t r = writev(mc_work[1], mc_iov, mc_niovs); + assert(r == mc_iovlen); + /* effectively, this writev arranges to transfers control + * to some worker's instance of iterate_recurse via mc_iterate_worker */ + + if (!(check_counter++ & 0xff)) + multicore_check_for_new_best(); +} + +static void mc_iterate_worker(void) { + static time_t lastprint; + + for (;;) { + mc_rwvsetup_outer(); + ssize_t r = readv(mc_work[0], mc_iov, mc_niovs); + if (r == 0) break; + assert(r == mc_iovlen); + + bool ok = maxhamweight_ok(); + if (!ok) continue; + + time_t now = time(0); + bool doprint = now != lastprint; + lastprint = now; + + ok = preconsider_ok(multicore_iteration_boundary, doprint); + if (doprint) progress_eol(); + if (!ok) continue; + + /* stop iterate_recurse from trying to run multicore_outer_iteration */ + int mc_org_it_bound = multicore_iteration_boundary; + multicore_iteration_boundary = INT_MAX; + iterate_recurse(mc_org_it_bound, mc_iter_min); + multicore_iteration_boundary = mc_org_it_bound; + } + if (best_adjmatrix) { + LPRINTF("worker %2d reporting",mc_us->w); + adjmatrix = best_adjmatrix; + mc_rwvsetup_full(); + ssize_t r = writev(fileno(mc_us->results), mc_iov, mc_niovs); + assert(r == mc_iovlen); + } + LPRINTF("worker %2d ending",mc_us->w); + exit(0); +} + +static void multicore(void) { + Worker *mc_workers; + int w; + pid_t genpid; + + multicore_iteration_boundary = n / 2; + + FILE *busf = tmpfile(); assert(busf); + mc_bus = fileno(busf); + int r = fcntl(mc_bus, F_GETFL); assert(r >= 0); + r |= O_APPEND; + r = fcntl(mc_bus, F_SETFL, r); assert(r >= 0); + + r = pipe(mc_work); assert(!r); + + mc_workers = xmalloc(sizeof(*mc_workers) * ncpus); + for (w=0; w= 0); + if (!mc_workers[w].pid) { + mc_us = &mc_workers[w]; + close(mc_work[1]); + LPRINTF("worker %2d running", w); + mc_iterate_worker(); + exit(0); + } + } + + close(mc_work[0]); + + genpid = fork(); assert(genpid >= 0); + if (!genpid) { + mc_am_generator = 1; + LPRINTF("generator running"); + iterate(); + exit(0); + } + + close(mc_work[1]); + mc_awaitpid(-1, genpid); + for (w=0; w best) + set_best(msg); + mc_bus_read += sizeof(msg); + } +} + +static void multicore_found_new_best(void) { + if (!mc_us) + return; + + if (mc_us /* might be master */) fprintf(stderr," w%-2d ",mc_us->w); + ssize_t wrote = write(mc_bus, &best, sizeof(best)); + assert(wrote == sizeof(best)); +} + +/*----- end of multicore support -----*/ + static AdjWord *xalloc_adjmatrix(void) { return xmalloc(sizeof(*adjmatrix)*n); } @@ -96,55 +390,47 @@ static void prep(void) { adjall = ~((~(AdjWord)0) << m); adjmatrix = xalloc_adjmatrix(); glp_term_out(GLP_OFF); + setlinebuf(stderr); + weight = calloc(sizeof(*weight), m); assert(weight); } +#if 0 static AdjWord one_adj_bit(int bitnum) { return (AdjWord)1 << bitnum; } +#endif static int count_set_adj_bits(AdjWord w) { - int j, total; - for (j=0, total=0; j m_max_frags) { PRINTF(" too fine"); goto out; } + had_max += (frags >= maxhamweight); + totalfrags += frags; } if (!had_max) { /* Skip this candidate as its max hamming weight is lower than @@ -154,6 +440,37 @@ static void optimise(int doprint) { PRINTF(" nomaxham"); goto out; } + return 1; + + out: + return 0; +} + +static void optimise(bool doprint) { + /* Consider the best answer (if any) for a given adjacency matrix */ + glp_prob *prob = 0; + int i, j; + AdjWord jbit; + + /* + * Up to a certain point, optimise() can be restarted. We use this + * to go back and print the debugging output if it turns out that we + * have an interesting case. The HAVE_PRINTED macro does this: its + * semantics are to go back in time and make sure that we have + * printed the description of the search case. + */ +#define HAVE_PRINTED ({ \ + if (!doprint) { doprint = 1; goto retry_with_print; } \ + }) + retry_with_print: + if (prob) { + glp_delete_prob(prob); + prob = 0; + } + + bool ok = preconsider_ok(n, doprint); + if (!ok) + goto out; /* * We formulate our problem as an LP problem as follows. @@ -219,8 +536,8 @@ static void optimise(int doprint) { glp_set_obj_coef(prob, X_minimum, 1); for (i=0; i= n) { + for (j=0; j= multicore_iteration_boundary) { + multicore_outer_iteration(i, min); + return; + } for (adjmatrix[i] = min; ; adjmatrix[i]++) { @@ -332,8 +662,20 @@ static void iterate_recurse(int i, AdjWord min) { if (i == 0 && (adjmatrix[i] & (1+adjmatrix[i]))) goto again; + FOR_BITS(j,m) + if (adjmatrix[i] & jbit) + weight[j]++; + for (int j = 0; j < m; j++) + if (weight[j] > n_max_frags) + goto takeout; + iterate_recurse(i+1, adjmatrix[i]); + takeout: + FOR_BITS(j,m) + if (adjmatrix[i] & jbit) + weight[j]--; + again: if (adjmatrix[i] == adjall) return; @@ -342,21 +684,23 @@ static void iterate_recurse(int i, AdjWord min) { static void iterate(void) { for (maxhamweight=1; maxhamweight<=m; maxhamweight++) { - double maxminsize = (double)m / maxhamweight; - if (maxminsize <= best) + if (!maxhamweight_ok()) continue; iterate_recurse(0, 1); } } -int main(int argc, char **argv) { - assert(argc==3); - n = atoi(argv[1]); - m = atoi(argv[2]); - prep(); - iterate(); +static void report(void) { fprintf(stderr, "\n"); + if (best_adjmatrix) { + int i; + fprintf(stderr," "); + for (i=0; i= 0) { + switch (opt) { + case 'j': ncpus = atoi(optarg); break; + case 'b': best_to_set = atof(optarg); break; + case '+': assert(!"bad option"); + default: abort(); + } + } + argc -= optind-1; + argv += optind-1; + assert(argc==3); + n = atoi(argv[1]); + m = atoi(argv[2]); + assert(n > m); + if (best_to_set > 0) set_best(best_to_set); + + prep(); + + if (ncpus) multicore(); + else iterate(); + + report(); return 0; }