/***************************************************************************/
/* basic data structure:
*
- * a hyper-rectangle is stored as an array of length L = 2n+2, where [1]
+ * a hyper-rectangle is stored as an array of length L = 2n+3, where [1]
* is the value (f) of the function at the center, [0] is the "size"
- * measure (d) of the rectangle, [2..n+1] are the coordinates of the
- * center (c), and [n+2..2n+1] are the widths of the sides (w).
+ * measure (d) of the rectangle, [3..n+2] are the coordinates of the
+ * center (c), [n+3..2n+2] are the widths of the sides (w), and [2]
+ * is an "age" measure for tie-breaking purposes.
*
* we store the hyper-rectangles in a red-black tree, sorted by (d,f)
* in lexographic order, to allow us to perform quick convex-hull
* calculations (in the future, we might make this data structure
* more sophisticated based on the dynamic convex-hull literature).
*
- * n > 0 always
+ * n > 0 always, of course.
*/
-#define RECT_LEN(n) (2*(n)+2) /* number of double values in a hyperrect */
-
/* parameters of the search algorithm and various information that
needs to be passed around */
typedef struct {
int n; /* dimension */
- int L; /* RECT_LEN(n) */
+ int L; /* size of each rectangle (2n+3) */
double magic_eps; /* Jones' epsilon parameter (1e-4 is recommended) */
int which_diam; /* which measure of hyper-rectangle diam to use:
0 = Jones, 1 = Gablonsky */
int which_div; /* which way to divide rects:
- 0: Gablonsky (cubes divide all, rects longest)
- 1: orig. Jones (divide all longest sides)
+ 0: orig. Jones (divide all longest sides)
+ 1: Gablonsky (cubes divide all, rects longest)
2: Jones Encyc. Opt.: pick random longest side */
+ int which_opt; /* which rects are considered "potentially optimal"
+ 0: Jones (all pts on cvx hull, even equal pts)
+ 1: Gablonsky DIRECT-L (pick one pt, if equal pts)
+ 2: ~ 1, but pick points randomly if equal pts
+ ... 2 seems to suck compared to just picking oldest pt */
const double *lb, *ub;
nlopt_stopping *stop; /* stopping criteria */
nlopt_func f; void *f_data;
int i;
const const int n = p->n;
const int L = p->L;
- double *c = rdiv + 2; /* center of rect to divide */
+ double *c = rdiv + 3; /* center of rect to divide */
double *w = c + n; /* widths of rect to divide */
double wmax = w[0];
int imax = 0, nlongest = 0;
double *rnew;
ALLOC_RECT(rnew, L);
memcpy(rnew, rdiv, sizeof(double) * L);
- rnew[2 + isort[i]] += w[isort[i]] * (2*k-1);
+ rnew[3 + isort[i]] += w[isort[i]] * (2*k-1);
rnew[1] = fv[2*isort[i]+k];
+ rnew[2] = p->rtree.N; /* age */
if (!rb_tree_insert(&p->rtree, rnew)) {
free(rnew);
return NLOPT_OUT_OF_MEMORY;
double *rnew;
ALLOC_RECT(rnew, L);
memcpy(rnew, rdiv, sizeof(double) * L);
- rnew[2 + i] += w[i] * (2*k-1);
- FUNCTION_EVAL(rnew[1], rnew + 2, p, rnew);
+ rnew[3 + i] += w[i] * (2*k-1);
+ FUNCTION_EVAL(rnew[1], rnew + 3, p, rnew);
+ rnew[2] = p->rtree.N; /* age */
if (!rb_tree_insert(&p->rtree, rnew)) {
free(rnew);
return NLOPT_OUT_OF_MEMORY;
/* Find the lower convex hull of a set of points (x,y) stored in a rb-tree
of pointers to {x,y} arrays sorted in lexographic order by (x,y).
- Unlike standard convex hulls, we allow redundant points on the hull.
+ Unlike standard convex hulls, we allow redundant points on the hull,
+ and even allow duplicate points if allow_dups is nonzero.
The return value is the number of points in the hull, with pointers
stored in hull[i] (should be an array of length >= t->N).
*/
-static int convex_hull(rb_tree *t, double **hull)
+static int convex_hull(rb_tree *t, double **hull, int allow_dups)
{
int nhull = 0;
double minslope;
yminmin = n->k[1];
xmax = nmax->k[0];
- do { /* include any duplicate points at (xmin,yminmin) */
+ if (allow_dups)
+ do { /* include any duplicate points at (xmin,yminmin) */
+ hull[nhull++] = n->k;
+ n = rb_tree_succ(n);
+ } while (n && n->k[0] == xmin && n->k[1] == yminmin);
+ else
hull[nhull++] = n->k;
- n = rb_tree_succ(n);
- } while (n && n->k[0] == xmin && n->k[1] == yminmin);
+
if (xmin == xmax) return nhull;
/* set nmax = min mode with x == xmax */
continue;
}
else { /* equal y values, add to hull */
- hull[nhull++] = k;
+ if (allow_dups)
+ hull[nhull++] = k;
continue;
}
}
hull[nhull++] = k;
}
- do { /* include any duplicate points at (xmax,ymaxmin) */
+ if (allow_dups)
+ do { /* include any duplicate points at (xmax,ymaxmin) */
+ hull[nhull++] = nmax->k;
+ nmax = rb_tree_succ(nmax);
+ } while (nmax && nmax->k[0] == xmax && n->k[1] == ymaxmin);
+ else
hull[nhull++] = nmax->k;
- nmax = rb_tree_succ(nmax);
- } while (nmax && nmax->k[0] == xmax && n->k[1] == ymaxmin);
return nhull;
}
p->hull = (double **) realloc(p->hull, sizeof(double*)*p->hull_len);
if (!p->hull) return NLOPT_OUT_OF_MEMORY;
}
- nhull = convex_hull(&p->rtree, hull = p->hull);
+ nhull = convex_hull(&p->rtree, hull = p->hull, p->which_opt != 1);
divisions:
for (i = 0; i < nhull; ++i) {
double K1 = -HUGE_VAL, K2 = -HUGE_VAL, K;
int im, ip;
+
+ /* find unequal points before (im) and after (ip) to get slope */
for (im = i-1; im >= 0 && hull[im][0] == hull[i][0]; --im);
for (ip = i+1; ip < nhull && hull[ip][0] == hull[i][0]; ++ip);
+
if (im >= 0)
K1 = (hull[i][1] - hull[im][1]) / (hull[i][0] - hull[im][0]);
if (ip < nhull)
nlopt_result ret = divide_rect(hull[i], p);
divided_some = 1;
if (ret != NLOPT_SUCCESS) return ret;
- xtol_reached = xtol_reached && small(hull[i] + 2+n, p);
+ xtol_reached = xtol_reached && small(hull[i] + 3+n, p);
}
+
+ /* for the DIRECT-L variant, we only divide one rectangle out
+ of all points with equal diameter and function values
+ ... note that for p->which_opt == 1, i == ip-1 should be a no-op
+ anyway, since we set allow_dups=0 in convex_hull above */
+ if (p->which_opt == 1)
+ i = ip - 1; /* skip to next unequal point for next iteration */
+ else if (p->which_opt == 2) /* like DIRECT-L but randomized */
+ i += nlopt_iurand(ip - i); /* possibly do another equal pt */
}
if (!divided_some) {
if (magic_eps != 0) {
/***************************************************************************/
-/* lexographic sort order (d,f) of hyper-rects, for red-black tree */
+/* lexographic sort order (d,f,age) of hyper-rects, for red-black tree */
static int hyperrect_compare(double *a, double *b)
{
if (a[0] < b[0]) return -1;
if (a[0] > b[0]) return +1;
if (a[1] < b[1]) return -1;
if (a[1] > b[1]) return +1;
- return (int) (a - b); /* tie-breaker */
+ if (a[2] < b[2]) return -1;
+ if (a[2] > b[2]) return +1;
+ return (int) (a - b); /* tie-breaker, shouldn't be needed */
}
/***************************************************************************/
nlopt_result ret = NLOPT_OUT_OF_MEMORY;
p.magic_eps = magic_eps;
- p.which_diam = which_alg % 10;
- p.which_div = (which_alg / 10) % 10;
+ p.which_diam = which_alg % 3;
+ p.which_div = (which_alg / 3) % 3;
+ p.which_opt = (which_alg / (3*3)) % 3;
p.lb = lb; p.ub = ub;
p.stop = stop;
p.n = n;
- p.L = RECT_LEN(n);
+ p.L = 2*n+3;
p.f = f;
p.f_data = f_data;
p.xmin = x;
if (!(rnew = (double *) malloc(sizeof(double) * p.L))) goto done;
for (i = 0; i < n; ++i) {
- rnew[2+i] = 0.5 * (lb[i] + ub[i]);
- rnew[2+n+i] = ub[i] - lb[i];
+ rnew[3+i] = 0.5 * (lb[i] + ub[i]);
+ rnew[3+n+i] = ub[i] - lb[i];
}
- rnew[0] = rect_diameter(n, rnew+2+n, &p);
- rnew[1] = function_eval(rnew+2, &p);
+ rnew[0] = rect_diameter(n, rnew+3+n, &p);
+ rnew[1] = function_eval(rnew+3, &p);
+ rnew[2] = -1; /* oldest rect */
if (!rb_tree_insert(&p.rtree, rnew)) {
free(rnew);
goto done;