Changed SLOWDOWN. IF this does not work ok OLD_SLOWDOWN is the old algo.
const bool X_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
const bool Y_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
-#define DISABLE_MAX_ENDSTOPS
+//#define DISABLE_MAX_ENDSTOPS
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
#define X_ENABLE_ON 0
// default settings
-#define DEFAULT_AXIS_STEPS_PER_UNIT {78.7402,78.7402,200*8/3,760*1.1} // default steps per unit for ultimaker
+#define DEFAULT_AXIS_STEPS_PER_UNIT {78.7402,78.7402,200*8/3,760*1.1} // default steps per unit for ultimaker
#define DEFAULT_MAX_FEEDRATE {500, 500, 5, 45} // (mm/sec)
#define DEFAULT_MAX_ACCELERATION {9000,9000,100,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
//#define ULTRA_LCD //general lcd support, also 16x2
//#define SDSUPPORT // Enable SD Card Support in Hardware Console
-//#define ULTIPANEL
+#define ULTIPANEL
#ifdef ULTIPANEL
// #define NEWPANEL //enable this if you have a click-encoder panel
#define SDSUPPORT
// the target temperature is set to mintemp+factor*se[steps/sec] and limited by mintemp and maxtemp
// you exit the value by any M109 without F*
// Also, if the temperature is set to a value <mintemp, it is not changed by autotemp.
-// on an ultimaker, some initial testing worked with M109 S215 T260 F0.1 in the start.gcode
-//#define AUTOTEMP
+// on an ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
+#define AUTOTEMP
#ifdef AUTOTEMP
#define AUTOTEMP_OLDWEIGHT 0.98
#endif
#define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate
#define DEFAULT_MINTRAVELFEEDRATE 0.0
-// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff.
-#define DEFAULT_MINSEGMENTTIME 20000 // Obsolete delete this
+// minimum time in microseconds that a movement needs to take if the buffer is emptied.
+#define DEFAULT_MINSEGMENTTIME 20000
// If defined the movements slow down when the look ahead buffer is only half full
#define SLOWDOWN
#endif // ADVANCE
-// A debugging feature to compare calculated vs performed steps, to see if steps are lost by the software.
-//#define DEBUG_STEPS
-
// Arc interpretation settings:
#define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25
#define SERIAL_PROTOCOL(x) MYSERIAL.print(x);
+#define SERIAL_PROTOCOL_F(x,y) MYSERIAL.print(x,y);
#define SERIAL_PROTOCOLPGM(x) serialprintPGM(MYPGM(x));
#define SERIAL_PROTOCOLLN(x) {MYSERIAL.print(x);MYSERIAL.write('\n');}
#define SERIAL_PROTOCOLLNPGM(x) {serialprintPGM(MYPGM(x));MYSERIAL.write('\n');}
}
#if (TEMP_0_PIN > -1)
SERIAL_PROTOCOLPGM("ok T:");
- SERIAL_PROTOCOL(degHotend(tmp_extruder));
- //SERIAL_PROTOCOLPGM("/");
- //SERIAL_PROTOCOL(degTargetHotend(tmp_extruder));
+ SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
+ SERIAL_PROTOCOLPGM(" /");
+ SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
#if TEMP_BED_PIN > -1
SERIAL_PROTOCOLPGM(" B:");
- SERIAL_PROTOCOL(degBed());
- //SERIAL_PROTOCOLPGM("/");
- //SERIAL_PROTOCOL(degTargetBed());
+ SERIAL_PROTOCOL_F(degBed(),1);
+ SERIAL_PROTOCOLPGM(" /");
+ SERIAL_PROTOCOL_F(degTargetBed(),1);
#endif //TEMP_BED_PIN
#else
SERIAL_ERROR_START;
if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
#ifdef AUTOTEMP
if (code_seen('S')) autotemp_min=code_value();
- if (code_seen('G')) autotemp_max=code_value();
+ if (code_seen('B')) autotemp_max=code_value();
if (code_seen('F'))
{
autotemp_factor=code_value();
if( (millis() - codenum) > 1000UL )
{ //Print Temp Reading and remaining time every 1 second while heating up/cooling down
SERIAL_PROTOCOLPGM("T:");
- SERIAL_PROTOCOL( degHotend(tmp_extruder) );
+ SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
SERIAL_PROTOCOLPGM(" E:");
- SERIAL_PROTOCOL( (int)tmp_extruder );
+ SERIAL_PROTOCOL((int)tmp_extruder);
#ifdef TEMP_RESIDENCY_TIME
SERIAL_PROTOCOLPGM(" W:");
if(residencyStart > -1)
SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOL(tt);
SERIAL_PROTOCOLPGM(" E:");
- SERIAL_PROTOCOL( (int)active_extruder );
+ SERIAL_PROTOCOL((int)active_extruder);
SERIAL_PROTOCOLPGM(" B:");
- SERIAL_PROTOCOLLN(degBed());
+ SERIAL_PROTOCOL_F(degBed(),1);
+ SERIAL_PROTOCOLLN("");
codenum = millis();
}
manage_heater();
for(int8_t i=0; i < NUM_AXIS; i++)
{
if(code_seen(axis_codes[i]))
- axis_steps_per_unit[i] = code_value();
+
+ if(i == 3) { // E
+ float value = code_value();
+ if(value < 20.0) {
+ float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
+ max_e_jerk *= factor;
+ max_feedrate[i] *= factor;
+ axis_steps_per_sqr_second[i] *= factor;
+ }
+ axis_steps_per_unit[i] = value;
+ }
+ else {
+ axis_steps_per_unit[i] = code_value();
+ }
}
break;
case 115: // M115
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
*/
-
-
-
#include "Marlin.h"
#include "planner.h"
#include "stepper.h"
void getHighESpeed()
{
static float oldt=0;
- if(!autotemp_enabled)
+ if(!autotemp_enabled){
return;
- if(degTargetHotend0()+2<autotemp_min) //probably temperature set to zero.
+ }
+ if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
return; //do nothing
+ }
- float high=0;
+ float high=0.0;
uint8_t block_index = block_buffer_tail;
while(block_index != block_buffer_head) {
- float se=block_buffer[block_index].steps_e/float(block_buffer[block_index].step_event_count)*block_buffer[block_index].nominal_rate;
- //se; units steps/sec;
- if(se>high)
- {
- high=se;
+ if((block_buffer[block_index].steps_x != 0) ||
+ (block_buffer[block_index].steps_y != 0) ||
+ (block_buffer[block_index].steps_z != 0)) {
+ float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
+ //se; mm/sec;
+ if(se>high)
+ {
+ high=se;
+ }
}
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
}
}
oldt=t;
setTargetHotend0(t);
-// SERIAL_ECHO_START;
-// SERIAL_ECHOPAIR("highe",high);
-// SERIAL_ECHOPAIR(" t",t);
-// SERIAL_ECHOLN("");
}
#endif
analogWrite(FAN_PIN,tail_fan_speed);
}
#endif
+ #ifdef AUTOTEMP
+ getHighESpeed();
+ #endif
}
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
// Bail if this is a zero-length block
- if (block->step_event_count <=dropsegments) { return; };
+ if (block->step_event_count <= dropsegments) { return; };
block->fan_speed = FanSpeed;
// Enable all
if(block->steps_e != 0) { enable_e0();enable_e1();enable_e2(); }
-
if (block->steps_e == 0) {
if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
}
if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
}
- // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
- int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
- #ifdef SLOWDOWN
- if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
- #endif
-
float delta_mm[4];
delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
// Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
float inverse_second = feed_rate * inverse_millimeters;
- block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
- block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
-
+ int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
+
+ // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
+ #ifdef OLD_SLOWDOWN
+ if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
+ #endif
-/*
+ #ifdef SLOWDOWN
// segment time im micro seconds
- long segment_time = lround(1000000.0/inverse_second);
- if ((blockcount>0) && (blockcount < (BLOCK_BUFFER_SIZE - 4))) {
- if (segment_time<minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
- segment_time=segment_time+lround(2*(minsegmenttime-segment_time)/blockcount);
+ unsigned long segment_time = lround(1000000.0/inverse_second);
+ if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5))) {
+ if (segment_time < minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
+ inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
}
}
- else {
- if (segment_time<minsegmenttime) segment_time=minsegmenttime;
- }
+ #endif
// END OF SLOW DOWN SECTION
-*/
+
+ block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
+ block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
- // Calculate speed in mm/sec for each axis
+ // Calculate and limit speed in mm/sec for each axis
float current_speed[4];
- for(int i=0; i < 4; i++) {
- current_speed[i] = delta_mm[i] * inverse_second;
- }
-
- // Limit speed per axis
float speed_factor = 1.0; //factor <=1 do decrease speed
for(int i=0; i < 4; i++) {
+ current_speed[i] = delta_mm[i] * inverse_second;
if(abs(current_speed[i]) > max_feedrate[i])
speed_factor = min(speed_factor, max_feedrate[i] / abs(current_speed[i]));
}
// Correct the speed
if( speed_factor < 1.0) {
-// Serial.print("speed factor : "); Serial.println(speed_factor);
- for(int i=0; i < 4; i++) {
- if(abs(current_speed[i]) > max_feedrate[i])
- speed_factor = min(speed_factor, max_feedrate[i] / abs(current_speed[i]));
- /*
- if(speed_factor < 0.1) {
- Serial.print("speed factor : "); Serial.println(speed_factor);
- Serial.print("current_speed"); Serial.print(i); Serial.print(" : "); Serial.println(current_speed[i]);
- }
- */
- }
for(unsigned char i=0; i < 4; i++) {
current_speed[i] *= speed_factor;
}
*/
#endif // ADVANCE
-
-
-
calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
MINIMUM_PLANNER_SPEED/block->nominal_speed);
memcpy(position, target, sizeof(target)); // position[] = target[]
planner_recalculate();
- #ifdef AUTOTEMP
- getHighESpeed();
- #endif
+
st_wake_up();
}
static long old_advance = 0;
#endif
static long e_steps[3];
-static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
static long acceleration_time, deceleration_time;
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
static unsigned short acc_step_rate; // needed for deccelaration start point
void st_wake_up() {
// TCNT1 = 0;
- if(busy == false)
ENABLE_STEPPER_DRIVER_INTERRUPT();
}
// Anything in the buffer?
current_block = plan_get_current_block();
if (current_block != NULL) {
+ current_block->busy = true;
trapezoid_generator_reset();
counter_x = -(current_block->step_event_count >> 1);
counter_y = counter_x;
TIMSK0 |= (1<<OCIE0A);
#endif //ADVANCE
- #ifdef ENDSTOPS_ONLY_FOR_HOMING
- enable_endstops(false);
- #else
- enable_endstops(true);
- #endif
-
+ enable_endstops(true); // Start with endstops active. After homing they can be disabled
sei();
}
static int maxttemp[EXTRUDERS] = { 16383 }; // the first value used for all
static int bed_minttemp = 0;
static int bed_maxttemp = 16383;
- static int heater_pin_map[EXTRUDERS] = { HEATER_0_PIN
-#if EXTRUDERS > 1
- , HEATER_1_PIN
-#endif
-#if EXTRUDERS > 2
- , HEATER_2_PIN
-#endif
-#if EXTRUDERS > 3
- #error Unsupported number of extruders
-#endif
- };
static void *heater_ttbl_map[EXTRUDERS] = { (void *)heater_0_temptable
#if EXTRUDERS > 1
, (void *)heater_1_temptable
float input;
int cycles=0;
bool heating = true;
- soft_pwm[0] = 255>>1;
unsigned long temp_millis = millis();
unsigned long t1=temp_millis;
SERIAL_ECHOLN("PID Autotune start");
- //disable_heater(); // switch off all heaters.
+ disable_heater(); // switch off all heaters.
+ soft_pwm[0] = 255>>1;
+
for(;;) {
if(temp_meas_ready == true) { // temp sample ready
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
+ /*
Kp = 0.33*Ku;
Ki = Kp/Tu;
Kd = Kp*Tu/3;
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
+ */
}
}
soft_pwm[0] = (bias + d) >> 1;
}
}
if(input > (temp + 20)) {
- SERIAL_PROTOCOLLNPGM("PID Autotune failed !, Temperature to high");
+ SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature to high");
return;
}
if(millis() - temp_millis > 2000) {
SERIAL_PROTOCOLPGM(" @:");
SERIAL_PROTOCOLLN(getHeaterPower(0));
}
+ if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
+ SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
+ return;
+ }
+ if(cycles > 5) {
+ SERIAL_PROTOCOLLNPGM("PID Autotune finished ! Place the Kp, Ki and Kd constants in the configuration.h");
+ return;
+ }
LCD_STATUS;
}
}
// Check if temperature is within the correct range
if((current_raw[e] > minttemp[e]) && (current_raw[e] < maxttemp[e]))
{
- //analogWrite(heater_pin_map[e], pid_output);
soft_pwm[e] = (int)pid_output >> 1;
}
else {
- //analogWrite(heater_pin_map[e], 0);
soft_pwm[e] = 0;
}
} // End extruder for loop
target_raw[0]=0;
soft_pwm[0]=0;
#if HEATER_0_PIN > -1
- digitalWrite(HEATER_0_PIN,LOW);
+ WRITE(HEATER_0_PIN,LOW);
#endif
#endif
target_raw[1]=0;
soft_pwm[1]=0;
#if HEATER_1_PIN > -1
- digitalWrite(HEATER_1_PIN,LOW);
+ WRITE(HEATER_1_PIN,LOW);
#endif
#endif
target_raw[2]=0;
soft_pwm[2]=0;
#if HEATER_2_PIN > -1
- digitalWrite(HEATER_2_PIN,LOW);
+ WRITE(HEATER_2_PIN,LOW);
#endif
#endif
#if TEMP_BED_PIN > -1
target_raw_bed=0;
#if HEATER_BED_PIN > -1
- digitalWrite(HEATER_BED_PIN,LOW);
+ WRITE(HEATER_BED_PIN,LOW);
#endif
#endif
}
void max_temp_error(uint8_t e) {
- digitalWrite(heater_pin_map[e], 0);
+ disable_heater();
if(IsStopped() == false) {
SERIAL_ERROR_START;
SERIAL_ERRORLN(e);
}
void min_temp_error(uint8_t e) {
- digitalWrite(heater_pin_map[e], 0);
+ disable_heater();
if(IsStopped() == false) {
SERIAL_ERROR_START;
SERIAL_ERRORLN(e);
}
void bed_max_temp_error(void) {
- digitalWrite(HEATER_BED_PIN, 0);
+ WRITE(HEATER_BED_PIN, 0);
if(IsStopped() == false) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !!");