#define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25
+// Frequency limit
+// See nophead's blog for more info
+#define XY_FREQUENCY_LIMIT 15
+
+// Minimum planner junction speed. Sets the default minimum speed the planner plans for at the end
+// of the buffer and all stops. This should not be much greater than zero and should only be changed
+// if unwanted behavior is observed on a user's machine when running at very slow speeds.
+#define MINIMUM_PLANNER_SPEED 2.0 // (mm/sec)
+
// BASIC SETTINGS: select your board type, thermistor type, axis scaling, and endstop configuration
//// The following define selects which electronics board you have. Please choose the one that matches your setup
#define DISABLE_E false
// Inverting axis direction
+//#define INVERT_X_DIR false // for Mendel set to false, for Orca set to true
+//#define INVERT_Y_DIR true // for Mendel set to true, for Orca set to false
+//#define INVERT_Z_DIR false // for Mendel set to false, for Orca set to true
+//#define INVERT_E_DIR true // for direct drive extruder v9 set to true, for geared extruder set to false
+
#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true
#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false
#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true
//// MOVEMENT SETTINGS
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
//note: on bernhards ultimaker 200 200 12 are working well.
-#define HOMING_FEEDRATE {50*60, 50*60, 12*60, 0} // set the homing speeds
+#define HOMING_FEEDRATE {50*60, 50*60, 4*60, 0} // set the homing speeds (mm/min)
#define AXIS_RELATIVE_MODES {false, false, false, false}
// default settings
#define DEFAULT_AXIS_STEPS_PER_UNIT {79.87220447,79.87220447,200*8/3,14} // default steps per unit for ultimaker
-#define DEFAULT_MAX_FEEDRATE {160*60, 160*60, 10*60, 500000}
-#define DEFAULT_MAX_ACCELERATION {9000,9000,150,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
+//#define DEFAULT_AXIS_STEPS_PER_UNIT {40, 40, 3333.92, 67}
+#define DEFAULT_MAX_FEEDRATE {500, 500, 10, 500000} // (mm/min)
+#define DEFAULT_MAX_ACCELERATION {9000,9000,100,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
#define DEFAULT_RETRACT_ACCELERATION 7000 // X, Y, Z and E max acceleration in mm/s^2 for r retracts
-#define DEFAULT_MINIMUMFEEDRATE 10 // minimum feedrate
-#define DEFAULT_MINTRAVELFEEDRATE 10
+#define DEFAULT_MINIMUMFEEDRATE 0 // minimum feedrate
+#define DEFAULT_MINTRAVELFEEDRATE 0
// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff.
#define DEFAULT_MINSEGMENTTIME 20000
-#define DEFAULT_XYJERK 30.0*60
-#define DEFAULT_ZJERK 10.0*60
+#define DEFAULT_XYJERK 30.0 // (mm/sec)
+#define DEFAULT_ZJERK 0.4 // (mm/sec)
// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
//#define TEMP_HYSTERESIS 5 // (C°) range of +/- temperatures considered "close" to the target one
//// The minimal temperature defines the temperature below which the heater will not be enabled
-#define HEATER_0_MINTEMP 5
+//#define HEATER_0_MINTEMP 5
//#define HEATER_1_MINTEMP 5
//#define BED_MINTEMP 5
// When temperature exceeds max temp, your heater will be switched off.
// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
// You should use MINTEMP for thermistor short/failure protection.
-#define HEATER_0_MAXTEMP 275
+//#define HEATER_0_MAXTEMP 275
//#define_HEATER_1_MAXTEMP 275
//#define BED_MAXTEMP 150
// The number of linear motions that can be in the plan at any give time.
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ringbuffering.
#if defined SDSUPPORT
- #define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
+ #define BLOCK_BUFFER_SIZE 8 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
#else
- #define BLOCK_BUFFER_SIZE 16 // maximize block buffer
+ #define BLOCK_BUFFER_SIZE 8 // maximize block buffer
#endif
//The ASCII buffer for recieving from the serial:
//===========================================================================
//=============================public variables=============================
//===========================================================================
+#ifdef SDSUPPORT
CardReader card;
+#endif
float homing_feedrate[] = HOMING_FEEDRATE;
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
volatile int feedmultiply=100; //100->1 200->2
{
if(buflen<3)
get_command();
+ #ifdef SDSUPPORT
card.checkautostart(false);
+ #endif
if(buflen)
{
#ifdef SDSUPPORT
void prepare_move()
{
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60.0/100.0);
+ plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0);
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
// Trace the arc
- mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60.0/100.0, r, isclockwise);
+ mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise);
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
-/*\r
- planner.c - buffers movement commands and manages the acceleration profile plan\r
- Part of Grbl\r
-\r
- Copyright (c) 2009-2011 Simen Svale Skogsrud\r
-\r
- Grbl is free software: you can redistribute it and/or modify\r
- it under the terms of the GNU General Public License as published by\r
- the Free Software Foundation, either version 3 of the License, or\r
- (at your option) any later version.\r
-\r
- Grbl is distributed in the hope that it will be useful,\r
- but WITHOUT ANY WARRANTY; without even the implied warranty of\r
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\r
- GNU General Public License for more details.\r
-\r
- You should have received a copy of the GNU General Public License\r
- along with Grbl. If not, see <http://www.gnu.org/licenses/>.\r
-*/\r
-\r
-/* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */\r
-\r
-/* \r
- Reasoning behind the mathematics in this module (in the key of 'Mathematica'):\r
- \r
- s == speed, a == acceleration, t == time, d == distance\r
-\r
- Basic definitions:\r
-\r
- Speed[s_, a_, t_] := s + (a*t) \r
- Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]\r
-\r
- Distance to reach a specific speed with a constant acceleration:\r
-\r
- Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]\r
- d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()\r
-\r
- Speed after a given distance of travel with constant acceleration:\r
-\r
- Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]\r
- m -> Sqrt[2 a d + s^2] \r
-\r
- DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]\r
-\r
- When to start braking (di) to reach a specified destionation speed (s2) after accelerating\r
- from initial speed s1 without ever stopping at a plateau:\r
-\r
- Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]\r
- di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()\r
-\r
- IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)\r
-*/\r
- \r
-\r
-//#include <inttypes.h>\r
-//#include <math.h> \r
-//#include <stdlib.h>\r
-\r
-#include "Marlin.h"\r
-#include "Configuration.h"\r
-#include "pins.h"\r
-#include "fastio.h"\r
-#include "planner.h"\r
-#include "stepper.h"\r
-#include "temperature.h"\r
-#include "ultralcd.h"\r
-\r
-//===========================================================================\r
-//=============================public variables ============================\r
-//===========================================================================\r
-\r
-unsigned long minsegmenttime;\r
-float max_feedrate[4]; // set the max speeds\r
-float axis_steps_per_unit[4];\r
-long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software\r
-float minimumfeedrate;\r
-float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX\r
-float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX\r
-float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.\r
-float max_z_jerk;\r
-float mintravelfeedrate;\r
-unsigned long axis_steps_per_sqr_second[NUM_AXIS];\r
-\r
-// The current position of the tool in absolute steps\r
-long position[4]; //rescaled from extern when axis_steps_per_unit are changed by gcode\r
-\r
-\r
-//===========================================================================\r
-//=============================private variables ============================\r
-//===========================================================================\r
-static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions\r
-static volatile unsigned char block_buffer_head; // Index of the next block to be pushed\r
-static volatile unsigned char block_buffer_tail; // Index of the block to process now\r
-\r
-\r
-\r
-//===========================================================================\r
-//=============================functions ============================\r
-//===========================================================================\r
-#define ONE_MINUTE_OF_MICROSECONDS 60000000.0\r
-\r
-// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the \r
-// given acceleration:\r
-inline float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {\r
- if (acceleration!=0) {\r
- return((target_rate*target_rate-initial_rate*initial_rate)/\r
- (2.0*acceleration));\r
- }\r
- else {\r
- return 0.0; // acceleration was 0, set acceleration distance to 0\r
- }\r
-}\r
-\r
-// This function gives you the point at which you must start braking (at the rate of -acceleration) if \r
-// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after\r
-// a total travel of distance. This can be used to compute the intersection point between acceleration and\r
-// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)\r
-\r
-inline float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {\r
- if (acceleration!=0) {\r
- return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/\r
- (4.0*acceleration) );\r
- }\r
- else {\r
- return 0.0; // acceleration was 0, set intersection distance to 0\r
- }\r
-}\r
-\r
-// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.\r
-\r
-void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed) {\r
- if(block->busy == true) return; // If block is busy then bail out.\r
- float entry_factor = entry_speed / block->nominal_speed;\r
- float exit_factor = exit_speed / block->nominal_speed;\r
- long initial_rate = ceil(block->nominal_rate*entry_factor);\r
- long final_rate = ceil(block->nominal_rate*exit_factor);\r
- \r
- #ifdef ADVANCE\r
- long initial_advance = block->advance*entry_factor*entry_factor;\r
- long final_advance = block->advance*exit_factor*exit_factor;\r
- #endif // ADVANCE\r
-\r
- // Limit minimal step rate (Otherwise the timer will overflow.)\r
- if(initial_rate <120) initial_rate=120;\r
- if(final_rate < 120) final_rate=120;\r
- \r
- // Calculate the acceleration steps\r
- long acceleration = block->acceleration_st;\r
- long accelerate_steps = estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration);\r
- long decelerate_steps = estimate_acceleration_distance(final_rate, block->nominal_rate, acceleration);\r
- // Calculate the size of Plateau of Nominal Rate. \r
- long plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;\r
-\r
- // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will\r
- // have to use intersection_distance() to calculate when to abort acceleration and start braking \r
- // in order to reach the final_rate exactly at the end of this block.\r
- if (plateau_steps < 0) { \r
- accelerate_steps = intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count);\r
- plateau_steps = 0;\r
- } \r
-\r
- long decelerate_after = accelerate_steps+plateau_steps;\r
-\r
- CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section\r
- if(block->busy == false) { // Don't update variables if block is busy.\r
- block->accelerate_until = accelerate_steps;\r
- block->decelerate_after = decelerate_after;\r
- block->initial_rate = initial_rate;\r
- block->final_rate = final_rate;\r
- #ifdef ADVANCE\r
- block->initial_advance = initial_advance;\r
- block->final_advance = final_advance;\r
- #endif //ADVANCE\r
- }\r
- CRITICAL_SECTION_END;\r
-} \r
-\r
-// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the \r
-// acceleration within the allotted distance.\r
-inline float max_allowable_speed(float acceleration, float target_velocity, float distance) {\r
- return sqrt(target_velocity*target_velocity-2*acceleration*60*60*distance);\r
-}\r
-\r
-// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.\r
-// This method will calculate the junction jerk as the euclidean distance between the nominal \r
-// velocities of the respective blocks.\r
-inline float junction_jerk(block_t *before, block_t *after) {\r
- return sqrt(\r
- pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));\r
-}\r
-\r
-// Return the safe speed which is max_jerk/2, e.g. the \r
-// speed under which you cannot exceed max_jerk no matter what you do.\r
-float safe_speed(block_t *block) {\r
- float safe_speed;\r
- safe_speed = max_xy_jerk/2; \r
- if(abs(block->speed_z) > max_z_jerk/2) \r
- safe_speed = max_z_jerk/2;\r
- if (safe_speed > block->nominal_speed) \r
- safe_speed = block->nominal_speed;\r
- return safe_speed; \r
-}\r
-\r
-// The kernel called by planner_recalculate() when scanning the plan from last to first entry.\r
-void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {\r
- if(!current) { \r
- return; \r
- }\r
-\r
- float entry_speed = current->nominal_speed;\r
- float exit_factor;\r
- float exit_speed;\r
- if (next) {\r
- exit_speed = next->entry_speed;\r
- } \r
- else {\r
- exit_speed = safe_speed(current);\r
- }\r
-\r
- // Calculate the entry_factor for the current block. \r
- if (previous) {\r
- // Reduce speed so that junction_jerk is within the maximum allowed\r
- float jerk = junction_jerk(previous, current);\r
- if((previous->steps_x == 0) && (previous->steps_y == 0)) {\r
- entry_speed = safe_speed(current);\r
- }\r
- else if (jerk > max_xy_jerk) {\r
- entry_speed = (max_xy_jerk/jerk) * entry_speed;\r
- } \r
- if(abs(previous->speed_z - current->speed_z) > max_z_jerk) {\r
- entry_speed = (max_z_jerk/abs(previous->speed_z - current->speed_z)) * entry_speed;\r
- } \r
- // If the required deceleration across the block is too rapid, reduce the entry_factor accordingly.\r
- if (entry_speed > exit_speed) {\r
- float max_entry_speed = max_allowable_speed(-current->acceleration,exit_speed, current->millimeters);\r
- if (max_entry_speed < entry_speed) {\r
- entry_speed = max_entry_speed;\r
- }\r
- } \r
- } \r
- else {\r
- entry_speed = safe_speed(current);\r
- }\r
- // Store result\r
- current->entry_speed = entry_speed;\r
-}\r
-\r
-// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This \r
-// implements the reverse pass.\r
-void planner_reverse_pass() {\r
- char block_index = block_buffer_head;\r
- if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {\r
- block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);\r
- block_t *block[5] = {\r
- NULL, NULL, NULL, NULL, NULL };\r
- while(block_index != block_buffer_tail) { \r
- block_index = (block_index-1) & (BLOCK_BUFFER_SIZE -1); \r
- block[2]= block[1];\r
- block[1]= block[0];\r
- block[0] = &block_buffer[block_index];\r
- planner_reverse_pass_kernel(block[0], block[1], block[2]);\r
- }\r
- planner_reverse_pass_kernel(NULL, block[0], block[1]);\r
- }\r
-}\r
-\r
-// The kernel called by planner_recalculate() when scanning the plan from first to last entry.\r
-void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {\r
- if(!current) { \r
- return; \r
- }\r
- if(previous) {\r
- // If the previous block is an acceleration block, but it is not long enough to \r
- // complete the full speed change within the block, we need to adjust out entry\r
- // speed accordingly. Remember current->entry_factor equals the exit factor of \r
- // the previous block.\r
- if(previous->entry_speed < current->entry_speed) {\r
- float max_entry_speed = max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters);\r
- if (max_entry_speed < current->entry_speed) {\r
- current->entry_speed = max_entry_speed;\r
- }\r
- }\r
- }\r
-}\r
-\r
-// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This \r
-// implements the forward pass.\r
-void planner_forward_pass() {\r
- char block_index = block_buffer_tail;\r
- block_t *block[3] = {\r
- NULL, NULL, NULL };\r
-\r
- while(block_index != block_buffer_head) {\r
- block[0] = block[1];\r
- block[1] = block[2];\r
- block[2] = &block_buffer[block_index];\r
- planner_forward_pass_kernel(block[0],block[1],block[2]);\r
- block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);\r
- }\r
- planner_forward_pass_kernel(block[1], block[2], NULL);\r
-}\r
-\r
-// Recalculates the trapezoid speed profiles for all blocks in the plan according to the \r
-// entry_factor for each junction. Must be called by planner_recalculate() after \r
-// updating the blocks.\r
-void planner_recalculate_trapezoids() {\r
- char block_index = block_buffer_tail;\r
- block_t *current;\r
- block_t *next = NULL;\r
- while(block_index != block_buffer_head) {\r
- current = next;\r
- next = &block_buffer[block_index];\r
- if (current) {\r
- calculate_trapezoid_for_block(current, current->entry_speed, next->entry_speed); \r
- }\r
- block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);\r
- }\r
- calculate_trapezoid_for_block(next, next->entry_speed, safe_speed(next));\r
-}\r
-\r
-// Recalculates the motion plan according to the following algorithm:\r
-//\r
-// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor) \r
-// so that:\r
-// a. The junction jerk is within the set limit\r
-// b. No speed reduction within one block requires faster deceleration than the one, true constant \r
-// acceleration.\r
-// 2. Go over every block in chronological order and dial down junction speed reduction values if \r
-// a. The speed increase within one block would require faster accelleration than the one, true \r
-// constant acceleration.\r
-//\r
-// When these stages are complete all blocks have an entry_factor that will allow all speed changes to \r
-// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than \r
-// the set limit. Finally it will:\r
-//\r
-// 3. Recalculate trapezoids for all blocks.\r
-\r
-void planner_recalculate() { \r
- planner_reverse_pass();\r
- planner_forward_pass();\r
- planner_recalculate_trapezoids();\r
-}\r
-\r
-void plan_init() {\r
- block_buffer_head = 0;\r
- block_buffer_tail = 0;\r
- memset(position, 0, sizeof(position)); // clear position\r
-}\r
-\r
-\r
-void plan_discard_current_block() {\r
- if (block_buffer_head != block_buffer_tail) {\r
- block_buffer_tail = (block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1); \r
- }\r
-}\r
-\r
-block_t *plan_get_current_block() {\r
- if (block_buffer_head == block_buffer_tail) { \r
- return(NULL); \r
- }\r
- block_t *block = &block_buffer[block_buffer_tail];\r
- block->busy = true;\r
- return(block);\r
-}\r
-\r
-void check_axes_activity() {\r
- unsigned char x_active = 0;\r
- unsigned char y_active = 0; \r
- unsigned char z_active = 0;\r
- unsigned char e_active = 0;\r
- block_t *block;\r
-\r
- if(block_buffer_tail != block_buffer_head) {\r
- char block_index = block_buffer_tail;\r
- while(block_index != block_buffer_head) {\r
- block = &block_buffer[block_index];\r
- if(block->steps_x != 0) x_active++;\r
- if(block->steps_y != 0) y_active++;\r
- if(block->steps_z != 0) z_active++;\r
- if(block->steps_e != 0) e_active++;\r
- block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);\r
- }\r
- }\r
- if((DISABLE_X) && (x_active == 0)) disable_x();\r
- if((DISABLE_Y) && (y_active == 0)) disable_y();\r
- if((DISABLE_Z) && (z_active == 0)) disable_z();\r
- if((DISABLE_E) && (e_active == 0)) disable_e();\r
-}\r
-\r
-// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in \r
-// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration\r
-// calculation the caller must also provide the physical length of the line in millimeters.\r
-void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate)\r
-{\r
- // Calculate the buffer head after we push this byte\r
- int next_buffer_head = (block_buffer_head + 1) & (BLOCK_BUFFER_SIZE - 1);\r
-\r
- // If the buffer is full: good! That means we are well ahead of the robot. \r
- // Rest here until there is room in the buffer.\r
- while(block_buffer_tail == next_buffer_head) { \r
- manage_heater(); \r
- manage_inactivity(1); \r
- LCD_STATUS;\r
- }\r
-\r
- // The target position of the tool in absolute steps\r
- // Calculate target position in absolute steps\r
- //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow\r
- long target[4];\r
- target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);\r
- target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);\r
- target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]); \r
- target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]); \r
- \r
- // Prepare to set up new block\r
- block_t *block = &block_buffer[block_buffer_head];\r
- \r
- // Mark block as not busy (Not executed by the stepper interrupt)\r
- block->busy = false;\r
-\r
- // Number of steps for each axis\r
- block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);\r
- block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);\r
- block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);\r
- block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);\r
- block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));\r
-\r
- // Bail if this is a zero-length block\r
- if (block->step_event_count <=dropsegments) { \r
- return; \r
- };\r
-\r
- //enable active axes\r
- if(block->steps_x != 0) enable_x();\r
- if(block->steps_y != 0) enable_y();\r
- if(block->steps_z != 0) enable_z();\r
- if(block->steps_e != 0) enable_e();\r
-\r
- float delta_x_mm = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];\r
- float delta_y_mm = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];\r
- float delta_z_mm = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];\r
- float delta_e_mm = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];\r
- block->millimeters = sqrt(square(delta_x_mm) + square(delta_y_mm) + square(delta_z_mm) + square(delta_e_mm));\r
-\r
- unsigned long microseconds;\r
-\r
- if (block->steps_e == 0) {\r
- if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;\r
- }\r
- else {\r
- if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;\r
- } \r
-\r
- microseconds = lround((block->millimeters/feed_rate)*1000000);\r
-\r
- // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill\r
- // reduces/removes corner blobs as the machine won't come to a full stop.\r
- int blockcount=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);\r
- \r
- if ((blockcount>0) && (blockcount < (BLOCK_BUFFER_SIZE - 4))) {\r
- if (microseconds<minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.\r
- microseconds=microseconds+lround(2*(minsegmenttime-microseconds)/blockcount);\r
- }\r
- }\r
- else {\r
- if (microseconds<minsegmenttime) microseconds=minsegmenttime;\r
- }\r
- // END OF SLOW DOWN SECTION \r
- \r
- \r
- // Calculate speed in mm/minute for each axis\r
- float multiplier = 60.0*1000000.0/microseconds;\r
- block->speed_z = delta_z_mm * multiplier; \r
- block->speed_x = delta_x_mm * multiplier;\r
- block->speed_y = delta_y_mm * multiplier;\r
- block->speed_e = delta_e_mm * multiplier; \r
-\r
-\r
- // Limit speed per axis\r
- float speed_factor = 1; //factor <=1 do decrease speed\r
- if(abs(block->speed_x) > max_feedrate[X_AXIS]) {\r
- speed_factor = max_feedrate[X_AXIS] / abs(block->speed_x);\r
- //if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor; /is not need here because auf the init above\r
- }\r
- if(abs(block->speed_y) > max_feedrate[Y_AXIS]){\r
- float tmp_speed_factor = max_feedrate[Y_AXIS] / abs(block->speed_y);\r
- if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;\r
- }\r
- if(abs(block->speed_z) > max_feedrate[Z_AXIS]){\r
- float tmp_speed_factor = max_feedrate[Z_AXIS] / abs(block->speed_z);\r
- if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;\r
- }\r
- if(abs(block->speed_e) > max_feedrate[E_AXIS]){\r
- float tmp_speed_factor = max_feedrate[E_AXIS] / abs(block->speed_e);\r
- if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;\r
- }\r
- multiplier = multiplier * speed_factor;\r
- block->speed_z = delta_z_mm * multiplier; \r
- block->speed_x = delta_x_mm * multiplier;\r
- block->speed_y = delta_y_mm * multiplier;\r
- block->speed_e = delta_e_mm * multiplier; \r
- block->nominal_speed = block->millimeters * multiplier;\r
- block->nominal_rate = ceil(block->step_event_count * multiplier / 60); \r
-\r
- if(block->nominal_rate < 120) \r
- block->nominal_rate = 120;\r
- block->entry_speed = safe_speed(block);\r
-\r
- // Compute the acceleration rate for the trapezoid generator. \r
- float travel_per_step = block->millimeters/block->step_event_count;\r
- if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {\r
- block->acceleration_st = ceil( (retract_acceleration)/travel_per_step); // convert to: acceleration steps/sec^2\r
- }\r
- else {\r
- block->acceleration_st = ceil( (acceleration)/travel_per_step); // convert to: acceleration steps/sec^2\r
- float tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;\r
- // Limit acceleration per axis\r
- if((tmp_acceleration * block->steps_x) > axis_steps_per_sqr_second[X_AXIS]) {\r
- block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];\r
- tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;\r
- }\r
- if((tmp_acceleration * block->steps_y) > axis_steps_per_sqr_second[Y_AXIS]) {\r
- block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];\r
- tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;\r
- }\r
- if((tmp_acceleration * block->steps_e) > axis_steps_per_sqr_second[E_AXIS]) {\r
- block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];\r
- tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;\r
- }\r
- if((tmp_acceleration * block->steps_z) > axis_steps_per_sqr_second[Z_AXIS]) {\r
- block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];\r
- tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;\r
- }\r
- }\r
- block->acceleration = block->acceleration_st * travel_per_step;\r
- block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608);\r
-\r
- #ifdef ADVANCE\r
- // Calculate advance rate\r
- if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {\r
- block->advance_rate = 0;\r
- block->advance = 0;\r
- }\r
- else {\r
- long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);\r
- float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * \r
- (block->speed_e * block->speed_e * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536;\r
- block->advance = advance;\r
- if(acc_dist == 0) {\r
- block->advance_rate = 0;\r
- } \r
- else {\r
- block->advance_rate = advance / (float)acc_dist;\r
- }\r
- }\r
- #endif // ADVANCE\r
-\r
- // compute a preliminary conservative acceleration trapezoid\r
- float safespeed = safe_speed(block);\r
- calculate_trapezoid_for_block(block, safespeed, safespeed); \r
-\r
- // Compute direction bits for this block\r
- block->direction_bits = 0;\r
- if (target[X_AXIS] < position[X_AXIS]) { \r
- block->direction_bits |= (1<<X_AXIS); \r
- }\r
- if (target[Y_AXIS] < position[Y_AXIS]) { \r
- block->direction_bits |= (1<<Y_AXIS); \r
- }\r
- if (target[Z_AXIS] < position[Z_AXIS]) { \r
- block->direction_bits |= (1<<Z_AXIS); \r
- }\r
- if (target[E_AXIS] < position[E_AXIS]) { \r
- block->direction_bits |= (1<<E_AXIS); \r
- }\r
-\r
- // Move buffer head\r
- block_buffer_head = next_buffer_head; \r
-\r
- // Update position \r
- memcpy(position, target, sizeof(target)); // position[] = target[]\r
-\r
- planner_recalculate();\r
- st_wake_up();\r
-}\r
-\r
-void plan_set_position(const float &x, const float &y, const float &z, const float &e)\r
-{\r
- position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);\r
- position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);\r
- position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]); \r
- position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]); \r
-}\r
+/*
+ planner.c - buffers movement commands and manages the acceleration profile plan
+ Part of Grbl
+
+ Copyright (c) 2009-2011 Simen Svale Skogsrud
+
+ Grbl is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ Grbl is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with Grbl. If not, see <http://www.gnu.org/licenses/>.
+*/
+
+/* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
+
+/*
+ Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
+
+ s == speed, a == acceleration, t == time, d == distance
+
+ Basic definitions:
+
+ Speed[s_, a_, t_] := s + (a*t)
+ Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
+
+ Distance to reach a specific speed with a constant acceleration:
+
+ Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
+ d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
+
+ Speed after a given distance of travel with constant acceleration:
+
+ Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
+ m -> Sqrt[2 a d + s^2]
+
+ DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
+
+ When to start braking (di) to reach a specified destionation speed (s2) after accelerating
+ from initial speed s1 without ever stopping at a plateau:
+
+ Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
+ di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
+
+ IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
+*/
+
+
+//#include <inttypes.h>
+//#include <math.h>
+//#include <stdlib.h>
+
+#include "Marlin.h"
+#include "Configuration.h"
+#include "pins.h"
+#include "fastio.h"
+#include "planner.h"
+#include "stepper.h"
+#include "temperature.h"
+#include "ultralcd.h"
+
+//===========================================================================
+//=============================public variables ============================
+//===========================================================================
+
+unsigned long minsegmenttime;
+float max_feedrate[4]; // set the max speeds
+float axis_steps_per_unit[4];
+long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software
+float minimumfeedrate;
+float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
+float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
+float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
+float max_z_jerk;
+float mintravelfeedrate;
+unsigned long axis_steps_per_sqr_second[NUM_AXIS];
+
+// The current position of the tool in absolute steps
+long position[4]; //rescaled from extern when axis_steps_per_unit are changed by gcode
+static float previous_speed[4]; // Speed of previous path line segment
+static float previous_nominal_speed; // Nominal speed of previous path line segment
+
+
+//===========================================================================
+//=============================private variables ============================
+//===========================================================================
+static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
+static volatile unsigned char block_buffer_head; // Index of the next block to be pushed
+static volatile unsigned char block_buffer_tail; // Index of the block to process now
+
+// Used for the frequency limit
+static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
+static long x_segment_time[3]={0,0,0}; // Segment times (in us). Used for speed calculations
+static long y_segment_time[3]={0,0,0};
+
+// Returns the index of the next block in the ring buffer
+// NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
+static int8_t next_block_index(int8_t block_index) {
+ block_index++;
+ if (block_index == BLOCK_BUFFER_SIZE) { block_index = 0; }
+ return(block_index);
+}
+
+
+// Returns the index of the previous block in the ring buffer
+static int8_t prev_block_index(int8_t block_index) {
+ if (block_index == 0) { block_index = BLOCK_BUFFER_SIZE; }
+ block_index--;
+ return(block_index);
+}
+
+//===========================================================================
+//=============================functions ============================
+//===========================================================================
+
+// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
+// given acceleration:
+inline float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
+ if (acceleration!=0) {
+ return((target_rate*target_rate-initial_rate*initial_rate)/
+ (2.0*acceleration));
+ }
+ else {
+ return 0.0; // acceleration was 0, set acceleration distance to 0
+ }
+}
+
+// This function gives you the point at which you must start braking (at the rate of -acceleration) if
+// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
+// a total travel of distance. This can be used to compute the intersection point between acceleration and
+// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
+
+inline float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
+ if (acceleration!=0) {
+ return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
+ (4.0*acceleration) );
+ }
+ else {
+ return 0.0; // acceleration was 0, set intersection distance to 0
+ }
+}
+
+// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
+
+void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
+ long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min)
+ long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
+
+ // Limit minimal step rate (Otherwise the timer will overflow.)
+ if(initial_rate <120) {initial_rate=120; }
+ if(final_rate < 120) {final_rate=120; }
+
+ long acceleration = block->acceleration_st;
+ int32_t accelerate_steps =
+ ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration));
+ int32_t decelerate_steps =
+ floor(estimate_acceleration_distance(block->nominal_rate, block->final_rate, -acceleration));
+
+ // Calculate the size of Plateau of Nominal Rate.
+ int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
+
+ // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
+ // have to use intersection_distance() to calculate when to abort acceleration and start braking
+ // in order to reach the final_rate exactly at the end of this block.
+ if (plateau_steps < 0) {
+ accelerate_steps = ceil(
+ intersection_distance(block->initial_rate, block->final_rate, acceleration, block->step_event_count));
+ accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
+ accelerate_steps = min(accelerate_steps,block->step_event_count);
+ plateau_steps = 0;
+ }
+
+ #ifdef ADVANCE
+ long initial_advance = block->advance*entry_factor*entry_factor;
+ long final_advance = block->advance*exit_factor*exit_factor;
+ #endif // ADVANCE
+
+ // block->accelerate_until = accelerate_steps;
+ // block->decelerate_after = accelerate_steps+plateau_steps;
+
+ CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
+ if(block->busy == false) { // Don't update variables if block is busy.
+ block->accelerate_until = accelerate_steps;
+ block->decelerate_after = accelerate_steps+plateau_steps;
+ block->initial_rate = initial_rate;
+ block->final_rate = final_rate;
+ #ifdef ADVANCE
+ block->initial_advance = initial_advance;
+ block->final_advance = final_advance;
+ #endif //ADVANCE
+ }
+ CRITICAL_SECTION_END;
+}
+
+// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
+// acceleration within the allotted distance.
+inline float max_allowable_speed(float acceleration, float target_velocity, float distance) {
+ return sqrt(target_velocity*target_velocity-2*acceleration*distance);
+}
+
+// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
+// This method will calculate the junction jerk as the euclidean distance between the nominal
+// velocities of the respective blocks.
+//inline float junction_jerk(block_t *before, block_t *after) {
+// return sqrt(
+// pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
+//}
+
+
+// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
+void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
+ if(!current) { return; }
+
+ if (next) {
+ // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
+ // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
+ // check for maximum allowable speed reductions to ensure maximum possible planned speed.
+ if (current->entry_speed != current->max_entry_speed) {
+
+ // If nominal length true, max junction speed is guaranteed to be reached. Only compute
+ // for max allowable speed if block is decelerating and nominal length is false.
+ if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
+ current->entry_speed = min( current->max_entry_speed,
+ max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
+ } else {
+ current->entry_speed = current->max_entry_speed;
+ }
+ current->recalculate_flag = true;
+
+ }
+ } // Skip last block. Already initialized and set for recalculation.
+}
+
+// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
+// implements the reverse pass.
+void planner_reverse_pass() {
+ char block_index = block_buffer_head;
+ if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
+ block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
+ block_t *block[3] = { NULL, NULL, NULL };
+ while(block_index != block_buffer_tail) {
+ block_index = prev_block_index(block_index);
+ block[2]= block[1];
+ block[1]= block[0];
+ block[0] = &block_buffer[block_index];
+ planner_reverse_pass_kernel(block[0], block[1], block[2]);
+ }
+ }
+}
+
+// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
+void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
+ if(!previous) { return; }
+
+ // If the previous block is an acceleration block, but it is not long enough to complete the
+ // full speed change within the block, we need to adjust the entry speed accordingly. Entry
+ // speeds have already been reset, maximized, and reverse planned by reverse planner.
+ // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
+ if (!previous->nominal_length_flag) {
+ if (previous->entry_speed < current->entry_speed) {
+ double entry_speed = min( current->entry_speed,
+ max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
+
+ // Check for junction speed change
+ if (current->entry_speed != entry_speed) {
+ current->entry_speed = entry_speed;
+ current->recalculate_flag = true;
+ }
+ }
+ }
+}
+
+// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
+// implements the forward pass.
+void planner_forward_pass() {
+ char block_index = block_buffer_tail;
+ block_t *block[3] = { NULL, NULL, NULL };
+
+ while(block_index != block_buffer_head) {
+ block[0] = block[1];
+ block[1] = block[2];
+ block[2] = &block_buffer[block_index];
+ planner_forward_pass_kernel(block[0],block[1],block[2]);
+ block_index = next_block_index(block_index);
+ }
+ planner_forward_pass_kernel(block[1], block[2], NULL);
+}
+
+// Recalculates the trapezoid speed profiles for all blocks in the plan according to the
+// entry_factor for each junction. Must be called by planner_recalculate() after
+// updating the blocks.
+void planner_recalculate_trapezoids() {
+ int8_t block_index = block_buffer_tail;
+ block_t *current;
+ block_t *next = NULL;
+
+ while(block_index != block_buffer_head) {
+ current = next;
+ next = &block_buffer[block_index];
+ if (current) {
+ // Recalculate if current block entry or exit junction speed has changed.
+ if (current->recalculate_flag || next->recalculate_flag) {
+ // NOTE: Entry and exit factors always > 0 by all previous logic operations.
+ calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
+ next->entry_speed/current->nominal_speed);
+ current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
+ }
+ }
+ block_index = next_block_index( block_index );
+ }
+ // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
+ if(next != NULL) {
+ calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
+ MINIMUM_PLANNER_SPEED/next->nominal_speed);
+ next->recalculate_flag = false;
+ }
+}
+
+// Recalculates the motion plan according to the following algorithm:
+//
+// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
+// so that:
+// a. The junction jerk is within the set limit
+// b. No speed reduction within one block requires faster deceleration than the one, true constant
+// acceleration.
+// 2. Go over every block in chronological order and dial down junction speed reduction values if
+// a. The speed increase within one block would require faster accelleration than the one, true
+// constant acceleration.
+//
+// When these stages are complete all blocks have an entry_factor that will allow all speed changes to
+// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
+// the set limit. Finally it will:
+//
+// 3. Recalculate trapezoids for all blocks.
+
+void planner_recalculate() {
+ planner_reverse_pass();
+ planner_forward_pass();
+ planner_recalculate_trapezoids();
+}
+
+void plan_init() {
+ block_buffer_head = 0;
+ block_buffer_tail = 0;
+ memset(position, 0, sizeof(position)); // clear position
+ previous_speed[0] = 0.0;
+ previous_speed[1] = 0.0;
+ previous_speed[2] = 0.0;
+ previous_speed[3] = 0.0;
+ previous_nominal_speed = 0.0;
+}
+
+
+void plan_discard_current_block() {
+ if (block_buffer_head != block_buffer_tail) {
+ block_buffer_tail = (block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
+ }
+}
+
+block_t *plan_get_current_block() {
+ if (block_buffer_head == block_buffer_tail) {
+ return(NULL);
+ }
+ block_t *block = &block_buffer[block_buffer_tail];
+ block->busy = true;
+ return(block);
+}
+
+void check_axes_activity() {
+ unsigned char x_active = 0;
+ unsigned char y_active = 0;
+ unsigned char z_active = 0;
+ unsigned char e_active = 0;
+ block_t *block;
+
+ if(block_buffer_tail != block_buffer_head) {
+ char block_index = block_buffer_tail;
+ while(block_index != block_buffer_head) {
+ block = &block_buffer[block_index];
+ if(block->steps_x != 0) x_active++;
+ if(block->steps_y != 0) y_active++;
+ if(block->steps_z != 0) z_active++;
+ if(block->steps_e != 0) e_active++;
+ block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
+ }
+ }
+ if((DISABLE_X) && (x_active == 0)) disable_x();
+ if((DISABLE_Y) && (y_active == 0)) disable_y();
+ if((DISABLE_Z) && (z_active == 0)) disable_z();
+ if((DISABLE_E) && (e_active == 0)) disable_e();
+}
+
+
+float junction_deviation = 0.1;
+// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
+// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
+// calculation the caller must also provide the physical length of the line in millimeters.
+void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate)
+{
+ // Calculate the buffer head after we push this byte
+ int next_buffer_head = next_block_index(block_buffer_head);
+
+ // If the buffer is full: good! That means we are well ahead of the robot.
+ // Rest here until there is room in the buffer.
+ while(block_buffer_tail == next_buffer_head) {
+ manage_heater();
+ manage_inactivity(1);
+ LCD_STATUS;
+ }
+
+ // The target position of the tool in absolute steps
+ // Calculate target position in absolute steps
+ //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
+ long target[4];
+ target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
+ target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
+ target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
+ target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
+
+ // Prepare to set up new block
+ block_t *block = &block_buffer[block_buffer_head];
+
+ // Mark block as not busy (Not executed by the stepper interrupt)
+ block->busy = false;
+
+ // Number of steps for each axis
+ block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
+ block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
+ block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
+ block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
+ block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
+
+ // Bail if this is a zero-length block
+ if (block->step_event_count <=dropsegments) { return; };
+
+ // Compute direction bits for this block
+ block->direction_bits = 0;
+ if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_AXIS); }
+ if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_AXIS); }
+ if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= (1<<Z_AXIS); }
+ if (target[E_AXIS] < position[E_AXIS]) { block->direction_bits |= (1<<E_AXIS); }
+
+ //enable active axes
+ if(block->steps_x != 0) enable_x();
+ if(block->steps_y != 0) enable_y();
+ if(block->steps_z != 0) enable_z();
+ if(block->steps_e != 0) enable_e();
+
+ float delta_mm[4];
+ delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
+ delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
+ delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
+ delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
+ block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) +
+ square(delta_mm[Z_AXIS]));
+ float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
+
+ // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
+ float inverse_second = feed_rate * inverse_millimeters;
+
+ block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
+ block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
+
+// unsigned long microseconds;
+#if 0
+ if (block->steps_e == 0) {
+ if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
+ }
+ else {
+ if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
+ }
+
+ microseconds = lround((block->millimeters/feed_rate)*1000000);
+
+ // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
+ // reduces/removes corner blobs as the machine won't come to a full stop.
+ int blockcount=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
+
+ if ((blockcount>0) && (blockcount < (BLOCK_BUFFER_SIZE - 4))) {
+ if (microseconds<minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
+ microseconds=microseconds+lround(2*(minsegmenttime-microseconds)/blockcount);
+ }
+ }
+ else {
+ if (microseconds<minsegmenttime) microseconds=minsegmenttime;
+ }
+ // END OF SLOW DOWN SECTION
+#endif
+
+ // Calculate speed in mm/sec for each axis
+ float current_speed[4];
+ for(int i=0; i < 4; i++) {
+ current_speed[i] = delta_mm[i] * inverse_second;
+ }
+
+ // Limit speed per axis
+ float speed_factor = 1.0; //factor <=1 do decrease speed
+ for(int i=0; i < 4; i++) {
+ if(abs(current_speed[i]) > max_feedrate[i])
+ speed_factor = min(speed_factor, max_feedrate[i] / abs(current_speed[i]));
+ }
+
+// Max segement time in us.
+
+#ifdef XY_FREQUENCY_LIMIT
+#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
+
+ // Check and limit the xy direction change frequency
+ unsigned char direction_change = block->direction_bits ^ old_direction_bits;
+ old_direction_bits = block->direction_bits;
+ long segment_time = lround(1000000.0/inverse_second);
+ if((direction_change & (1<<X_AXIS)) == 0) {
+ x_segment_time[0] += segment_time;
+ }
+ else {
+ x_segment_time[2] = x_segment_time[1];
+ x_segment_time[1] = x_segment_time[0];
+ x_segment_time[0] = segment_time;
+ }
+ if((direction_change & (1<<Y_AXIS)) == 0) {
+ y_segment_time[0] += segment_time;
+ }
+ else {
+ y_segment_time[2] = y_segment_time[1];
+ y_segment_time[1] = y_segment_time[0];
+ y_segment_time[0] = segment_time;
+ }
+ long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
+ long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
+ long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
+ if(min_xy_segment_time < MAX_FREQ_TIME) speed_factor = min(speed_factor, (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
+#endif
+
+
+ // Correct the speed
+ if( speed_factor < 1.0) {
+// Serial.print("speed factor : "); Serial.println(speed_factor);
+ for(int i=0; i < 4; i++) {
+ if(abs(current_speed[i]) > max_feedrate[i])
+ speed_factor = min(speed_factor, max_feedrate[i] / abs(current_speed[i]));
+// Serial.print("current_speed"); Serial.print(i); Serial.print(" : "); Serial.println(current_speed[i]);
+ }
+ for(unsigned char i=0; i < 4; i++) {
+ current_speed[i] *= speed_factor;
+ }
+ block->nominal_speed *= speed_factor;
+ block->nominal_rate *= speed_factor;
+ }
+
+ // Compute and limit the acceleration rate for the trapezoid generator.
+ float steps_per_mm = block->step_event_count/block->millimeters;
+ if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
+ block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
+ }
+ else {
+ block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
+ // Limit acceleration per axis
+ if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
+ block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
+ if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
+ block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
+ if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
+ block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
+ if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
+ block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
+ }
+ block->acceleration = block->acceleration_st / steps_per_mm;
+ block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608);
+
+#if 0 // Use old jerk for now
+ // Compute path unit vector
+ double unit_vec[3];
+
+ unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
+ unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
+ unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
+
+ // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
+ // Let a circle be tangent to both previous and current path line segments, where the junction
+ // deviation is defined as the distance from the junction to the closest edge of the circle,
+ // colinear with the circle center. The circular segment joining the two paths represents the
+ // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
+ // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
+ // path width or max_jerk in the previous grbl version. This approach does not actually deviate
+ // from path, but used as a robust way to compute cornering speeds, as it takes into account the
+ // nonlinearities of both the junction angle and junction velocity.
+ double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
+
+ // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
+ if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
+ // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
+ // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
+ double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
+ - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
+ - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
+
+ // Skip and use default max junction speed for 0 degree acute junction.
+ if (cos_theta < 0.95) {
+ vmax_junction = min(previous_nominal_speed,block->nominal_speed);
+ // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
+ if (cos_theta > -0.95) {
+ // Compute maximum junction velocity based on maximum acceleration and junction deviation
+ double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
+ vmax_junction = min(vmax_junction,
+ sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
+ }
+ }
+ }
+#endif
+ // Start with a safe speed
+ float vmax_junction = max_xy_jerk/2;
+ if(abs(current_speed[Z_AXIS]) > max_z_jerk/2)
+ vmax_junction = max_z_jerk/2;
+ vmax_junction = min(vmax_junction, block->nominal_speed);
+
+ if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
+ float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
+ if((previous_speed[X_AXIS] != 0.0) || (previous_speed[Y_AXIS] != 0.0)) {
+ vmax_junction = block->nominal_speed;
+ }
+ if (jerk > max_xy_jerk) {
+ vmax_junction *= (max_xy_jerk/jerk);
+ }
+ if(abs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
+ vmax_junction *= (max_z_jerk/abs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]));
+ }
+ }
+ block->max_entry_speed = vmax_junction;
+
+ // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
+ double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
+ block->entry_speed = min(vmax_junction, v_allowable);
+
+ // Initialize planner efficiency flags
+ // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
+ // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
+ // the current block and next block junction speeds are guaranteed to always be at their maximum
+ // junction speeds in deceleration and acceleration, respectively. This is due to how the current
+ // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
+ // the reverse and forward planners, the corresponding block junction speed will always be at the
+ // the maximum junction speed and may always be ignored for any speed reduction checks.
+ if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; }
+ else { block->nominal_length_flag = false; }
+ block->recalculate_flag = true; // Always calculate trapezoid for new block
+
+ // Update previous path unit_vector and nominal speed
+ memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
+ previous_nominal_speed = block->nominal_speed;
+
+ #ifdef ADVANCE
+ // Calculate advance rate
+ if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
+ block->advance_rate = 0;
+ block->advance = 0;
+ }
+ else {
+ long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
+ float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
+ (block->speed_e * block->speed_e * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536;
+ block->advance = advance;
+ if(acc_dist == 0) {
+ block->advance_rate = 0;
+ }
+ else {
+ block->advance_rate = advance / (float)acc_dist;
+ }
+ }
+ #endif // ADVANCE
+
+
+
+
+ calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
+ MINIMUM_PLANNER_SPEED/block->nominal_speed);
+
+ // Move buffer head
+ block_buffer_head = next_buffer_head;
+
+ // Update position
+ memcpy(position, target, sizeof(target)); // position[] = target[]
+
+ planner_recalculate();
+
+ st_wake_up();
+}
+
+void plan_set_position(const float &x, const float &y, const float &z, const float &e)
+{
+ position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
+ position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
+ position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
+ position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
+ previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
+ previous_speed[0] = 0.0;
+ previous_speed[1] = 0.0;
+ previous_speed[2] = 0.0;
+ previous_speed[3] = 0.0;
+}
\r
-/*\r
- planner.h - buffers movement commands and manages the acceleration profile plan\r
- Part of Grbl\r
-\r
- Copyright (c) 2009-2011 Simen Svale Skogsrud\r
-\r
- Grbl is free software: you can redistribute it and/or modify\r
- it under the terms of the GNU General Public License as published by\r
- the Free Software Foundation, either version 3 of the License, or\r
- (at your option) any later version.\r
-\r
- Grbl is distributed in the hope that it will be useful,\r
- but WITHOUT ANY WARRANTY; without even the implied warranty of\r
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\r
- GNU General Public License for more details.\r
-\r
- You should have received a copy of the GNU General Public License\r
- along with Grbl. If not, see <http://www.gnu.org/licenses/>.\r
-*/\r
-\r
-// This module is to be considered a sub-module of stepper.c. Please don't include \r
-// this file from any other module.\r
-\r
-#ifndef planner_h\r
-#define planner_h\r
-\r
-#include "Configuration.h"\r
-\r
-// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in \r
-// the source g-code and may never actually be reached if acceleration management is active.\r
-typedef struct {\r
- // Fields used by the bresenham algorithm for tracing the line\r
- long steps_x, steps_y, steps_z, steps_e; // Step count along each axis\r
- long step_event_count; // The number of step events required to complete this block\r
- volatile long accelerate_until; // The index of the step event on which to stop acceleration\r
- volatile long decelerate_after; // The index of the step event on which to start decelerating\r
- volatile long acceleration_rate; // The acceleration rate used for acceleration calculation\r
- unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)\r
- #ifdef ADVANCE\r
- long advance_rate;\r
- volatile long initial_advance;\r
- volatile long final_advance;\r
- float advance;\r
- #endif\r
-\r
- // Fields used by the motion planner to manage acceleration\r
- float speed_x, speed_y, speed_z, speed_e; // Nominal mm/minute for each axis\r
- float nominal_speed; // The nominal speed for this block in mm/min \r
- float millimeters; // The total travel of this block in mm\r
- float entry_speed;\r
- float acceleration; // acceleration mm/sec^2\r
-\r
- // Settings for the trapezoid generator\r
- long nominal_rate; // The nominal step rate for this block in step_events/sec \r
- volatile long initial_rate; // The jerk-adjusted step rate at start of block \r
- volatile long final_rate; // The minimal rate at exit\r
- long acceleration_st; // acceleration steps/sec^2\r
- volatile char busy;\r
-} block_t;\r
-\r
-// Initialize the motion plan subsystem \r
-void plan_init();\r
-\r
-// Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in \r
-// millimaters. Feed rate specifies the speed of the motion.\r
-void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate);\r
-\r
-// Set position. Used for G92 instructions.\r
-void plan_set_position(const float &x, const float &y, const float &z, const float &e);\r
-\r
-\r
-// Called when the current block is no longer needed. Discards the block and makes the memory\r
-// availible for new blocks.\r
-void plan_discard_current_block();\r
-\r
-// Gets the current block. Returns NULL if buffer empty\r
-block_t *plan_get_current_block();\r
-\r
-void check_axes_activity();\r
-\r
-extern unsigned long minsegmenttime;\r
-extern float max_feedrate[4]; // set the max speeds\r
-extern float axis_steps_per_unit[4];\r
-extern long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software\r
-extern float minimumfeedrate;\r
-extern float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX\r
-extern float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX\r
-extern float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.\r
-extern float max_z_jerk;\r
-extern float mintravelfeedrate;\r
-extern unsigned long axis_steps_per_sqr_second[NUM_AXIS];\r
-\r
+/*
+ planner.h - buffers movement commands and manages the acceleration profile plan
+ Part of Grbl
+
+ Copyright (c) 2009-2011 Simen Svale Skogsrud
+
+ Grbl is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ Grbl is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with Grbl. If not, see <http://www.gnu.org/licenses/>.
+*/
+
+// This module is to be considered a sub-module of stepper.c. Please don't include
+// this file from any other module.
+
+#ifndef planner_h
+#define planner_h
+
+#include "Configuration.h"
+
+// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in
+// the source g-code and may never actually be reached if acceleration management is active.
+typedef struct {
+ // Fields used by the bresenham algorithm for tracing the line
+ long steps_x, steps_y, steps_z, steps_e; // Step count along each axis
+ long step_event_count; // The number of step events required to complete this block
+ volatile long accelerate_until; // The index of the step event on which to stop acceleration
+ volatile long decelerate_after; // The index of the step event on which to start decelerating
+ volatile long acceleration_rate; // The acceleration rate used for acceleration calculation
+ unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
+ #ifdef ADVANCE
+// long advance_rate;
+// volatile long initial_advance;
+// volatile long final_advance;
+// float advance;
+ #endif
+
+ // Fields used by the motion planner to manage acceleration
+// float speed_x, speed_y, speed_z, speed_e; // Nominal mm/minute for each axis
+ float nominal_speed; // The nominal speed for this block in mm/min
+ float entry_speed; // Entry speed at previous-current junction in mm/min
+ float max_entry_speed; // Maximum allowable junction entry speed in mm/min
+ float millimeters; // The total travel of this block in mm
+ float acceleration; // acceleration mm/sec^2
+ unsigned char recalculate_flag; // Planner flag to recalculate trapezoids on entry junction
+ unsigned char nominal_length_flag; // Planner flag for nominal speed always reached
+
+ // Settings for the trapezoid generator
+ long nominal_rate; // The nominal step rate for this block in step_events/sec
+ volatile long initial_rate; // The jerk-adjusted step rate at start of block
+ volatile long final_rate; // The minimal rate at exit
+ long acceleration_st; // acceleration steps/sec^2
+ volatile char busy;
+} block_t;
+
+// Initialize the motion plan subsystem
+void plan_init();
+
+// Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in
+// millimaters. Feed rate specifies the speed of the motion.
+void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate);
+
+// Set position. Used for G92 instructions.
+void plan_set_position(const float &x, const float &y, const float &z, const float &e);
+
+
+// Called when the current block is no longer needed. Discards the block and makes the memory
+// availible for new blocks.
+void plan_discard_current_block();
+
+// Gets the current block. Returns NULL if buffer empty
+block_t *plan_get_current_block();
+
+void check_axes_activity();
+
+extern unsigned long minsegmenttime;
+extern float max_feedrate[4]; // set the max speeds
+extern float axis_steps_per_unit[4];
+extern long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software
+extern float minimumfeedrate;
+extern float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
+extern float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
+extern float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
+extern float max_z_jerk;
+extern float mintravelfeedrate;
+extern unsigned long axis_steps_per_sqr_second[NUM_AXIS];
+
#endif\r
-/*\r
- stepper.c - stepper motor driver: executes motion plans using stepper motors\r
- Part of Grbl\r
-\r
- Copyright (c) 2009-2011 Simen Svale Skogsrud\r
-\r
- Grbl is free software: you can redistribute it and/or modify\r
- it under the terms of the GNU General Public License as published by\r
- the Free Software Foundation, either version 3 of the License, or\r
- (at your option) any later version.\r
-\r
- Grbl is distributed in the hope that it will be useful,\r
- but WITHOUT ANY WARRANTY; without even the implied warranty of\r
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\r
- GNU General Public License for more details.\r
-\r
- You should have received a copy of the GNU General Public License\r
- along with Grbl. If not, see <http://www.gnu.org/licenses/>.\r
-*/\r
-\r
-/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith\r
- and Philipp Tiefenbacher. */\r
-\r
-#include "stepper.h"\r
-#include "Configuration.h"\r
-#include "Marlin.h"\r
-#include "planner.h"\r
-#include "pins.h"\r
-#include "fastio.h"\r
-#include "temperature.h"\r
-#include "ultralcd.h"\r
-\r
-#include "speed_lookuptable.h"\r
-\r
-\r
-//===========================================================================\r
-//=============================public variables ============================\r
-//===========================================================================\r
-block_t *current_block; // A pointer to the block currently being traced\r
-\r
-\r
-//===========================================================================\r
-//=============================private variables ============================\r
-//===========================================================================\r
-//static makes it inpossible to be called from outside of this file by extern.!\r
-\r
-// Variables used by The Stepper Driver Interrupt\r
-static unsigned char out_bits; // The next stepping-bits to be output\r
-static long counter_x, // Counter variables for the bresenham line tracer\r
- counter_y, \r
- counter_z, \r
- counter_e;\r
-static unsigned long step_events_completed; // The number of step events executed in the current block\r
-#ifdef ADVANCE\r
- static long advance_rate, advance, final_advance = 0;\r
- static short old_advance = 0;\r
- static short e_steps;\r
-#endif\r
-static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.\r
-static long acceleration_time, deceleration_time;\r
-//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;\r
-static unsigned short acc_step_rate; // needed for deccelaration start point\r
-static char step_loops;\r
-\r
-\r
-\r
-// if DEBUG_STEPS is enabled, M114 can be used to compare two methods of determining the X,Y,Z position of the printer.\r
-// for debugging purposes only, should be disabled by default\r
-#ifdef DEBUG_STEPS\r
- volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};\r
- volatile int count_direction[NUM_AXIS] = { 1, 1, 1, 1};\r
-#endif\r
-\r
-//===========================================================================\r
-//=============================functions ============================\r
-//===========================================================================\r
- \r
-\r
-// intRes = intIn1 * intIn2 >> 16\r
-// uses:\r
-// r26 to store 0\r
-// r27 to store the byte 1 of the 24 bit result\r
-#define MultiU16X8toH16(intRes, charIn1, intIn2) \\r
-asm volatile ( \\r
-"clr r26 \n\t" \\r
-"mul %A1, %B2 \n\t" \\r
-"movw %A0, r0 \n\t" \\r
-"mul %A1, %A2 \n\t" \\r
-"add %A0, r1 \n\t" \\r
-"adc %B0, r26 \n\t" \\r
-"lsr r0 \n\t" \\r
-"adc %A0, r26 \n\t" \\r
-"adc %B0, r26 \n\t" \\r
-"clr r1 \n\t" \\r
-: \\r
-"=&r" (intRes) \\r
-: \\r
-"d" (charIn1), \\r
-"d" (intIn2) \\r
-: \\r
-"r26" \\r
-)\r
-\r
-// intRes = longIn1 * longIn2 >> 24\r
-// uses:\r
-// r26 to store 0\r
-// r27 to store the byte 1 of the 48bit result\r
-#define MultiU24X24toH16(intRes, longIn1, longIn2) \\r
-asm volatile ( \\r
-"clr r26 \n\t" \\r
-"mul %A1, %B2 \n\t" \\r
-"mov r27, r1 \n\t" \\r
-"mul %B1, %C2 \n\t" \\r
-"movw %A0, r0 \n\t" \\r
-"mul %C1, %C2 \n\t" \\r
-"add %B0, r0 \n\t" \\r
-"mul %C1, %B2 \n\t" \\r
-"add %A0, r0 \n\t" \\r
-"adc %B0, r1 \n\t" \\r
-"mul %A1, %C2 \n\t" \\r
-"add r27, r0 \n\t" \\r
-"adc %A0, r1 \n\t" \\r
-"adc %B0, r26 \n\t" \\r
-"mul %B1, %B2 \n\t" \\r
-"add r27, r0 \n\t" \\r
-"adc %A0, r1 \n\t" \\r
-"adc %B0, r26 \n\t" \\r
-"mul %C1, %A2 \n\t" \\r
-"add r27, r0 \n\t" \\r
-"adc %A0, r1 \n\t" \\r
-"adc %B0, r26 \n\t" \\r
-"mul %B1, %A2 \n\t" \\r
-"add r27, r1 \n\t" \\r
-"adc %A0, r26 \n\t" \\r
-"adc %B0, r26 \n\t" \\r
-"lsr r27 \n\t" \\r
-"adc %A0, r26 \n\t" \\r
-"adc %B0, r26 \n\t" \\r
-"clr r1 \n\t" \\r
-: \\r
-"=&r" (intRes) \\r
-: \\r
-"d" (longIn1), \\r
-"d" (longIn2) \\r
-: \\r
-"r26" , "r27" \\r
-)\r
-\r
-// Some useful constants\r
-\r
-#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)\r
-#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)\r
-\r
-\r
-\r
-\r
-\r
-\r
-// __________________________\r
-// /| |\ _________________ ^\r
-// / | | \ /| |\ |\r
-// / | | \ / | | \ s\r
-// / | | | | | \ p\r
-// / | | | | | \ e\r
-// +-----+------------------------+---+--+---------------+----+ e\r
-// | BLOCK 1 | BLOCK 2 | d\r
-//\r
-// time ----->\r
-// \r
-// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates \r
-// first block->accelerate_until step_events_completed, then keeps going at constant speed until \r
-// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.\r
-// The slope of acceleration is calculated with the leib ramp alghorithm.\r
-\r
-void st_wake_up() {\r
- // TCNT1 = 0;\r
- ENABLE_STEPPER_DRIVER_INTERRUPT(); \r
-}\r
-\r
-inline unsigned short calc_timer(unsigned short step_rate) {\r
- unsigned short timer;\r
- if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;\r
- \r
- if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times\r
- step_rate = step_rate >> 2;\r
- step_loops = 4;\r
- }\r
- else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times\r
- step_rate = step_rate >> 1;\r
- step_loops = 2;\r
- }\r
- else {\r
- step_loops = 1;\r
- } \r
- \r
- if(step_rate < 32) step_rate = 32;\r
- step_rate -= 32; // Correct for minimal speed\r
- if(step_rate >= (8*256)){ // higher step rate \r
- unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];\r
- unsigned char tmp_step_rate = (step_rate & 0x00ff);\r
- unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);\r
- MultiU16X8toH16(timer, tmp_step_rate, gain);\r
- timer = (unsigned short)pgm_read_word_near(table_address) - timer;\r
- }\r
- else { // lower step rates\r
- unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];\r
- table_address += ((step_rate)>>1) & 0xfffc;\r
- timer = (unsigned short)pgm_read_word_near(table_address);\r
- timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);\r
- }\r
- if(timer < 100) timer = 100;\r
- return timer;\r
-}\r
-\r
-// Initializes the trapezoid generator from the current block. Called whenever a new \r
-// block begins.\r
-inline void trapezoid_generator_reset() {\r
- #ifdef ADVANCE\r
- advance = current_block->initial_advance;\r
- final_advance = current_block->final_advance;\r
- #endif\r
- deceleration_time = 0;\r
- // advance_rate = current_block->advance_rate;\r
- // step_rate to timer interval\r
- acc_step_rate = current_block->initial_rate;\r
- acceleration_time = calc_timer(acc_step_rate);\r
- OCR1A = acceleration_time;\r
-}\r
-\r
-// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse. \r
-// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. \r
-ISR(TIMER1_COMPA_vect)\r
-{ \r
- if(busy){ \r
- SERIAL_ERRORLN(*(unsigned short *)OCR1A<< " ISR overtaking itself.");\r
- return; \r
- } // The busy-flag is used to avoid reentering this interrupt\r
-\r
- busy = true;\r
- sei(); // Re enable interrupts (normally disabled while inside an interrupt handler)\r
-\r
- // If there is no current block, attempt to pop one from the buffer\r
- if (current_block == NULL) {\r
- // Anything in the buffer?\r
- current_block = plan_get_current_block();\r
- if (current_block != NULL) {\r
- trapezoid_generator_reset();\r
- counter_x = -(current_block->step_event_count >> 1);\r
- counter_y = counter_x;\r
- counter_z = counter_x;\r
- counter_e = counter_x;\r
- step_events_completed = 0;\r
- #ifdef ADVANCE\r
- e_steps = 0;\r
- #endif\r
- } \r
- else {\r
-// DISABLE_STEPPER_DRIVER_INTERRUPT();\r
- } \r
- } \r
-\r
- if (current_block != NULL) {\r
- // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt\r
- out_bits = current_block->direction_bits;\r
-\r
- #ifdef ADVANCE\r
- // Calculate E early.\r
- counter_e += current_block->steps_e;\r
- if (counter_e > 0) {\r
- counter_e -= current_block->step_event_count;\r
- if ((out_bits & (1<<E_AXIS)) != 0) { // - direction\r
- CRITICAL_SECTION_START;\r
- e_steps--;\r
- CRITICAL_SECTION_END;\r
- }\r
- else {\r
- CRITICAL_SECTION_START;\r
- e_steps++;\r
- CRITICAL_SECTION_END;\r
- }\r
- } \r
- // Do E steps + advance steps\r
- CRITICAL_SECTION_START;\r
- e_steps += ((advance >> 16) - old_advance);\r
- CRITICAL_SECTION_END;\r
- old_advance = advance >> 16; \r
- #endif //ADVANCE\r
-\r
- // Set direction en check limit switches\r
- if ((out_bits & (1<<X_AXIS)) != 0) { // -direction\r
- WRITE(X_DIR_PIN, INVERT_X_DIR);\r
- #ifdef DEBUG_STEPS\r
- count_direction[X_AXIS]=-1;\r
- #endif\r
- #if X_MIN_PIN > -1\r
- if(READ(X_MIN_PIN) != ENDSTOPS_INVERTING) {\r
- step_events_completed = current_block->step_event_count;\r
- }\r
- #endif\r
- }\r
- else { // +direction \r
- WRITE(X_DIR_PIN,!INVERT_X_DIR);\r
- #ifdef DEBUG_STEPS\r
- count_direction[X_AXIS]=1;\r
- #endif\r
- #if X_MAX_PIN > -1\r
- if((READ(X_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_x >0)){\r
- step_events_completed = current_block->step_event_count;\r
- }\r
- #endif\r
- }\r
-\r
- if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction\r
- WRITE(Y_DIR_PIN,INVERT_Y_DIR);\r
- #ifdef DEBUG_STEPS\r
- count_direction[Y_AXIS]=-1;\r
- #endif\r
- #if Y_MIN_PIN > -1\r
- if(READ(Y_MIN_PIN) != ENDSTOPS_INVERTING) {\r
- step_events_completed = current_block->step_event_count;\r
- }\r
- #endif\r
- }\r
- else { // +direction\r
- WRITE(Y_DIR_PIN,!INVERT_Y_DIR);\r
- #ifdef DEBUG_STEPS\r
- count_direction[Y_AXIS]=1;\r
- #endif\r
- #if Y_MAX_PIN > -1\r
- if((READ(Y_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_y >0)){\r
- step_events_completed = current_block->step_event_count;\r
- }\r
- #endif\r
- }\r
-\r
- if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction\r
- WRITE(Z_DIR_PIN,INVERT_Z_DIR);\r
- #ifdef DEBUG_STEPS\r
- count_direction[Z_AXIS]=-1;\r
- #endif\r
- #if Z_MIN_PIN > -1\r
- if(READ(Z_MIN_PIN) != ENDSTOPS_INVERTING) {\r
- step_events_completed = current_block->step_event_count;\r
- }\r
- #endif\r
- }\r
- else { // +direction\r
- WRITE(Z_DIR_PIN,!INVERT_Z_DIR);\r
- #ifdef DEBUG_STEPS\r
- count_direction[Z_AXIS]=1;\r
- #endif\r
- #if Z_MAX_PIN > -1\r
- if((READ(Z_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_z >0)){\r
- step_events_completed = current_block->step_event_count;\r
- }\r
- #endif\r
- }\r
-\r
- #ifndef ADVANCE\r
- if ((out_bits & (1<<E_AXIS)) != 0) // -direction\r
- WRITE(E_DIR_PIN,INVERT_E_DIR);\r
- else // +direction\r
- WRITE(E_DIR_PIN,!INVERT_E_DIR);\r
- #endif //!ADVANCE\r
-\r
- for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves) \r
- counter_x += current_block->steps_x;\r
- if (counter_x > 0) {\r
- WRITE(X_STEP_PIN, HIGH);\r
- counter_x -= current_block->step_event_count;\r
- WRITE(X_STEP_PIN, LOW);\r
- #ifdef DEBUG_STEPS\r
- count_position[X_AXIS]+=count_direction[X_AXIS]; \r
- #endif\r
- }\r
-\r
- counter_y += current_block->steps_y;\r
- if (counter_y > 0) {\r
- WRITE(Y_STEP_PIN, HIGH);\r
- counter_y -= current_block->step_event_count;\r
- WRITE(Y_STEP_PIN, LOW);\r
- #ifdef DEBUG_STEPS\r
- count_position[Y_AXIS]+=count_direction[Y_AXIS];\r
- #endif\r
- }\r
-\r
- counter_z += current_block->steps_z;\r
- if (counter_z > 0) {\r
- WRITE(Z_STEP_PIN, HIGH);\r
- counter_z -= current_block->step_event_count;\r
- WRITE(Z_STEP_PIN, LOW);\r
- #ifdef DEBUG_STEPS\r
- count_position[Z_AXIS]+=count_direction[Z_AXIS];\r
- #endif\r
- }\r
-\r
- #ifndef ADVANCE\r
- counter_e += current_block->steps_e;\r
- if (counter_e > 0) {\r
- WRITE(E_STEP_PIN, HIGH);\r
- counter_e -= current_block->step_event_count;\r
- WRITE(E_STEP_PIN, LOW);\r
- }\r
- #endif //!ADVANCE\r
- step_events_completed += 1; \r
- if(step_events_completed >= current_block->step_event_count) break;\r
- }\r
- // Calculare new timer value\r
- unsigned short timer;\r
- unsigned short step_rate;\r
- if (step_events_completed <= current_block->accelerate_until) {\r
- MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);\r
- acc_step_rate += current_block->initial_rate;\r
- \r
- // upper limit\r
- if(acc_step_rate > current_block->nominal_rate)\r
- acc_step_rate = current_block->nominal_rate;\r
-\r
- // step_rate to timer interval\r
- timer = calc_timer(acc_step_rate);\r
- #ifdef ADVANCE\r
- advance += advance_rate;\r
- #endif\r
- acceleration_time += timer;\r
- OCR1A = timer;\r
- } \r
- else if (step_events_completed > current_block->decelerate_after) { \r
- MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);\r
- \r
- if(step_rate > acc_step_rate) { // Check step_rate stays positive\r
- step_rate = current_block->final_rate;\r
- }\r
- else {\r
- step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.\r
- }\r
-\r
- // lower limit\r
- if(step_rate < current_block->final_rate)\r
- step_rate = current_block->final_rate;\r
-\r
- // step_rate to timer interval\r
- timer = calc_timer(step_rate);\r
- #ifdef ADVANCE\r
- advance -= advance_rate;\r
- if(advance < final_advance)\r
- advance = final_advance;\r
- #endif //ADVANCE\r
- deceleration_time += timer;\r
- OCR1A = timer;\r
- } \r
- // If current block is finished, reset pointer \r
- if (step_events_completed >= current_block->step_event_count) {\r
- current_block = NULL;\r
- plan_discard_current_block();\r
- } \r
- } \r
- cli(); // disable interrupts\r
- busy=false;\r
-}\r
-\r
-#ifdef ADVANCE\r
- unsigned char old_OCR0A;\r
- // Timer interrupt for E. e_steps is set in the main routine;\r
- // Timer 0 is shared with millies\r
- ISR(TIMER0_COMPA_vect)\r
- {\r
- // Critical section needed because Timer 1 interrupt has higher priority. \r
- // The pin set functions are placed on trategic position to comply with the stepper driver timing.\r
- WRITE(E_STEP_PIN, LOW);\r
- // Set E direction (Depends on E direction + advance)\r
- if (e_steps < 0) {\r
- WRITE(E_DIR_PIN,INVERT_E_DIR); \r
- e_steps++;\r
- WRITE(E_STEP_PIN, HIGH);\r
- } \r
- if (e_steps > 0) {\r
- WRITE(E_DIR_PIN,!INVERT_E_DIR);\r
- e_steps--;\r
- WRITE(E_STEP_PIN, HIGH);\r
- }\r
- old_OCR0A += 25; // 10kHz interrupt\r
- OCR0A = old_OCR0A;\r
- }\r
-#endif // ADVANCE\r
-\r
-void st_init()\r
-{\r
- //Initialize Dir Pins\r
- #if X_DIR_PIN > -1\r
- SET_OUTPUT(X_DIR_PIN);\r
- #endif\r
- #if Y_DIR_PIN > -1 \r
- SET_OUTPUT(Y_DIR_PIN);\r
- #endif\r
- #if Z_DIR_PIN > -1 \r
- SET_OUTPUT(Z_DIR_PIN);\r
- #endif\r
- #if E_DIR_PIN > -1 \r
- SET_OUTPUT(E_DIR_PIN);\r
- #endif\r
-\r
- //Initialize Enable Pins - steppers default to disabled.\r
-\r
- #if (X_ENABLE_PIN > -1)\r
- SET_OUTPUT(X_ENABLE_PIN);\r
- if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);\r
- #endif\r
- #if (Y_ENABLE_PIN > -1)\r
- SET_OUTPUT(Y_ENABLE_PIN);\r
- if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);\r
- #endif\r
- #if (Z_ENABLE_PIN > -1)\r
- SET_OUTPUT(Z_ENABLE_PIN);\r
- if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);\r
- #endif\r
- #if (E_ENABLE_PIN > -1)\r
- SET_OUTPUT(E_ENABLE_PIN);\r
- if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH);\r
- #endif\r
-\r
- //endstops and pullups\r
- #ifdef ENDSTOPPULLUPS\r
- #if X_MIN_PIN > -1\r
- SET_INPUT(X_MIN_PIN); \r
- WRITE(X_MIN_PIN,HIGH);\r
- #endif\r
- #if X_MAX_PIN > -1\r
- SET_INPUT(X_MAX_PIN); \r
- WRITE(X_MAX_PIN,HIGH);\r
- #endif\r
- #if Y_MIN_PIN > -1\r
- SET_INPUT(Y_MIN_PIN); \r
- WRITE(Y_MIN_PIN,HIGH);\r
- #endif\r
- #if Y_MAX_PIN > -1\r
- SET_INPUT(Y_MAX_PIN); \r
- WRITE(Y_MAX_PIN,HIGH);\r
- #endif\r
- #if Z_MIN_PIN > -1\r
- SET_INPUT(Z_MIN_PIN); \r
- WRITE(Z_MIN_PIN,HIGH);\r
- #endif\r
- #if Z_MAX_PIN > -1\r
- SET_INPUT(Z_MAX_PIN); \r
- WRITE(Z_MAX_PIN,HIGH);\r
- #endif\r
- #else //ENDSTOPPULLUPS\r
- #if X_MIN_PIN > -1\r
- SET_INPUT(X_MIN_PIN); \r
- #endif\r
- #if X_MAX_PIN > -1\r
- SET_INPUT(X_MAX_PIN); \r
- #endif\r
- #if Y_MIN_PIN > -1\r
- SET_INPUT(Y_MIN_PIN); \r
- #endif\r
- #if Y_MAX_PIN > -1\r
- SET_INPUT(Y_MAX_PIN); \r
- #endif\r
- #if Z_MIN_PIN > -1\r
- SET_INPUT(Z_MIN_PIN); \r
- #endif\r
- #if Z_MAX_PIN > -1\r
- SET_INPUT(Z_MAX_PIN); \r
- #endif\r
- #endif //ENDSTOPPULLUPS\r
- \r
-\r
- //Initialize Step Pins\r
- #if (X_STEP_PIN > -1) \r
- SET_OUTPUT(X_STEP_PIN);\r
- #endif \r
- #if (Y_STEP_PIN > -1) \r
- SET_OUTPUT(Y_STEP_PIN);\r
- #endif \r
- #if (Z_STEP_PIN > -1) \r
- SET_OUTPUT(Z_STEP_PIN);\r
- #endif \r
- #if (E_STEP_PIN > -1) \r
- SET_OUTPUT(E_STEP_PIN);\r
- #endif \r
-\r
- // waveform generation = 0100 = CTC\r
- TCCR1B &= ~(1<<WGM13);\r
- TCCR1B |= (1<<WGM12);\r
- TCCR1A &= ~(1<<WGM11); \r
- TCCR1A &= ~(1<<WGM10);\r
-\r
- // output mode = 00 (disconnected)\r
- TCCR1A &= ~(3<<COM1A0); \r
- TCCR1A &= ~(3<<COM1B0); \r
- TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10); // 2MHz timer\r
-\r
- OCR1A = 0x4000;\r
- DISABLE_STEPPER_DRIVER_INTERRUPT(); \r
-\r
- #ifdef ADVANCE\r
- e_steps = 0;\r
- TIMSK0 |= (1<<OCIE0A);\r
- #endif //ADVANCE\r
- sei();\r
-}\r
-\r
-// Block until all buffered steps are executed\r
-void st_synchronize()\r
-{\r
- while(plan_get_current_block()) {\r
- manage_heater();\r
- manage_inactivity(1);\r
- LCD_STATUS;\r
- } \r
+/*
+ stepper.c - stepper motor driver: executes motion plans using stepper motors
+ Part of Grbl
+
+ Copyright (c) 2009-2011 Simen Svale Skogsrud
+
+ Grbl is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ Grbl is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with Grbl. If not, see <http://www.gnu.org/licenses/>.
+*/
+
+/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
+ and Philipp Tiefenbacher. */
+
+#include "stepper.h"
+#include "Configuration.h"
+#include "Marlin.h"
+#include "planner.h"
+#include "pins.h"
+#include "fastio.h"
+#include "temperature.h"
+#include "ultralcd.h"
+
+#include "speed_lookuptable.h"
+
+
+//===========================================================================
+//=============================public variables ============================
+//===========================================================================
+block_t *current_block; // A pointer to the block currently being traced
+
+
+//===========================================================================
+//=============================private variables ============================
+//===========================================================================
+//static makes it inpossible to be called from outside of this file by extern.!
+
+// Variables used by The Stepper Driver Interrupt
+static unsigned char out_bits; // The next stepping-bits to be output
+static long counter_x, // Counter variables for the bresenham line tracer
+ counter_y,
+ counter_z,
+ counter_e;
+static unsigned long step_events_completed; // The number of step events executed in the current block
+#ifdef ADVANCE
+ static long advance_rate, advance, final_advance = 0;
+ static short old_advance = 0;
+ static short e_steps;
+#endif
+static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
+static long acceleration_time, deceleration_time;
+//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
+static unsigned short acc_step_rate; // needed for deccelaration start point
+static char step_loops;
+
+
+
+// if DEBUG_STEPS is enabled, M114 can be used to compare two methods of determining the X,Y,Z position of the printer.
+// for debugging purposes only, should be disabled by default
+#ifdef DEBUG_STEPS
+ volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
+ volatile int count_direction[NUM_AXIS] = { 1, 1, 1, 1};
+#endif
+
+//===========================================================================
+//=============================functions ============================
+//===========================================================================
+
+
+// intRes = intIn1 * intIn2 >> 16
+// uses:
+// r26 to store 0
+// r27 to store the byte 1 of the 24 bit result
+#define MultiU16X8toH16(intRes, charIn1, intIn2) \
+asm volatile ( \
+"clr r26 \n\t" \
+"mul %A1, %B2 \n\t" \
+"movw %A0, r0 \n\t" \
+"mul %A1, %A2 \n\t" \
+"add %A0, r1 \n\t" \
+"adc %B0, r26 \n\t" \
+"lsr r0 \n\t" \
+"adc %A0, r26 \n\t" \
+"adc %B0, r26 \n\t" \
+"clr r1 \n\t" \
+: \
+"=&r" (intRes) \
+: \
+"d" (charIn1), \
+"d" (intIn2) \
+: \
+"r26" \
+)
+
+// intRes = longIn1 * longIn2 >> 24
+// uses:
+// r26 to store 0
+// r27 to store the byte 1 of the 48bit result
+#define MultiU24X24toH16(intRes, longIn1, longIn2) \
+asm volatile ( \
+"clr r26 \n\t" \
+"mul %A1, %B2 \n\t" \
+"mov r27, r1 \n\t" \
+"mul %B1, %C2 \n\t" \
+"movw %A0, r0 \n\t" \
+"mul %C1, %C2 \n\t" \
+"add %B0, r0 \n\t" \
+"mul %C1, %B2 \n\t" \
+"add %A0, r0 \n\t" \
+"adc %B0, r1 \n\t" \
+"mul %A1, %C2 \n\t" \
+"add r27, r0 \n\t" \
+"adc %A0, r1 \n\t" \
+"adc %B0, r26 \n\t" \
+"mul %B1, %B2 \n\t" \
+"add r27, r0 \n\t" \
+"adc %A0, r1 \n\t" \
+"adc %B0, r26 \n\t" \
+"mul %C1, %A2 \n\t" \
+"add r27, r0 \n\t" \
+"adc %A0, r1 \n\t" \
+"adc %B0, r26 \n\t" \
+"mul %B1, %A2 \n\t" \
+"add r27, r1 \n\t" \
+"adc %A0, r26 \n\t" \
+"adc %B0, r26 \n\t" \
+"lsr r27 \n\t" \
+"adc %A0, r26 \n\t" \
+"adc %B0, r26 \n\t" \
+"clr r1 \n\t" \
+: \
+"=&r" (intRes) \
+: \
+"d" (longIn1), \
+"d" (longIn2) \
+: \
+"r26" , "r27" \
+)
+
+// Some useful constants
+
+#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
+#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
+
+
+
+
+
+
+// __________________________
+// /| |\ _________________ ^
+// / | | \ /| |\ |
+// / | | \ / | | \ s
+// / | | | | | \ p
+// / | | | | | \ e
+// +-----+------------------------+---+--+---------------+----+ e
+// | BLOCK 1 | BLOCK 2 | d
+//
+// time ----->
+//
+// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
+// first block->accelerate_until step_events_completed, then keeps going at constant speed until
+// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
+// The slope of acceleration is calculated with the leib ramp alghorithm.
+
+void st_wake_up() {
+ // TCNT1 = 0;
+ if(busy == false)
+ ENABLE_STEPPER_DRIVER_INTERRUPT();
+}
+
+inline unsigned short calc_timer(unsigned short step_rate) {
+ unsigned short timer;
+ if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
+
+ if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
+ step_rate = step_rate >> 2;
+ step_loops = 4;
+ }
+ else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
+ step_rate = step_rate >> 1;
+ step_loops = 2;
+ }
+ else {
+ step_loops = 1;
+ }
+
+ if(step_rate < 32) step_rate = 32;
+ step_rate -= 32; // Correct for minimal speed
+ if(step_rate >= (8*256)){ // higher step rate
+ unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
+ unsigned char tmp_step_rate = (step_rate & 0x00ff);
+ unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
+ MultiU16X8toH16(timer, tmp_step_rate, gain);
+ timer = (unsigned short)pgm_read_word_near(table_address) - timer;
+ }
+ else { // lower step rates
+ unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
+ table_address += ((step_rate)>>1) & 0xfffc;
+ timer = (unsigned short)pgm_read_word_near(table_address);
+ timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
+ }
+ //if(timer < 100) timer = 100;
+ return timer;
+}
+
+// Initializes the trapezoid generator from the current block. Called whenever a new
+// block begins.
+inline void trapezoid_generator_reset() {
+ #ifdef ADVANCE
+ advance = current_block->initial_advance;
+ final_advance = current_block->final_advance;
+ #endif
+ deceleration_time = 0;
+ // step_rate to timer interval
+ acc_step_rate = current_block->initial_rate;
+ acceleration_time = calc_timer(acc_step_rate);
+ OCR1A = acceleration_time;
+}
+
+// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
+// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
+ISR(TIMER1_COMPA_vect)
+{
+ if(busy){
+/* SERIAL_ERRORLN(*(unsigned short *)OCR1A<< " ISR overtaking itself.");*/
+ return;
+ } // The busy-flag is used to avoid reentering this interrupt
+
+ busy = true;
+ sei(); // Re enable interrupts (normally disabled while inside an interrupt handler)
+
+ // If there is no current block, attempt to pop one from the buffer
+ if (current_block == NULL) {
+ // Anything in the buffer?
+ current_block = plan_get_current_block();
+ if (current_block != NULL) {
+ trapezoid_generator_reset();
+ counter_x = -(current_block->step_event_count >> 1);
+ counter_y = counter_x;
+ counter_z = counter_x;
+ counter_e = counter_x;
+ step_events_completed = 0;
+ #ifdef ADVANCE
+ e_steps = 0;
+ #endif
+ }
+ else {
+// DISABLE_STEPPER_DRIVER_INTERRUPT();
+ }
+ }
+
+ if (current_block != NULL) {
+ // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
+ out_bits = current_block->direction_bits;
+
+ #ifdef ADVANCE
+ // Calculate E early.
+ counter_e += current_block->steps_e;
+ if (counter_e > 0) {
+ counter_e -= current_block->step_event_count;
+ if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
+ CRITICAL_SECTION_START;
+ e_steps--;
+ CRITICAL_SECTION_END;
+ }
+ else {
+ CRITICAL_SECTION_START;
+ e_steps++;
+ CRITICAL_SECTION_END;
+ }
+ }
+ // Do E steps + advance steps
+ CRITICAL_SECTION_START;
+ e_steps += ((advance >> 16) - old_advance);
+ CRITICAL_SECTION_END;
+ old_advance = advance >> 16;
+ #endif //ADVANCE
+
+ // Set direction en check limit switches
+ if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
+ WRITE(X_DIR_PIN, INVERT_X_DIR);
+ #ifdef DEBUG_STEPS
+ count_direction[X_AXIS]=-1;
+ #endif
+ #if X_MIN_PIN > -1
+ if(READ(X_MIN_PIN) != ENDSTOPS_INVERTING) {
+ step_events_completed = current_block->step_event_count;
+ }
+ #endif
+ }
+ else { // +direction
+ WRITE(X_DIR_PIN,!INVERT_X_DIR);
+ #ifdef DEBUG_STEPS
+ count_direction[X_AXIS]=1;
+ #endif
+ #if X_MAX_PIN > -1
+ if((READ(X_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_x >0)){
+ step_events_completed = current_block->step_event_count;
+ }
+ #endif
+ }
+
+ if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
+ WRITE(Y_DIR_PIN,INVERT_Y_DIR);
+ #ifdef DEBUG_STEPS
+ count_direction[Y_AXIS]=-1;
+ #endif
+ #if Y_MIN_PIN > -1
+ if(READ(Y_MIN_PIN) != ENDSTOPS_INVERTING) {
+ step_events_completed = current_block->step_event_count;
+ }
+ #endif
+ }
+ else { // +direction
+ WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
+ #ifdef DEBUG_STEPS
+ count_direction[Y_AXIS]=1;
+ #endif
+ #if Y_MAX_PIN > -1
+ if((READ(Y_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_y >0)){
+ step_events_completed = current_block->step_event_count;
+ }
+ #endif
+ }
+
+ if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
+ WRITE(Z_DIR_PIN,INVERT_Z_DIR);
+ #ifdef DEBUG_STEPS
+ count_direction[Z_AXIS]=-1;
+ #endif
+ #if Z_MIN_PIN > -1
+ if(READ(Z_MIN_PIN) != ENDSTOPS_INVERTING) {
+ step_events_completed = current_block->step_event_count;
+ }
+ #endif
+ }
+ else { // +direction
+ WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
+ #ifdef DEBUG_STEPS
+ count_direction[Z_AXIS]=1;
+ #endif
+ #if Z_MAX_PIN > -1
+ if((READ(Z_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_z >0)){
+ step_events_completed = current_block->step_event_count;
+ }
+ #endif
+ }
+
+ #ifndef ADVANCE
+ if ((out_bits & (1<<E_AXIS)) != 0) // -direction
+ WRITE(E_DIR_PIN,INVERT_E_DIR);
+ else // +direction
+ WRITE(E_DIR_PIN,!INVERT_E_DIR);
+ #endif //!ADVANCE
+
+ for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
+ counter_x += current_block->steps_x;
+ if (counter_x > 0) {
+ WRITE(X_STEP_PIN, HIGH);
+ counter_x -= current_block->step_event_count;
+ WRITE(X_STEP_PIN, LOW);
+ #ifdef DEBUG_STEPS
+ count_position[X_AXIS]+=count_direction[X_AXIS];
+ #endif
+ }
+
+ counter_y += current_block->steps_y;
+ if (counter_y > 0) {
+ WRITE(Y_STEP_PIN, HIGH);
+ counter_y -= current_block->step_event_count;
+ WRITE(Y_STEP_PIN, LOW);
+ #ifdef DEBUG_STEPS
+ count_position[Y_AXIS]+=count_direction[Y_AXIS];
+ #endif
+ }
+
+ counter_z += current_block->steps_z;
+ if (counter_z > 0) {
+ WRITE(Z_STEP_PIN, HIGH);
+ counter_z -= current_block->step_event_count;
+ WRITE(Z_STEP_PIN, LOW);
+ #ifdef DEBUG_STEPS
+ count_position[Z_AXIS]+=count_direction[Z_AXIS];
+ #endif
+ }
+
+ #ifndef ADVANCE
+ counter_e += current_block->steps_e;
+ if (counter_e > 0) {
+ WRITE(E_STEP_PIN, HIGH);
+ counter_e -= current_block->step_event_count;
+ WRITE(E_STEP_PIN, LOW);
+ }
+ #endif //!ADVANCE
+ step_events_completed += 1;
+ if(step_events_completed >= current_block->step_event_count) break;
+ }
+ // Calculare new timer value
+ unsigned short timer;
+ unsigned short step_rate;
+ if (step_events_completed <= current_block->accelerate_until) {
+ MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
+ acc_step_rate += current_block->initial_rate;
+
+ // upper limit
+ if(acc_step_rate > current_block->nominal_rate)
+ acc_step_rate = current_block->nominal_rate;
+
+ // step_rate to timer interval
+ timer = calc_timer(acc_step_rate);
+ #ifdef ADVANCE
+ advance += advance_rate;
+ #endif
+ acceleration_time += timer;
+ OCR1A = timer;
+ }
+ else if (step_events_completed > current_block->decelerate_after) {
+ MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
+
+ if(step_rate > acc_step_rate) { // Check step_rate stays positive
+ step_rate = current_block->final_rate;
+ }
+ else {
+ step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
+ }
+
+ // lower limit
+ if(step_rate < current_block->final_rate)
+ step_rate = current_block->final_rate;
+
+ // step_rate to timer interval
+ timer = calc_timer(step_rate);
+ #ifdef ADVANCE
+ advance -= advance_rate;
+ if(advance < final_advance)
+ advance = final_advance;
+ #endif //ADVANCE
+ deceleration_time += timer;
+ OCR1A = timer;
+ }
+ else {
+ timer = calc_timer(current_block->nominal_rate);
+ OCR1A = timer;
+ }
+
+ // If current block is finished, reset pointer
+ if (step_events_completed >= current_block->step_event_count) {
+ current_block = NULL;
+ plan_discard_current_block();
+ }
+ }
+ cli(); // disable interrupts
+ busy=false;
+}
+
+#ifdef ADVANCE
+ unsigned char old_OCR0A;
+ // Timer interrupt for E. e_steps is set in the main routine;
+ // Timer 0 is shared with millies
+ ISR(TIMER0_COMPA_vect)
+ {
+ // Critical section needed because Timer 1 interrupt has higher priority.
+ // The pin set functions are placed on trategic position to comply with the stepper driver timing.
+ WRITE(E_STEP_PIN, LOW);
+ // Set E direction (Depends on E direction + advance)
+ if (e_steps < 0) {
+ WRITE(E_DIR_PIN,INVERT_E_DIR);
+ e_steps++;
+ WRITE(E_STEP_PIN, HIGH);
+ }
+ if (e_steps > 0) {
+ WRITE(E_DIR_PIN,!INVERT_E_DIR);
+ e_steps--;
+ WRITE(E_STEP_PIN, HIGH);
+ }
+ old_OCR0A += 25; // 10kHz interrupt
+ OCR0A = old_OCR0A;
+ }
+#endif // ADVANCE
+
+void st_init()
+{
+ //Initialize Dir Pins
+ #if X_DIR_PIN > -1
+ SET_OUTPUT(X_DIR_PIN);
+ #endif
+ #if Y_DIR_PIN > -1
+ SET_OUTPUT(Y_DIR_PIN);
+ #endif
+ #if Z_DIR_PIN > -1
+ SET_OUTPUT(Z_DIR_PIN);
+ #endif
+ #if E_DIR_PIN > -1
+ SET_OUTPUT(E_DIR_PIN);
+ #endif
+
+ //Initialize Enable Pins - steppers default to disabled.
+
+ #if (X_ENABLE_PIN > -1)
+ SET_OUTPUT(X_ENABLE_PIN);
+ if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
+ #endif
+ #if (Y_ENABLE_PIN > -1)
+ SET_OUTPUT(Y_ENABLE_PIN);
+ if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
+ #endif
+ #if (Z_ENABLE_PIN > -1)
+ SET_OUTPUT(Z_ENABLE_PIN);
+ if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
+ #endif
+ #if (E_ENABLE_PIN > -1)
+ SET_OUTPUT(E_ENABLE_PIN);
+ if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH);
+ #endif
+
+ //endstops and pullups
+ #ifdef ENDSTOPPULLUPS
+ #if X_MIN_PIN > -1
+ SET_INPUT(X_MIN_PIN);
+ WRITE(X_MIN_PIN,HIGH);
+ #endif
+ #if X_MAX_PIN > -1
+ SET_INPUT(X_MAX_PIN);
+ WRITE(X_MAX_PIN,HIGH);
+ #endif
+ #if Y_MIN_PIN > -1
+ SET_INPUT(Y_MIN_PIN);
+ WRITE(Y_MIN_PIN,HIGH);
+ #endif
+ #if Y_MAX_PIN > -1
+ SET_INPUT(Y_MAX_PIN);
+ WRITE(Y_MAX_PIN,HIGH);
+ #endif
+ #if Z_MIN_PIN > -1
+ SET_INPUT(Z_MIN_PIN);
+ WRITE(Z_MIN_PIN,HIGH);
+ #endif
+ #if Z_MAX_PIN > -1
+ SET_INPUT(Z_MAX_PIN);
+ WRITE(Z_MAX_PIN,HIGH);
+ #endif
+ #else //ENDSTOPPULLUPS
+ #if X_MIN_PIN > -1
+ SET_INPUT(X_MIN_PIN);
+ #endif
+ #if X_MAX_PIN > -1
+ SET_INPUT(X_MAX_PIN);
+ #endif
+ #if Y_MIN_PIN > -1
+ SET_INPUT(Y_MIN_PIN);
+ #endif
+ #if Y_MAX_PIN > -1
+ SET_INPUT(Y_MAX_PIN);
+ #endif
+ #if Z_MIN_PIN > -1
+ SET_INPUT(Z_MIN_PIN);
+ #endif
+ #if Z_MAX_PIN > -1
+ SET_INPUT(Z_MAX_PIN);
+ #endif
+ #endif //ENDSTOPPULLUPS
+
+
+ //Initialize Step Pins
+ #if (X_STEP_PIN > -1)
+ SET_OUTPUT(X_STEP_PIN);
+ #endif
+ #if (Y_STEP_PIN > -1)
+ SET_OUTPUT(Y_STEP_PIN);
+ #endif
+ #if (Z_STEP_PIN > -1)
+ SET_OUTPUT(Z_STEP_PIN);
+ #endif
+ #if (E_STEP_PIN > -1)
+ SET_OUTPUT(E_STEP_PIN);
+ #endif
+
+ // waveform generation = 0100 = CTC
+ TCCR1B &= ~(1<<WGM13);
+ TCCR1B |= (1<<WGM12);
+ TCCR1A &= ~(1<<WGM11);
+ TCCR1A &= ~(1<<WGM10);
+
+ // output mode = 00 (disconnected)
+ TCCR1A &= ~(3<<COM1A0);
+ TCCR1A &= ~(3<<COM1B0);
+ TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10); // 2MHz timer
+
+ OCR1A = 0x4000;
+ DISABLE_STEPPER_DRIVER_INTERRUPT();
+
+ #ifdef ADVANCE
+ e_steps = 0;
+ TIMSK0 |= (1<<OCIE0A);
+ #endif //ADVANCE
+ sei();
+}
+
+// Block until all buffered steps are executed
+void st_synchronize()
+{
+ while(plan_get_current_block()) {
+ manage_heater();
+ manage_inactivity(1);
+ LCD_STATUS;
+ }
}\r
-/*\r
- temperature.c - temperature control\r
- Part of Marlin\r
- \r
- Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm\r
- \r
- This program is free software: you can redistribute it and/or modify\r
- it under the terms of the GNU General Public License as published by\r
- the Free Software Foundation, either version 3 of the License, or\r
- (at your option) any later version.\r
- \r
- This program is distributed in the hope that it will be useful,\r
- but WITHOUT ANY WARRANTY; without even the implied warranty of\r
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\r
- GNU General Public License for more details.\r
- \r
- You should have received a copy of the GNU General Public License\r
- along with this program. If not, see <http://www.gnu.org/licenses/>.\r
- */\r
-\r
-/*\r
- This firmware is a mashup between Sprinter and grbl.\r
- (https://github.com/kliment/Sprinter)\r
- (https://github.com/simen/grbl/tree)\r
- \r
- It has preliminary support for Matthew Roberts advance algorithm \r
- http://reprap.org/pipermail/reprap-dev/2011-May/003323.html\r
-\r
- This firmware is optimized for gen6 electronics.\r
- */\r
-\r
-#include "fastio.h"\r
-#include "Configuration.h"\r
-#include "pins.h"\r
-#include "Marlin.h"\r
-#include "ultralcd.h"\r
-#include "streaming.h"\r
-#include "temperature.h"\r
-#include "watchdog.h"\r
-\r
-//===========================================================================\r
-//=============================public variables============================\r
-//===========================================================================\r
-int target_raw[3] = {0, 0, 0};\r
-int current_raw[3] = {0, 0, 0};\r
-\r
-#ifdef PIDTEMP\r
- \r
- // probably used external\r
- float HeaterPower;\r
- float pid_setpoint = 0.0;\r
-\r
- \r
- float Kp=DEFAULT_Kp;\r
- float Ki=DEFAULT_Ki;\r
- float Kd=DEFAULT_Kd;\r
- float Kc=DEFAULT_Kc;\r
-#endif //PIDTEMP\r
- \r
- \r
-//===========================================================================\r
-//=============================private variables============================\r
-//===========================================================================\r
-static bool temp_meas_ready = false;\r
-\r
-static unsigned long previous_millis_heater, previous_millis_bed_heater;\r
-\r
-#ifdef PIDTEMP\r
- //static cannot be external:\r
- static float temp_iState = 0;\r
- static float temp_dState = 0;\r
- static float pTerm;\r
- static float iTerm;\r
- static float dTerm;\r
- //int output;\r
- static float pid_error;\r
- static float temp_iState_min;\r
- static float temp_iState_max;\r
- static float pid_input;\r
- static float pid_output;\r
- static bool pid_reset;\r
- \r
-#endif //PIDTEMP\r
- \r
-#ifdef WATCHPERIOD\r
- static int watch_raw[3] = {-1000,-1000,-1000};\r
- static unsigned long watchmillis = 0;\r
-#endif //WATCHPERIOD\r
-\r
-#ifdef HEATER_0_MINTEMP\r
- static int minttemp_0 = temp2analog(HEATER_0_MINTEMP);\r
-#endif //MINTEMP\r
-#ifdef HEATER_0_MAXTEMP\r
- static int maxttemp_0 = temp2analog(HEATER_0_MAXTEMP);\r
-#endif //MAXTEMP\r
-\r
-#ifdef HEATER_1_MINTEMP\r
- static int minttemp_1 = temp2analog(HEATER_1_MINTEMP);\r
-#endif //MINTEMP\r
-#ifdef HEATER_1_MAXTEMP\r
- static int maxttemp_1 = temp2analog(HEATER_1_MAXTEMP);\r
-#endif //MAXTEMP\r
-\r
-#ifdef BED_MINTEMP\r
- static int bed_minttemp = temp2analog(BED_MINTEMP);\r
-#endif //BED_MINTEMP\r
-#ifdef BED_MAXTEMP\r
- static int bed_maxttemp = temp2analog(BED_MAXTEMP);\r
-#endif //BED_MAXTEMP\r
-\r
-//===========================================================================\r
-//=============================functions ============================\r
-//===========================================================================\r
- \r
-void manage_heater()\r
-{\r
- #ifdef USE_WATCHDOG\r
- wd_reset();\r
- #endif\r
- \r
- float pid_input;\r
- float pid_output;\r
- if(temp_meas_ready != true) //better readability\r
- return; \r
-\r
- CRITICAL_SECTION_START;\r
- temp_meas_ready = false;\r
- CRITICAL_SECTION_END;\r
-\r
- #ifdef PIDTEMP\r
- pid_input = analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);\r
-\r
- #ifndef PID_OPENLOOP\r
- pid_error = pid_setpoint - pid_input;\r
- if(pid_error > 10){\r
- pid_output = PID_MAX;\r
- pid_reset = true;\r
- }\r
- else if(pid_error < -10) {\r
- pid_output = 0;\r
- pid_reset = true;\r
- }\r
- else {\r
- if(pid_reset == true) {\r
- temp_iState = 0.0;\r
- pid_reset = false;\r
- }\r
- pTerm = Kp * pid_error;\r
- temp_iState += pid_error;\r
- temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);\r
- iTerm = Ki * temp_iState;\r
- //K1 defined in Configuration.h in the PID settings\r
- #define K2 (1.0-K1)\r
- dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);\r
- temp_dState = pid_input;\r
- #ifdef PID_ADD_EXTRUSION_RATE\r
- pTerm+=Kc*current_block->speed_e; //additional heating if extrusion speed is high\r
- #endif\r
- pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);\r
- }\r
- #endif //PID_OPENLOOP\r
- #ifdef PID_DEBUG\r
- SERIAL_ECHOLN(" PIDDEBUG Input "<<pid_input<<" Output "<<pid_output" pTerm "<<pTerm<<" iTerm "<<iTerm<<" dTerm "<<dTerm); \r
- #endif //PID_DEBUG\r
- analogWrite(HEATER_0_PIN, pid_output);\r
- #endif //PIDTEMP\r
-\r
- #ifndef PIDTEMP\r
- if(current_raw[0] >= target_raw[0])\r
- {\r
- WRITE(HEATER_0_PIN,LOW);\r
- }\r
- else \r
- {\r
- WRITE(HEATER_0_PIN,HIGH);\r
- }\r
- #endif\r
- \r
- if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)\r
- return;\r
- previous_millis_bed_heater = millis();\r
- \r
- #if TEMP_1_PIN > -1\r
- if(current_raw[TEMPSENSOR_BED] >= target_raw[TEMPSENSOR_BED])\r
- {\r
- WRITE(HEATER_1_PIN,LOW);\r
- }\r
- else \r
- {\r
- WRITE(HEATER_1_PIN,HIGH);\r
- }\r
- #endif\r
-}\r
-\r
-// Takes hot end temperature value as input and returns corresponding raw value. \r
-// For a thermistor, it uses the RepRap thermistor temp table.\r
-// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.\r
-// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.\r
-int temp2analog(int celsius) {\r
- #ifdef HEATER_0_USES_THERMISTOR\r
- int raw = 0;\r
- byte i;\r
- \r
- for (i=1; i<NUMTEMPS_HEATER_0; i++)\r
- {\r
- if (heater_0_temptable[i][1] < celsius)\r
- {\r
- raw = heater_0_temptable[i-1][0] + \r
- (celsius - heater_0_temptable[i-1][1]) * \r
- (heater_0_temptable[i][0] - heater_0_temptable[i-1][0]) /\r
- (heater_0_temptable[i][1] - heater_0_temptable[i-1][1]); \r
- break;\r
- }\r
- }\r
-\r
- // Overflow: Set to last value in the table\r
- if (i == NUMTEMPS_HEATER_0) raw = heater_0_temptable[i-1][0];\r
-\r
- return (1023 * OVERSAMPLENR) - raw;\r
- #elif defined HEATER_0_USES_AD595\r
- return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;\r
- #endif\r
-}\r
-\r
-// Takes bed temperature value as input and returns corresponding raw value. \r
-// For a thermistor, it uses the RepRap thermistor temp table.\r
-// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.\r
-// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.\r
-int temp2analogBed(int celsius) {\r
- #ifdef BED_USES_THERMISTOR\r
-\r
- int raw = 0;\r
- byte i;\r
- \r
- for (i=1; i<BNUMTEMPS; i++)\r
- {\r
- if (bedtemptable[i][1] < celsius)\r
- {\r
- raw = bedtemptable[i-1][0] + \r
- (celsius - bedtemptable[i-1][1]) * \r
- (bedtemptable[i][0] - bedtemptable[i-1][0]) /\r
- (bedtemptable[i][1] - bedtemptable[i-1][1]);\r
- \r
- break;\r
- }\r
- }\r
-\r
- // Overflow: Set to last value in the table\r
- if (i == BNUMTEMPS) raw = bedtemptable[i-1][0];\r
-\r
- return (1023 * OVERSAMPLENR) - raw;\r
- #elif defined BED_USES_AD595\r
- return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;\r
- #endif\r
-}\r
-\r
-// Derived from RepRap FiveD extruder::getTemperature()\r
-// For hot end temperature measurement.\r
-float analog2temp(int raw) {\r
- #ifdef HEATER_0_USES_THERMISTOR\r
- float celsius = 0;\r
- byte i; \r
- raw = (1023 * OVERSAMPLENR) - raw;\r
- for (i=1; i<NUMTEMPS_HEATER_0; i++)\r
- {\r
- if (heater_0_temptable[i][0] > raw)\r
- {\r
- celsius = heater_0_temptable[i-1][1] + \r
- (raw - heater_0_temptable[i-1][0]) * \r
- (float)(heater_0_temptable[i][1] - heater_0_temptable[i-1][1]) /\r
- (float)(heater_0_temptable[i][0] - heater_0_temptable[i-1][0]);\r
-\r
- break;\r
- }\r
- }\r
-\r
- // Overflow: Set to last value in the table\r
- if (i == NUMTEMPS_HEATER_0) celsius = heater_0_temptable[i-1][1];\r
-\r
- return celsius;\r
- #elif defined HEATER_0_USES_AD595\r
- return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;\r
- #endif\r
-}\r
-\r
-// Derived from RepRap FiveD extruder::getTemperature()\r
-// For bed temperature measurement.\r
-float analog2tempBed(int raw) {\r
- #ifdef BED_USES_THERMISTOR\r
- int celsius = 0;\r
- byte i;\r
-\r
- raw = (1023 * OVERSAMPLENR) - raw;\r
-\r
- for (i=1; i<BNUMTEMPS; i++)\r
- {\r
- if (bedtemptable[i][0] > raw)\r
- {\r
- celsius = bedtemptable[i-1][1] + \r
- (raw - bedtemptable[i-1][0]) * \r
- (bedtemptable[i][1] - bedtemptable[i-1][1]) /\r
- (bedtemptable[i][0] - bedtemptable[i-1][0]);\r
-\r
- break;\r
- }\r
- }\r
-\r
- // Overflow: Set to last value in the table\r
- if (i == BNUMTEMPS) celsius = bedtemptable[i-1][1];\r
-\r
- return celsius;\r
- \r
- #elif defined BED_USES_AD595\r
- return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;\r
- #endif\r
-}\r
-\r
-void tp_init()\r
-{\r
- #if (HEATER_0_PIN > -1) \r
- SET_OUTPUT(HEATER_0_PIN);\r
- #endif \r
- #if (HEATER_1_PIN > -1) \r
- SET_OUTPUT(HEATER_1_PIN);\r
- #endif \r
- #if (HEATER_2_PIN > -1) \r
- SET_OUTPUT(HEATER_2_PIN);\r
- #endif \r
-\r
- #ifdef PIDTEMP\r
- temp_iState_min = 0.0;\r
- temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;\r
- #endif //PIDTEMP\r
-\r
- // Set analog inputs\r
- ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;\r
- \r
- // Use timer0 for temperature measurement\r
- // Interleave temperature interrupt with millies interrupt\r
- OCR0B = 128;\r
- TIMSK0 |= (1<<OCIE0B); \r
-}\r
-\r
-\r
-\r
-void setWatch() \r
-{ \r
-#ifdef WATCHPERIOD\r
- if(isHeatingHotend0())\r
- {\r
- watchmillis = max(1,millis());\r
- watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];\r
- }\r
- else\r
- {\r
- watchmillis = 0;\r
- } \r
-#endif \r
-}\r
-\r
-\r
-void disable_heater()\r
-{\r
- #if TEMP_0_PIN > -1\r
- target_raw[0]=0;\r
- #if HEATER_0_PIN > -1 \r
- WRITE(HEATER_0_PIN,LOW);\r
- #endif\r
- #endif\r
- \r
- #if TEMP_1_PIN > -1\r
- target_raw[1]=0;\r
- #if HEATER_1_PIN > -1 \r
- WRITE(HEATER_1_PIN,LOW);\r
- #endif\r
- #endif\r
- \r
- #if TEMP_2_PIN > -1\r
- target_raw[2]=0;\r
- #if HEATER_2_PIN > -1 \r
- WRITE(HEATER_2_PIN,LOW);\r
- #endif\r
- #endif \r
-}\r
-\r
-// Timer 0 is shared with millies\r
-ISR(TIMER0_COMPB_vect)\r
-{\r
- //these variables are only accesible from the ISR, but static, so they don't loose their value\r
- static unsigned char temp_count = 0;\r
- static unsigned long raw_temp_0_value = 0;\r
- static unsigned long raw_temp_1_value = 0;\r
- static unsigned long raw_temp_2_value = 0;\r
- static unsigned char temp_state = 0;\r
- \r
- switch(temp_state) {\r
- case 0: // Prepare TEMP_0\r
- #if (TEMP_0_PIN > -1)\r
- #if TEMP_0_PIN < 8\r
- DIDR0 = 1 << TEMP_0_PIN; \r
- #else\r
- DIDR2 = 1<<(TEMP_0_PIN - 8); \r
- ADCSRB = 1<<MUX5;\r
- #endif\r
- ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));\r
- ADCSRA |= 1<<ADSC; // Start conversion\r
- #endif\r
- #ifdef ULTIPANEL\r
- buttons_check();\r
- #endif\r
- temp_state = 1;\r
- break;\r
- case 1: // Measure TEMP_0\r
- #if (TEMP_0_PIN > -1)\r
- raw_temp_0_value += ADC;\r
- #endif\r
- temp_state = 2;\r
- break;\r
- case 2: // Prepare TEMP_1\r
- #if (TEMP_1_PIN > -1)\r
- #if TEMP_1_PIN < 7\r
- DIDR0 = 1<<TEMP_1_PIN; \r
- #else\r
- DIDR2 = 1<<(TEMP_1_PIN - 8); \r
- ADCSRB = 1<<MUX5;\r
- #endif\r
- ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));\r
- ADCSRA |= 1<<ADSC; // Start conversion\r
- #endif\r
- #ifdef ULTIPANEL\r
- buttons_check();\r
- #endif\r
- temp_state = 3;\r
- break;\r
- case 3: // Measure TEMP_1\r
- #if (TEMP_1_PIN > -1)\r
- raw_temp_1_value += ADC;\r
- #endif\r
- temp_state = 4;\r
- break;\r
- case 4: // Prepare TEMP_2\r
- #if (TEMP_2_PIN > -1)\r
- #if TEMP_2_PIN < 7\r
- DIDR0 = 1 << TEMP_2_PIN; \r
- #else\r
- DIDR2 = 1<<(TEMP_2_PIN - 8); \r
- ADCSRB = 1<<MUX5;\r
- #endif\r
- ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));\r
- ADCSRA |= 1<<ADSC; // Start conversion\r
- #endif\r
- #ifdef ULTIPANEL\r
- buttons_check();\r
- #endif\r
- temp_state = 5;\r
- break;\r
- case 5: // Measure TEMP_2\r
- #if (TEMP_2_PIN > -1)\r
- raw_temp_2_value += ADC;\r
- #endif\r
- temp_state = 0;\r
- temp_count++;\r
- break;\r
- default:\r
- SERIAL_ERRORLN("Temp measurement error!");\r
- break;\r
- }\r
- \r
- if(temp_count >= 16) // 6 ms * 16 = 96ms.\r
- {\r
- #ifdef HEATER_0_USES_AD595\r
- current_raw[0] = raw_temp_0_value;\r
- #else\r
- current_raw[0] = 16383 - raw_temp_0_value;\r
- #endif\r
- \r
- #ifdef HEATER_1_USES_AD595\r
- current_raw[2] = raw_temp_2_value;\r
- #else\r
- current_raw[2] = 16383 - raw_temp_2_value;\r
- #endif\r
- \r
- #ifdef BED_USES_AD595\r
- current_raw[1] = raw_temp_1_value;\r
- #else\r
- current_raw[1] = 16383 - raw_temp_1_value;\r
- #endif\r
- \r
- temp_meas_ready = true;\r
- temp_count = 0;\r
- raw_temp_0_value = 0;\r
- raw_temp_1_value = 0;\r
- raw_temp_2_value = 0;\r
- #ifdef HEATER_0_MAXTEMP\r
- #if (HEATER_0_PIN > -1)\r
- if(current_raw[TEMPSENSOR_HOTEND_0] >= maxttemp_0) {\r
- target_raw[TEMPSENSOR_HOTEND_0] = 0;\r
- analogWrite(HEATER_0_PIN, 0);\r
- SERIAL_ERRORLN("Temperature extruder 0 switched off. MAXTEMP triggered !!");\r
- kill();\r
- }\r
- #endif\r
- #endif\r
- #ifdef HEATER_1_MAXTEMP\r
- #if (HEATER_1_PIN > -1)\r
- if(current_raw[TEMPSENSOR_HOTEND_1] >= maxttemp_1) {\r
- target_raw[TEMPSENSOR_HOTEND_1] = 0;\r
- if(current_raw[2] >= maxttemp_1) {\r
- analogWrite(HEATER_2_PIN, 0);\r
- SERIAL_ERRORLN("Temperature extruder 1 switched off. MAXTEMP triggered !!");\r
- kill()\r
- }\r
- #endif\r
- #endif //MAXTEMP\r
- \r
- #ifdef HEATER_0_MINTEMP\r
- #if (HEATER_0_PIN > -1)\r
- if(current_raw[TEMPSENSOR_HOTEND_0] <= minttemp_0) {\r
- target_raw[TEMPSENSOR_HOTEND_0] = 0;\r
- analogWrite(HEATER_0_PIN, 0);\r
- SERIAL_ERRORLN("Temperature extruder 0 switched off. MINTEMP triggered !!");\r
- kill();\r
- }\r
- #endif\r
- #endif\r
- \r
- #ifdef HEATER_1_MINTEMP\r
- #if (HEATER_2_PIN > -1)\r
- if(current_raw[TEMPSENSOR_HOTEND_1] <= minttemp_1) {\r
- target_raw[TEMPSENSOR_HOTEND_1] = 0;\r
- analogWrite(HEATER_2_PIN, 0);\r
- SERIAL_ERRORLN("Temperature extruder 1 switched off. MINTEMP triggered !!");\r
- kill();\r
- }\r
- #endif\r
- #endif //MAXTEMP\r
- \r
- #ifdef BED_MINTEMP\r
- #if (HEATER_1_PIN > -1)\r
- if(current_raw[1] <= bed_minttemp) {\r
- target_raw[1] = 0;\r
- WRITE(HEATER_1_PIN, 0);\r
- SERIAL_ERRORLN("Temperatur heated bed switched off. MINTEMP triggered !!");\r
- kill();\r
- }\r
- #endif\r
- #endif\r
- \r
- #ifdef BED_MAXTEMP\r
- #if (HEATER_1_PIN > -1)\r
- if(current_raw[1] >= bed_maxttemp) {\r
- target_raw[1] = 0;\r
- WRITE(HEATER_1_PIN, 0);\r
- SERIAL_ERRORLN("Temperature heated bed switched off. MAXTEMP triggered !!");\r
- kill();\r
- }\r
- #endif\r
- #endif\r
- }\r
-}\r
-\r
+/*
+ temperature.c - temperature control
+ Part of Marlin
+
+ Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+ This firmware is a mashup between Sprinter and grbl.
+ (https://github.com/kliment/Sprinter)
+ (https://github.com/simen/grbl/tree)
+
+ It has preliminary support for Matthew Roberts advance algorithm
+ http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
+
+ This firmware is optimized for gen6 electronics.
+ */
+#include <avr/pgmspace.h>
+
+#include "fastio.h"
+#include "Configuration.h"
+#include "pins.h"
+#include "Marlin.h"
+#include "ultralcd.h"
+#include "streaming.h"
+#include "temperature.h"
+#include "watchdog.h"
+
+//===========================================================================
+//=============================public variables============================
+//===========================================================================
+int target_raw[3] = {0, 0, 0};
+int current_raw[3] = {0, 0, 0};
+
+#ifdef PIDTEMP
+
+ // probably used external
+ float HeaterPower;
+ float pid_setpoint = 0.0;
+
+
+ float Kp=DEFAULT_Kp;
+ float Ki=DEFAULT_Ki;
+ float Kd=DEFAULT_Kd;
+ #ifdef PID_ADD_EXTRUSION_RATE
+ float Kc=DEFAULT_Kc;
+ #endif
+#endif //PIDTEMP
+
+
+//===========================================================================
+//=============================private variables============================
+//===========================================================================
+static bool temp_meas_ready = false;
+
+static unsigned long previous_millis_heater, previous_millis_bed_heater;
+
+#ifdef PIDTEMP
+ //static cannot be external:
+ static float temp_iState = 0;
+ static float temp_dState = 0;
+ static float pTerm;
+ static float iTerm;
+ static float dTerm;
+ //int output;
+ static float pid_error;
+ static float temp_iState_min;
+ static float temp_iState_max;
+ static float pid_input;
+ static float pid_output;
+ static bool pid_reset;
+
+#endif //PIDTEMP
+
+#ifdef WATCHPERIOD
+ static int watch_raw[3] = {-1000,-1000,-1000};
+ static unsigned long watchmillis = 0;
+#endif //WATCHPERIOD
+
+#ifdef HEATER_0_MINTEMP
+ static int minttemp_0 = temp2analog(HEATER_0_MINTEMP);
+#endif //MINTEMP
+#ifdef HEATER_0_MAXTEMP
+ static int maxttemp_0 = temp2analog(HEATER_0_MAXTEMP);
+#endif //MAXTEMP
+
+#ifdef HEATER_1_MINTEMP
+ static int minttemp_1 = temp2analog(HEATER_1_MINTEMP);
+#endif //MINTEMP
+#ifdef HEATER_1_MAXTEMP
+ static int maxttemp_1 = temp2analog(HEATER_1_MAXTEMP);
+#endif //MAXTEMP
+
+#ifdef BED_MINTEMP
+ static int bed_minttemp = temp2analog(BED_MINTEMP);
+#endif //BED_MINTEMP
+#ifdef BED_MAXTEMP
+ static int bed_maxttemp = temp2analog(BED_MAXTEMP);
+#endif //BED_MAXTEMP
+
+//===========================================================================
+//=============================functions ============================
+//===========================================================================
+
+void manage_heater()
+{
+ #ifdef USE_WATCHDOG
+ wd_reset();
+ #endif
+
+ float pid_input;
+ float pid_output;
+ if(temp_meas_ready != true) //better readability
+ return;
+
+ CRITICAL_SECTION_START;
+ temp_meas_ready = false;
+ CRITICAL_SECTION_END;
+
+ #ifdef PIDTEMP
+ pid_input = analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
+
+ #ifndef PID_OPENLOOP
+ pid_error = pid_setpoint - pid_input;
+ if(pid_error > 10){
+ pid_output = PID_MAX;
+ pid_reset = true;
+ }
+ else if(pid_error < -10) {
+ pid_output = 0;
+ pid_reset = true;
+ }
+ else {
+ if(pid_reset == true) {
+ temp_iState = 0.0;
+ pid_reset = false;
+ }
+ pTerm = Kp * pid_error;
+ temp_iState += pid_error;
+ temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
+ iTerm = Ki * temp_iState;
+ //K1 defined in Configuration.h in the PID settings
+ #define K2 (1.0-K1)
+ dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);
+ temp_dState = pid_input;
+// #ifdef PID_ADD_EXTRUSION_RATE
+// pTerm+=Kc*current_block->speed_e; //additional heating if extrusion speed is high
+// #endif
+ pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);
+ }
+ #endif //PID_OPENLOOP
+ #ifdef PID_DEBUG
+ SERIAL_ECHOLN(" PIDDEBUG Input "<<pid_input<<" Output "<<pid_output" pTerm "<<pTerm<<" iTerm "<<iTerm<<" dTerm "<<dTerm);
+ #endif //PID_DEBUG
+ analogWrite(HEATER_0_PIN, pid_output);
+ #endif //PIDTEMP
+
+ #ifndef PIDTEMP
+ if(current_raw[0] >= target_raw[0])
+ {
+ WRITE(HEATER_0_PIN,LOW);
+ }
+ else
+ {
+ WRITE(HEATER_0_PIN,HIGH);
+ }
+ #endif
+
+ if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
+ return;
+ previous_millis_bed_heater = millis();
+
+ #if TEMP_1_PIN > -1
+ if(current_raw[TEMPSENSOR_BED] >= target_raw[TEMPSENSOR_BED])
+ {
+ WRITE(HEATER_1_PIN,LOW);
+ }
+ else
+ {
+ WRITE(HEATER_1_PIN,HIGH);
+ }
+ #endif
+}
+
+// Takes hot end temperature value as input and returns corresponding raw value.
+// For a thermistor, it uses the RepRap thermistor temp table.
+// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
+// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
+int temp2analog(int celsius) {
+ #ifdef HEATER_0_USES_THERMISTOR
+ int raw = 0;
+ byte i;
+
+ for (i=1; i<NUMTEMPS_HEATER_0; i++)
+ {
+ if (pgm_read_word(&(heater_0_temptable[i][1])) < celsius)
+ {
+ raw = pgm_read_word(&(heater_0_temptable[i-1][0])) +
+ (celsius - pgm_read_word(&(heater_0_temptable[i-1][1]))) *
+ (pgm_read_word(&(heater_0_temptable[i][0])) - pgm_read_word(&(heater_0_temptable[i-1][0]))) /
+ (pgm_read_word(&(heater_0_temptable[i][1])) - pgm_read_word(&(heater_0_temptable[i-1][1])));
+ break;
+ }
+ }
+
+ // Overflow: Set to last value in the table
+ if (i == NUMTEMPS_HEATER_0) raw = pgm_read_word(&(heater_0_temptable[i-1][0]));
+
+ return (1023 * OVERSAMPLENR) - raw;
+ #elif defined HEATER_0_USES_AD595
+ return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
+ #endif
+}
+
+// Takes bed temperature value as input and returns corresponding raw value.
+// For a thermistor, it uses the RepRap thermistor temp table.
+// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
+// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
+int temp2analogBed(int celsius) {
+ #ifdef BED_USES_THERMISTOR
+
+ int raw = 0;
+ byte i;
+
+ for (i=1; i<BNUMTEMPS; i++)
+ {
+ if (pgm_read_word(&)bedtemptable[i][1])) < celsius)
+ {
+ raw = pgm_read_word(&(bedtemptable[i-1][0])) +
+ (celsius - pgm_read_word(&(bedtemptable[i-1][1]))) *
+ (pgm_read_word(&(bedtemptable[i][0])) - pgm_read_word(&(bedtemptable[i-1][0]))) /
+ (pgm_read_word(&(bedtemptable[i][1])) - pgm_read_word(&(bedtemptable[i-1][1])));
+
+ break;
+ }
+ }
+
+ // Overflow: Set to last value in the table
+ if (i == BNUMTEMPS) raw = pgm_read_word(&(bedtemptable[i-1][0]));
+
+ return (1023 * OVERSAMPLENR) - raw;
+ #elif defined BED_USES_AD595
+ return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
+ #endif
+}
+
+// Derived from RepRap FiveD extruder::getTemperature()
+// For hot end temperature measurement.
+float analog2temp(int raw) {
+ #ifdef HEATER_0_USES_THERMISTOR
+ float celsius = 0;
+ byte i;
+ raw = (1023 * OVERSAMPLENR) - raw;
+ for (i=1; i<NUMTEMPS_HEATER_0; i++)
+ {
+ if ((short)pgm_read_word(&heater_0_temptable[i][0]) > raw)
+ {
+ celsius = (short)pgm_read_word(&heater_0_temptable[i-1][1]) +
+ (raw - (short)pgm_read_word(&heater_0_temptable[i-1][0])) *
+ (float)((short)pgm_read_word(&heater_0_temptable[i][1]) - (short)pgm_read_word(&heater_0_temptable[i-1][1])) /
+ (float)((short)pgm_read_word(&heater_0_temptable[i][0]) - (short)pgm_read_word(&heater_0_temptable[i-1][0]));
+ break;
+ }
+ }
+
+ // Overflow: Set to last value in the table
+ if (i == NUMTEMPS_HEATER_0) celsius = (short)pgm_read_word(&(heater_0_temptable[i-1][1]));
+
+ return celsius;
+ #elif defined HEATER_0_USES_AD595
+ return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
+ #endif
+}
+
+// Derived from RepRap FiveD extruder::getTemperature()
+// For bed temperature measurement.
+float analog2tempBed(int raw) {
+ #ifdef BED_USES_THERMISTOR
+ int celsius = 0;
+ byte i;
+
+ raw = (1023 * OVERSAMPLENR) - raw;
+
+ for (i=1; i<BNUMTEMPS; i++)
+ {
+ if (pgm_read_word(&(bedtemptable[i][0])) > raw)
+ {
+ celsius = pgm_read_word(&(bedtemptable[i-1][1])) +
+ (raw - pgm_read_word(&(bedtemptable[i-1][0]))) *
+ (pgm_read_word(&(bedtemptable[i][1])) - pgm_read_word(&(bedtemptable[i-1][1]))) /
+ (pgm_read_word(&(bedtemptable[i][0])) - pgm_read_word(&(bedtemptable[i-1][0])));
+
+ break;
+ }
+ }
+
+ // Overflow: Set to last value in the table
+ if (i == BNUMTEMPS) celsius = pgm_read_word(&(bedtemptable[i-1][1]));
+
+ return celsius;
+
+ #elif defined BED_USES_AD595
+ return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
+ #endif
+}
+
+void tp_init()
+{
+ #if (HEATER_0_PIN > -1)
+ SET_OUTPUT(HEATER_0_PIN);
+ #endif
+ #if (HEATER_1_PIN > -1)
+ SET_OUTPUT(HEATER_1_PIN);
+ #endif
+ #if (HEATER_2_PIN > -1)
+ SET_OUTPUT(HEATER_2_PIN);
+ #endif
+
+ #ifdef PIDTEMP
+ temp_iState_min = 0.0;
+ temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
+ #endif //PIDTEMP
+
+ // Set analog inputs
+ ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
+
+ // Use timer0 for temperature measurement
+ // Interleave temperature interrupt with millies interrupt
+ OCR0B = 128;
+ TIMSK0 |= (1<<OCIE0B);
+}
+
+
+
+void setWatch()
+{
+#ifdef WATCHPERIOD
+ if(isHeatingHotend0())
+ {
+ watchmillis = max(1,millis());
+ watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];
+ }
+ else
+ {
+ watchmillis = 0;
+ }
+#endif
+}
+
+
+void disable_heater()
+{
+ #if TEMP_0_PIN > -1
+ target_raw[0]=0;
+ #if HEATER_0_PIN > -1
+ WRITE(HEATER_0_PIN,LOW);
+ #endif
+ #endif
+
+ #if TEMP_1_PIN > -1
+ target_raw[1]=0;
+ #if HEATER_1_PIN > -1
+ WRITE(HEATER_1_PIN,LOW);
+ #endif
+ #endif
+
+ #if TEMP_2_PIN > -1
+ target_raw[2]=0;
+ #if HEATER_2_PIN > -1
+ WRITE(HEATER_2_PIN,LOW);
+ #endif
+ #endif
+}
+
+// Timer 0 is shared with millies
+ISR(TIMER0_COMPB_vect)
+{
+ //these variables are only accesible from the ISR, but static, so they don't loose their value
+ static unsigned char temp_count = 0;
+ static unsigned long raw_temp_0_value = 0;
+ static unsigned long raw_temp_1_value = 0;
+ static unsigned long raw_temp_2_value = 0;
+ static unsigned char temp_state = 0;
+
+ switch(temp_state) {
+ case 0: // Prepare TEMP_0
+ #if (TEMP_0_PIN > -1)
+ #if TEMP_0_PIN < 8
+ DIDR0 = 1 << TEMP_0_PIN;
+ #else
+ DIDR2 = 1<<(TEMP_0_PIN - 8);
+ ADCSRB = 1<<MUX5;
+ #endif
+ ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
+ ADCSRA |= 1<<ADSC; // Start conversion
+ #endif
+ #ifdef ULTIPANEL
+ buttons_check();
+ #endif
+ temp_state = 1;
+ break;
+ case 1: // Measure TEMP_0
+ #if (TEMP_0_PIN > -1)
+ raw_temp_0_value += ADC;
+ #endif
+ temp_state = 2;
+ break;
+ case 2: // Prepare TEMP_1
+ #if (TEMP_1_PIN > -1)
+ #if TEMP_1_PIN < 7
+ DIDR0 = 1<<TEMP_1_PIN;
+ #else
+ DIDR2 = 1<<(TEMP_1_PIN - 8);
+ ADCSRB = 1<<MUX5;
+ #endif
+ ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
+ ADCSRA |= 1<<ADSC; // Start conversion
+ #endif
+ #ifdef ULTIPANEL
+ buttons_check();
+ #endif
+ temp_state = 3;
+ break;
+ case 3: // Measure TEMP_1
+ #if (TEMP_1_PIN > -1)
+ raw_temp_1_value += ADC;
+ #endif
+ temp_state = 4;
+ break;
+ case 4: // Prepare TEMP_2
+ #if (TEMP_2_PIN > -1)
+ #if TEMP_2_PIN < 7
+ DIDR0 = 1 << TEMP_2_PIN;
+ #else
+ DIDR2 = 1<<(TEMP_2_PIN - 8);
+ ADCSRB = 1<<MUX5;
+ #endif
+ ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
+ ADCSRA |= 1<<ADSC; // Start conversion
+ #endif
+ #ifdef ULTIPANEL
+ buttons_check();
+ #endif
+ temp_state = 5;
+ break;
+ case 5: // Measure TEMP_2
+ #if (TEMP_2_PIN > -1)
+ raw_temp_2_value += ADC;
+ #endif
+ temp_state = 0;
+ temp_count++;
+ break;
+ default:
+ SERIAL_ERRORLN("Temp measurement error!");
+ break;
+ }
+
+ if(temp_count >= 16) // 6 ms * 16 = 96ms.
+ {
+ #ifdef HEATER_0_USES_AD595
+ current_raw[0] = raw_temp_0_value;
+ #else
+ current_raw[0] = 16383 - raw_temp_0_value;
+ #endif
+
+ #ifdef HEATER_1_USES_AD595
+ current_raw[2] = raw_temp_2_value;
+ #else
+ current_raw[2] = 16383 - raw_temp_2_value;
+ #endif
+
+ #ifdef BED_USES_AD595
+ current_raw[1] = raw_temp_1_value;
+ #else
+ current_raw[1] = 16383 - raw_temp_1_value;
+ #endif
+
+ temp_meas_ready = true;
+ temp_count = 0;
+ raw_temp_0_value = 0;
+ raw_temp_1_value = 0;
+ raw_temp_2_value = 0;
+ #ifdef HEATER_0_MAXTEMP
+ #if (HEATER_0_PIN > -1)
+ if(current_raw[TEMPSENSOR_HOTEND_0] >= maxttemp_0) {
+ target_raw[TEMPSENSOR_HOTEND_0] = 0;
+ analogWrite(HEATER_0_PIN, 0);
+ SERIAL_ERRORLN("Temperature extruder 0 switched off. MAXTEMP triggered !!");
+ kill();
+ }
+ #endif
+ #endif
+ #ifdef HEATER_1_MAXTEMP
+ #if (HEATER_1_PIN > -1)
+ if(current_raw[TEMPSENSOR_HOTEND_1] >= maxttemp_1) {
+ target_raw[TEMPSENSOR_HOTEND_1] = 0;
+ if(current_raw[2] >= maxttemp_1) {
+ analogWrite(HEATER_2_PIN, 0);
+ SERIAL_ERRORLN("Temperature extruder 1 switched off. MAXTEMP triggered !!");
+ kill()
+ }
+ #endif
+ #endif //MAXTEMP
+
+ #ifdef HEATER_0_MINTEMP
+ #if (HEATER_0_PIN > -1)
+ if(current_raw[TEMPSENSOR_HOTEND_0] <= minttemp_0) {
+ target_raw[TEMPSENSOR_HOTEND_0] = 0;
+ analogWrite(HEATER_0_PIN, 0);
+ SERIAL_ERRORLN("Temperature extruder 0 switched off. MINTEMP triggered !!");
+ kill();
+ }
+ #endif
+ #endif
+
+ #ifdef HEATER_1_MINTEMP
+ #if (HEATER_2_PIN > -1)
+ if(current_raw[TEMPSENSOR_HOTEND_1] <= minttemp_1) {
+ target_raw[TEMPSENSOR_HOTEND_1] = 0;
+ analogWrite(HEATER_2_PIN, 0);
+ SERIAL_ERRORLN("Temperature extruder 1 switched off. MINTEMP triggered !!");
+ kill();
+ }
+ #endif
+ #endif //MAXTEMP
+
+ #ifdef BED_MINTEMP
+ #if (HEATER_1_PIN > -1)
+ if(current_raw[1] <= bed_minttemp) {
+ target_raw[1] = 0;
+ WRITE(HEATER_1_PIN, 0);
+ SERIAL_ERRORLN("Temperatur heated bed switched off. MINTEMP triggered !!");
+ kill();
+ }
+ #endif
+ #endif
+
+ #ifdef BED_MAXTEMP
+ #if (HEATER_1_PIN > -1)
+ if(current_raw[1] >= bed_maxttemp) {
+ target_raw[1] = 0;
+ WRITE(HEATER_1_PIN, 0);
+ SERIAL_ERRORLN("Temperature heated bed switched off. MAXTEMP triggered !!");
+ kill();
+ }
+ #endif
+ #endif
+ }
+}
+
\r
#ifndef THERMISTORTABLES_H_
#define THERMISTORTABLES_H_
+#include <avr/pgmspace.h>
+
#define OVERSAMPLENR 16
#if (THERMISTORHEATER_0 == 1) || (THERMISTORHEATER_1 == 1) || (THERMISTORBED == 1) //100k bed thermistor
#define NUMTEMPS_1 61
-const short temptable_1[NUMTEMPS_1][2] = {
+const short temptable_1[NUMTEMPS_1][2] PROGMEM = {
{ 23*OVERSAMPLENR , 300 },
{ 25*OVERSAMPLENR , 295 },
{ 27*OVERSAMPLENR , 290 },
#endif
#if (THERMISTORHEATER_0 == 2) || (THERMISTORHEATER_1 == 2) || (THERMISTORBED == 2) //200k bed thermistor
#define NUMTEMPS_2 21
-const short temptable_2[NUMTEMPS_2][2] = {
+const short temptable_2[NUMTEMPS_2][2] PROGMEM = {
{1*OVERSAMPLENR, 848},
{54*OVERSAMPLENR, 275},
{107*OVERSAMPLENR, 228},
#endif
#if (THERMISTORHEATER_0 == 3) || (THERMISTORHEATER_1 == 3) || (THERMISTORBED == 3) //mendel-parts
#define NUMTEMPS_3 28
-const short temptable_3[NUMTEMPS_3][2] = {
+const short temptable_3[NUMTEMPS_3][2] PROGMEM = {
{1*OVERSAMPLENR,864},
{21*OVERSAMPLENR,300},
{25*OVERSAMPLENR,290},
#if (THERMISTORHEATER_0 == 4) || (THERMISTORHEATER_1 == 4) || (THERMISTORBED == 4) //10k thermistor
#define NUMTEMPS_4 20
-short temptable_4[NUMTEMPS_4][2] = {
+const short temptable_4[NUMTEMPS_4][2] PROGMEM = {
{1*OVERSAMPLENR, 430},
{54*OVERSAMPLENR, 137},
{107*OVERSAMPLENR, 107},
#if (THERMISTORHEATER_0 == 5) || (THERMISTORHEATER_1 == 5) || (THERMISTORBED == 5) //100k ParCan thermistor (104GT-2)
#define NUMTEMPS_5 61
-const short temptable_5[NUMTEMPS_5][2] = {
+const short temptable_5[NUMTEMPS_5][2] PROGMEM = {
{1*OVERSAMPLENR, 713},
{18*OVERSAMPLENR, 316},
{35*OVERSAMPLENR, 266},
#if (THERMISTORHEATER_0 == 6) || (THERMISTORHEATER_1 == 6) || (THERMISTORBED == 6) // 100k Epcos thermistor
#define NUMTEMPS_6 36
-const short temptable_6[NUMTEMPS_6][2] = {
+const short temptable_6[NUMTEMPS_6][2] PROGMEM = {
{28*OVERSAMPLENR, 250},
{31*OVERSAMPLENR, 245},
{35*OVERSAMPLENR, 240},
#if (THERMISTORHEATER_0 == 7) || (THERMISTORHEATER_1 == 7) || (THERMISTORBED == 7) // 100k Honeywell 135-104LAG-J01
#define NUMTEMPS_7 54
-const short temptable_7[NUMTEMPS_7][2] = {
+const short temptable_7[NUMTEMPS_7][2] PROGMEM = {
{46*OVERSAMPLENR, 270},
{50*OVERSAMPLENR, 265},
{54*OVERSAMPLENR, 260},